
Using a Logarithmic Mapping to Enable
Lower Discount Factors in Reinforcement Learning

— Supplementary Material —

A Proof of Convergence for Logarithmic Q-learning

A.1 Definitions and Theorem

Our logarithmic Q-learning method is defined by the following equations:

f(x) := c ln(x+ γk) + d ; f−1(x) := e(x−d)/c − γk (1)

r+t :=

{
rt if rt ≥ 0

0 otherwise
; r−t :=

{
|rt| if rt < 0

0 otherwise
(2)

Qt(s, a) := f−1
(
Q̃+

t (s, a)
)
− f−1

(
Q̃−t (s, a)

)
(3)

ãt+1 := argmax
a′

(
Qt(st+1, a

′)
)

(4)

U+
t := r+t + γf−1

(
Q̃+

t (st+1, ãt+1)
)

(5)

Û+
t := f−1

(
Q̃+

t (st, at)
)
+ βreg,t

(
U+
t − f−1

(
Q̃+

t (st, at)
))

(6)

Q̃+
t+1(st, at) := Q̃+

t (st, at) + βlog,t

(
f
(
Û+
t

)
− Q̃+

t (st, at)
)

(7)

U−t := r−t + γf−1
(
Q̃−t (st+1, ãt+1)

)
(8)

Û−t := f−1
(
Q̃−t (st, at)

)
+ βreg,t

(
U−t − f−1

(
Q̃−t (st, at)

))
(9)

Q̃−t+1(st, at) := Q̃−t (st, at) + βlog,t

(
f
(
Û−t

)
− Q̃−t (st, at)

)
(10)

For these equations, the following theorem holds:

Theorem 1 Under the definitions above, Qt converges to Q∗ w.p. 1 if the following conditions hold:

1. 0 ≤ βlog,t · βreg,t ≤ 1

2.
∑∞

t=0 βlog,t · βreg,t =∞

3.
∑∞

t=0(βlog,t · βreg,t)2 <∞

4. limt→∞ βreg,t = 0

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A.2 Proof - part 1

We define Q+
t (s, a) := f−1(Q̃+

t (s, a)) and prove in part 2 that from (7), (6), and (5) it follows that:

Q+
t+1(st, at) = Q+

t (st, at) + βreg,t · βlog,t
(
U+
t −Q+

t (st, at) + c+t
)
, (11)

with c+t converging to zero w.p. 1 under condition 4 of the theorem, and U+
t defined as:

U+
t := r+t + γ Q+

t (st+1, ãt+1) .

Similarly, using definition Q−t (s, a) := f−1(Q̃−t (s, a)) and (10), (9), and (8) it follows that:

Q−t+1(st, at) = Q−t (st, at) + βreg,t · βlog,t
(
U−t −Q−t (st, at) + c−t

)
, (12)

with c−t converging to zero w.p. 1 under condition 4 of the theorem, and U−t defined as:

U−t := r+t + γ Q−t (st+1, ãt+1) .

It follows directly from the definitions of Q+
t and Q−t and (3) that:

Qt(s, a) = Q+
t (s, a)−Q−t (s, a) . (13)

Subtracting (12) from (11) and substituting this equivalence yields:

Qt+1(st, at) = Qt(st, at)+βreg,t ·βlog,t
(
r+t − r−t + γQt(st+1, ãt+1)−Qt(st, at) + c+t − c−t

)
.

From (2) it follows that rt = r+t − r−t . Furthermore, the following holds:

Qt(st+1, ãt+1) = Qt

(
st+1, argmax

a′

(
Qt(st+1, a

′)
))

= max
a′

Qt

(
st+1, a

′)
Using these equivalences and defining αt := βreg,t · βlog,t and ct := c+t − c−t , it follows that:

Qt+1(st, at) = Qt(st, at) + αt

(
rt + γmax

a′
Qt(st+1, a

′)−Qt(st, at) + ct

)
, (14)

with ct converging to zero w.p. 1 under condition 4 of the theorem. This is a noisy Q-learning
algorithm with the noise term decaying to zero. As we show in part 2, ct is fully specified (in the
positive case, and likewise in the negative case) by Q+

t , U+
t , and βreg,t, which implies that ct is

measurable given information at time t, as required by Lemma 1 in Singh et al. [2000]. Invoking
that Lemma, it can therefore be shown that the iterative process defined by (14) converges to Q∗t if
0 ≤ α ≤ 1,

∑∞
t=0 α =∞, and

∑∞
t=0 α

2
t <∞, as is guaranteed by the first three conditions of the

theorem. The steps are similar to the proof of Theorem 1 of the same reference, which we do not
repeat here.

A.3 Proof - part 2

In this section, we prove that (11) holds under the definitions from Section A.1, Q+
t (s, a) :=

f−1(Q̃+
t (s, a)), and condition 4 of the theorem. The proof of (12) follows the same steps, but with

the ‘-’ variants of the different variables instead. For readability, we use β1 for βlog,t and β2 for
βreg,t.

The definition of Q+
t implies Q̃+

t (s, a) = f
(
Q+

t (s, a)
)
. Using these equivalences, we can rewrite

(7), (6), and (5) in terms of Qt:

f(Q+
t+1(st, at)) = f(Q+

t (st, at)) + β1

(
f(Û+

t)− f(Q+
t (st, at))

)
, (15)

with
Û+
t = Q+

t (st, at) + β2
(
r+t + γ Q+

t (st+1, ãt+1)−Q+
t (st, at)

)
. (16)

By applying f−1 to both sides of (15), we get:

Q+
t+1(st, at) = f−1

(
f(Q+

t (st, at)) + β1

(
f
(
Û+
t

)
− f(Q+

t (st, at))
))

, (17)

which can be rewritten as:

Q+
t+1(st, at) = Q+

t (st, at) + β1

(
Û+
t −Q+

t (st, at)
)
+ e+t , (18)

2

where e+t is the error due to averaging in the log-space instead of in the regular space:

e+t := f−1
(
f(Q+

t (st, at)) + β1

(
f(Û+

t)− f(Q+
t (st, at))

))
−Q+

t (st, at)− β1
(
Û+
t −Q+

t (st, at)
)

(19)

The key to proving (11), and by extension the theorem, is proving that e+t goes sufficiently fast to 0.
We prove this by defining a bound on |e+t | and showing that this bound goes to 0. Figure 1 illustrates
the bound. The variables in the figure refer to the following quantities:

a → Q+
t (st, at)

b → Û+
t

v → (1− β1) a+ β1 b

w̃ → (1− β1)f(a) + β1f(b)

w → f−1(w̃)

The error e+t corresponds with:

e+t = f−1
(
(1− β1)f(a) + β1f(b)

)
−
(
(1− β1)a+ β1b

)
= f−1(w̃)− v = w − v

Note here that since f is a strictly concave function, the definition of w̃ and v directly imply w̃ < f(v).
Because f−1 is monotonically increasing, it follow that w < v, which yields |e+t | = v − w.

Figure 1: Bounding the error, for the case a < b (left) and for a > b (right).

In both graphs of Figure 1, besides the mapping function f(x), three more functions are plotted:
g0(x), g1(x), and g2(x). These three functions are all linear functions passing through the point
(a, f(a)). The function g0(x) has derivative f ′(a), while g2(x) has derivative f ′(b). The function
g1(x) passes through point (b, f(b)) as well, giving it derivative (f(a)− f(b))/(a− b).

As illustrated by the figure, g1(v) = w̃ and g−11 (w̃) = v. Furthermore, for x between a and b the
following holds (in both cases):

g0(x) ≥ f(x) ≥ g1(x) ≥ g2(x)

And, equivalently:
g−10 (x) ≤ f−1(x) ≤ g−11 (x) ≤ g−12 (x) .

We bound |e+t | = v − w, by using a lowerbound w− for w and an upperbound v+ for v. Specifically,
we define w− := g−10 (w̃) and v+ := g−12 (w̃), and can now bound the error as follows: |e+t | <=
v+ − w−. Next, we compute an expression for the bound in terms of a, b, and f .

First, note that for the derivatives of g0 and g2 the following holds:

g′0(x) = f ′(a) =
f(a)− w̃
a− w−

; g′2(x) = f ′(b) =
f(a)− w̃
a− v+

.

3

From this it follows that:

w− =
w̃ − f(a)
f ′(a)

+ a ; v+ =
w̃ − f(a)
f ′(b)

+ a .

Using this, we rewrite our bound as:

v+ − w− =
w̃ − f(a)
f ′(b)

− w̃ − f(a)
f ′(a)

=

(
1

f ′(b)
− 1

f ′(a)

)
· (w̃ − f(a))

=

(
1

f ′(b)
− 1

f ′(a)

)
·
(
(1− β1)f(a) + β1f(b)− f(a)

)
= β1

(
1

f ′(b)
− 1

f ′(a)

)(
f(b)− f(a)

)
Recall that f(x) := c ln(x+ γk) + d. The derivative of f(x) is

f ′(x) =
c

x+ γk

Substituting f(x) and f ′(x) in the expression for the bound gives:

v+ − w− = β1

(
b+ γk

c
− a+ γk

c

)(
c ln(b+ γk) + d− (c ln(a+ γk) + d)

)
= β1(b− a)(ln(b+ γk)− ln(a+ γk))

= β1(a− b)(ln(a+ γk)− ln(b+ γk))

= β1(a− b) ln
(
a+ γk

b+ γk

)
= β1(a− b) ln

(
a− b
b+ γk

+ 1

)
Using the definitions of a and b, the results for the bound for e+t :

|e+t | ≤ v+ − w− ≤ β1(Q+
t (st, at)− Û+

t) ln

(
Q+

t (st, at)− Û+
t

Û+
t + γk

+ 1

)
(20)

Definition (6) can be written as:

Û+
t := Q+

t (st, at) + βreg,t
(
U+
t −Q+

t (st, at)
)

(21)

yielding:

Q+
t (st, at)− Û+

t = Q+
t (st, at)−

(
Q+

t (st, at) + βreg,t
(
U+
t −Q+

t (st, at)
))

= β2
(
Q+

t (st, at)− U+
t

)
Substituting this in (20) gives:

|e+t | ≤ β1β2
(
Q+

t (st, at)− U+
t

)
ln

(
β2
(
Q+

t (st, at)− U+
t

)
Û+
t + γk

+ 1

)
Let us define c+t as:

c+t :=
(
Q+

t (st, at)− U+
t

)
ln

(
β2
(
Q+

t (st, at)− U+
t

)
Û+
t + γk

+ 1

)
Hence, |e+t | ≤ β1β2c+t . Substituting maximum bound of |e+t | and (21) in (18), we get:

Q+
t+1(st, at) = Q+

t (st, at) + β1β2
(
U+
t −Q+

t (st, at) + c+t
)

(22)

with c+t going to 0, if β2 goes to 0, which concludes part 2 of the proof.

4

B Hypothesis Testing

The following hypotheses are tested: 1) lower discount factors cause poor performance because they
result in smaller action gaps; 2) lower discount factors cause poor performance because they result in
smaller relative action gaps (i.e, the action gap of a state divided by the maximum action-value of
that state).

To test the first hypothesis, we performed the same experiment as in Section 3.2, but with rewards
that are a factor 100 larger. This in turn increases the action gaps by a factor 100 as well. Hence,
to validate the first hypothesis, this modification should improve (i.e., lower) the threshold value
where the performance falls flat. To test the second hypothesis, we pushed all action-values up by
100 through additional rewards, reducing the relative action-gap. Specifically, the extra reward upon
transitioning to a non-terminal state 100 · (1− γ), while the extra reward upon transition to a terminal
state is 100. This effectively pushes all action-values up by exactly 100. To validate the second
hypothesis, performance should degrade for this variation. We plotted the performance of these task
variations, together with the performance on the regular task, in Figure 2. Both variations show
roughly the same performance as the performance on the regular tasks, invalidating both hypotheses.

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

pe
rfo

rm
an

ce

regular ; short

w: 1
w: 2
w: 3
w: 5

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

pe
rfo

rm
an

ce

x 100 ; short

w: 1
w: 2
w: 3
w: 5

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

pe
rfo

rm
an

ce

+ 100 ; short

w: 1
w: 2
w: 3
w: 5

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

pe
rfo

rm
an

ce

regular ; long

w: 1
w: 2
w: 3
w: 5

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

pe
rfo

rm
an

ce

x 100 ; long

w: 1
w: 2
w: 3
w: 5

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
av

er
ag

e
pe

rfo
rm

an
ce

+ 100 ; long

w: 1
w: 2
w: 3
w: 5

Figure 2: Performance on 3 variations of the chain task. Left: performance on the regular version;
middle: performance on the variant with values 100 times larger; right: performance on the variant
with values pushed up by 100. All versions result in roughly the same performance curves.

C Additional Details for Logarithmic DQN

In this section, we describe additional details specific to our deep RL (Atari) experiments.

C.1 Implementation

In order to support reproducibility and enable reliable and accessible baseline comparisons, we base
our implementation upon the Google’s Dopamine framework [Castro et al., 2018]. Dopamine provides
reliable, open-source code for several important deep RL algorithms (including DQN) and enables
standardized benchmarking, yielding ‘apples to apples’ comparison under best known evaluation
practices in RL. Therefore, we evaluate LogDQN without modifications of agent or environment
parameters (w.r.t. those outlined by Castro et al. [2018]), except for LogDQN’s hyper-parameters
(i.e., γ, k, c, βlog, βreg , and d; for which the chosen values are stated in the paper).

We now highlight any settings in our LogDQN implementation that differs from our formulation of
the logarithmic Q-learning update rules, as follows:

• The most commonly-used loss function for DQN (and the default setting in Dopamine) is
based on the Huber loss function [Huber, 1992], which slightly differs from the squared-error

5

loss specified as the general setting. While our results are for the standard Huber loss setting,
in our primary experiments we did not observe any significant difference between the two.

• To optimize the loss function, we use the standard RMSProp optimizer1 (as the default
setting in Dopamine’s DQN). This choice differs slightly from our logarithmic Q-learning
formulation which illustrates the case for the fundamental gradient descent method.

• To initialize the LogDQN network, we generally use the standard Xavier initialization
[Glorot and Bengio, 2010] scheme (also a Dopamine’s default setting), with the mere
exception of initializing the output-layer weights of our Q− function to zero (instead of
small, noisy values around zero).

• We replaced the additive γk in our original formulation of the mapping function, its inverse,
and d hyper-parameter with a minimum-clipping at γk (i.e., enforcing the aforementioned
value to be the minimum possible value in the corresponding computations). This gives a
hard bound on the values that can be represented, instead of a soft bound, and increases
the independence between the k and γ parameters, which is useful when optimizing hyper-
parameters.

C.2 Hyper-parameter tuning

The hyper-parameters of LogDQN used for the experiments are the result from an earlier hyper-
parameter optimization performed using an older version of LogDQN that did not have a strategy to
deal with stochastic environments (as described in Section 4.2). Due to time-constraints, we were
unable to perform a new hyper-parameter optimization for the full version of LogDQN.

This earlier hyper-parameter optimization was performed across these 6 games: ALIEN, ZAXXON,
BREAKOUT, DOUBLEDUNK, SPACEINVADERS, and FISHINGDERBY. For the discount factor, we
tried γ ∈ {0.84, 0.92, 0.96, 0.98, 0.99} and for c we tried c ∈ {0.1, 0.5, 1.0, 2.0, 5.0}. Furthermore,
k was fixed at 100. For DQN, we tried the same γ values. Figure 3 shows the mean and median
human-normalized score across these 6 games.

In Figure 3, for LogDQN, the performance at the best c-value is plotted for each γ. The best values
for LogDQN are γ = 0.96 and c = 0.5; for DQN, the best value is γ = 0.99 (according to the more
robust median metric).

Mean Median

H
u
m

an
-N

o
rm

al
iz

ed
 S

co
re

Figure 3: Mean and median performance across 6 games for (an incomplete version of) LogDQN
and DQN.

References
Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence results for

single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308, 2000.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Belle-
mare. Dopamine: A research framework for deep reinforcement learning. arXiv preprint
arXiv:1812.06110, 2018.

Peter J. Huber. Robust estimation of a location parameter. In Breakthroughs in Statistics, pages
492–518. Springer, 1992.

1See http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

6

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Figure 4: Learning curves for all 55 games.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, pages 249–256, 2010.

7

	Proof of Convergence for Logarithmic Q-learning
	Definitions and Theorem
	Proof - part 1
	Proof - part 2

	Hypothesis Testing
	Additional Details for Logarithmic DQN
	Implementation
	Hyper-parameter tuning

