Appendix A Episodic Backward Update with an adaptive diffusion factor

Algorithm 3 Adaptive Episodic Backward Update

1: Initialize: replay memory D to capacity IV, K on-line action-value function Q1 (+;601),...,Qk(+;0k), K
target action-value function Q1 (5607),..., 0 & (+; @), training score recorder T'S = zeros(K), diffusion
factors (1, ..., Bk for each learner network

2: for episode =1 to M do

3 Select Qactor = @ as the actor network for the current episode, where ¢ = (episode —1)%K + 1

4 for ¢t = 1 to Terminal do

5: With probability e select a random action a;

6: Otherwise select a; = argmax, Qactor (St, @)

7 Execute action a¢, observe reward r; and next state S;4+1

8: Store transition (s¢, at, r¢, S¢4+1) in D

9: Add training score for the current learner T'S[i|+ = 7,

10: Sample a random episode E = {S, A, R, S’} from D, set T = length(E)

11: for j = 1 to K (this loop is processed in parallel) do

12: Generate temporary target (-table, Qj = Ql (S o 03_)

13: Initialize target vector y = zeros(T'), yr < Rr

14: fork=T—1to1ldo .

15: Qj [Ar+1, k] < Biyrs1 + (1 = B5)Q; [Art1, K]

16: Yk — R + ymax, Q; [a, k]|

17: end for

18: Perform a gradient descent step on (y — Q; (S, A; 6;))? with respect to 6;

19: end for ) .

20: Every C stepsreset Q1 = Q1,...,Qx = Qk

21: end for

22: Every B steps synchronize all learners with the best training score, b = argmax,, T'S[k].
Q1(5601) = Qu(50b),...,Qr(0k) = Qu(;0) and Qu1(601) = Qu(56,),...,Qx(0k) =
Qb (+; 0, ). Reset the training score recorder TS = zeros(K).

23: end for




Appendix B

Raw scores of all 49 games.

Table 1: Raw scores after 10M frames of training. Mean scores from 4 random seeds are reported for
adaptive EBU. 8 random seeds are used for all other baselines. We use the results at Nature DQN paper
to report the scores at 200M frames. We run their code (https://github.com/deepmind/dqgn) to
report scores for 10M frames. Due to the use of different random seeds, the result of Nature DQN
at 10M frames may be better than that of Nature DQN at 200M frames in some games. Bold texts
indicate the best score out of the 5 results trained for 10M frames.

Training Frames 10M 20M 200M
EBU(S=0.5) Adap. EBU  DQN PER Retrace(A)  OT Adap. EBU | Nature
DQN
Alien 708.08 894.15 690.32 1026.96  708.29 1078.67 1225.36 3069.00
Amidar 117.94 124.63 125.42 167.63 182.68 220.00 209.96 739.50
Assault 4109.18 3676.95 2426.94 2720.69  2989.05 2499.23 | 3943.23 3359.00
Asterix 1898.12 2533.27 2936.54 2218.54  1798.54 2592.50 | 3221.25 6012.00
Asteroids 1002.17 1402.43 654.99 993.50 886.92 985.88 2378.84 1629.00
Atlantis 61708.75 87944.38 20666.84  35663.83 98182.81 57520.00 | 141226.00 85641.00
Bank heist 359.62 459.42 234.70 312.96 223.50 407.42 680.43 429.70
Battle zone 20627.73 24748.50 22468.75 2083574 30128.36 20400.48 | 30502.53 26300.00
Beam rider 5628.99 4785.27 3682.92 4586.07  4093.76 5889.54 | 6634.43 6846.00
Bowling 52.02 102.89 65.23 42.74 42.62 5345 113.75 42.40
Boxing 55.95 72.69 37.28 4.64 6.76 60.89 96.35 71.80
Breakout 174.76 265.62 28.36 164.22 171.86 75.00 443.34 401.20
Centipede 4651.28 8389.16 6207.30 438541  5986.16 5277.79 | 8389.16 8309.00
Chopper Command 1196.67 1294.45 1168.67 134424 1353.76 1615.00 1909.23 6687.00
Crazy Climber 65329.63 94135.04 74410.74 5316647 64598.21 92972.08 | 103780.15 114103.00
Demon Attack 7924.14 8368.16 7772.39 4446.03  6450.84 6872.04 | 9099.16 9711.00
Double Dunk -16.19 -14.12 -17.94 -15.62 -15.81 -15.92 -12.78 -18.10
Enduro 415.59 326.45 516.10 308.75 208.10 615.05 410.95 301.80
Fishing Derby -39.13 -15.85 -65.53 -78.49 -75.74 -69.66 9.22 -0.80
Freeway 19.07 23.71 16.24 9.35 15.26 14.63 34.36 30.30
Frostbite 437.92 966.23 466.02 536.00 825.00 2452.75 | 1760.15 328.30
Gopher 3318.50 3634.67 1726.52 1833.67  3410.75 2869.08 | 5611.30 8520.00
Gravitar 294.58 450.18 193.55 319.79 272.08 263.54 611.99 306.70
HER.O. 3089.90 3398.55 2767.97 3052.04  3079.43 10698.25 | 4308.23 19950.00
Ice Hockey -4.71 -2.96 -4.79 -7.73 -6.13 -5.79 -2.96 -1.60
Jamesbond 391.67 519.52 183.35 421.46 436.25 325.21 1043.66 576.70
Kangaroo 535.83 731.13 709.88 782.50 538.33 708.33 2018.83 6740.00
Krull 7587.24 8733.52 24109.14  6642.58  6346.40 7468.70 | 10016.72 3805.00
Kung-Fu Master 20578.33 26069.68 2195172 18212.89 18815.83 22211.25| 30387.78 23270.00
Montezuma’s Revenge | 0.00 0.00 3.95 043 0.00 0.00 0.00 0.00
Ms. Pacman 1249.79 1652.37 1861.80 1784.75 1310.62 1849.00 1920.25 2311.00
Name This Game 6960.46 7075.53 7560.33 5757.03  6094.08 7358.25 | 7565.67 7257.00
Pong 5.53 16.49 -2.68 12.83 8.65 2.60 20.23 18.90
Private Eye 471.76 3609.96 1388.45 269.28 714.97 1277.53 | 7940.27 1788.00
Q*Bert 785.00 1074.77 2037.21 121542  3192.08 3955.10 | 2437.83 10596.00
River Raid 3460.62 4268.28 3636.72 6005.62  4178.92 4643.62 | 5671.51 8316.00
Road Runner 10086.74 15681.49 8978.17 17137.92  9390.83 19081.55 | 28286.88 18257.00
Robotank 11.65 15.34 16.11 6.46 9.90 12.17 20.73 51.60
Seaquest 1380.67 1926.10 762.10 1955.67 227583 2710.33 | 5313.43 5286.00
Space Invaders 797.29 1058.25 755.95 762.54 783.35 869.83 1148.21 1976.00
Star Gunner 2737.08 3892.51 708.66 2629.17  2856.67 1710.83 17462.88 57997.00
Tennis -3.41 -0.96 0.00 -10.32 -2.50 -6.37 -0.93 -2.50
Time Pilot 3505.42 4567.18 3076.98 443417 3651.25 4012.50 | 4567.18 5947.00
Tutankham 204.83 23951 165.27 255.74 156.16 247.81 299.11 186.70
Up and Down 6841.83 6754.11 9468.04 7397.29  7574.53 6706.83 | 10984.70 8456.00
Venture 105.10 194.89 96.70 60.40 50.85 106.67 242.56 380.00
Video Pinball 84859.24 78405.27 17803.69  55646.66 18346.58 38528.58 | 84695.96 42684.00
Wizard of Wor 1249.89 2030.63 529.85 1175.24 1083.69 1177.08 | 4185.40 3393.00
Zaxxon 3221.67 3487.38 685.84 3928.33  596.67 2467.92 | 6548.52 49717.00



https://github.com/deepmind/dqn

Appendix C Learning curves and corresponding adaptive diffusion factor

|
«
|

alien amidar assault asterix 2 asteroids 1 atiantis o. Bank_heist

£l

battle zone beam rider Boxing breakout Centipede

Crazy X 100} ‘Gemon atta ‘double dunk enduro fishing dey 0] Treeway 29 Trostoite

1.00f -1z a0 o X
o 075) 30]
§o7s w -2s] 5|
3 20)
£ 050 050} 201 50 10f
H -1

025 025| -5 | X o

-1 o

50)
23]

4l
z
D
{NE
\

P

LY
il
£
L

02
o m 1o i
R
o] Gopher X Gravitar 29 Tero L Tce hocke: Tamesbond o Kangaroo X rall
109 100
Lo 600} 15| -5.0f
8 10 0.75) 4 0.75|
2 ~7.5|
30 409 050 *
= 0.5) {10.0f 2 0.50]
02| x| 0.25) |
00 12.5] o o 0.25)
1
o)
ol
04
02
o T = o T ot

‘montezuma ms pacman %] o

3
]

pon: private eye 1.00] abert

073
0.50)
| 0

name this game 2

BN

1

iD

o] Tiverraid X] Toad runner. Tobotank X Seaquest 2 Space nvaders X Star gunner X
g0 |
Zoa
H )
* __d_/"-’
o B

Al

3

1e3 10
° time_pilot X ‘tutankham B Up n down venture Video pinball wizard of wor ol

o)
1.00) 300f x| ol
075 200f o N 0.4f
050 04
100 0.2f
025 02}
o
b3

LR R e

|
3
H

i

i
H

R R T % R R e ER e ER e e ER I o
Million Frames. Million Frames Million Frames Million Frames. Million Frames Million Frames. Million Frames

—— Adaptive EBU —— Adaptive diffusion factor %X Nature DQN 200M

Figure 1: Test scores and diffusion factor of Adaptive EBU. We report the mean and the standard
deviation from 4 random seeds. We compare the performance of adaptive EBU with the result
reported in Nature DQN, trained for 200M frames. The blue curve below each test score plot shows
how adaptive EBU adapts its diffusion factor during the course of training.



Appendix D Network structure and hyperparameters

2D MNIST Maze Environment

Each state is given as a grey scale 28 x 28 image. We apply 2 convolutional neural networks (CNNs)
and one fully connected layer to get the output ()-values for 4 actions: up, down, left and right. The
first CNN uses 64 channels with 4 x 4 kernels and stride of 3. The next CNN uses 64 channels with
3 x 3 kernels and stride of 1. Then the layer is fully connected into a size of 512. Then we fully
connect the layer into a size of the action space 4. After each layer, we apply a rectified linear unit.

We train the agent for a total of 200,000 steps. The agent performs e-greedy exploration. e starts
from 1 and is annealed to 0 at 200,000 steps in a quadratic manner: € = m (step —200,000)2.

We use RMSProp optimizer with a learning rate of 0.001. The online-network is updated every 50
steps, the target network is updated every 2000 steps. The replay memory size is 30000 and we use
minibatch size of 350. We use a discount factor v = 0.9 and a diffusion factor 5 = 1.0. The agent
plays the game until it reaches the goal or it stays in the maze for more than 1000 time steps.

49 Games of Atari 2600 Domain

Common specifications for all baselines

Almost all specifications such as hyperparameters and network structures are identical for all baselines.
We use exactly the same network structure and hyperparameters of Nature DQN (Mnih et al., 2015).
The raw observation is preprocessed into a gray scale image of 84 x 84. Then it passes through
three convolutional layers: 32 channels with 8 x 8 kernels with a stride of 4; 64 channels with 4 x 4
kernels with a stride of 2; 64 channels with 3 x 3 kernels with a stride of 1. Then it is fully connected
into a size of 512. Then it is again fully connected into the size of the action space.

We train baselines for 10M frames each, which is equivalent to 2.5M steps with frameskip of 4. The
agent performs e-greedy exploration. e starts from 1 and is linearly annealed to reach the final value
0.1 at 4M frames of training. We adopt 30 no-op evaluation methods. We use 8 random seeds for
10M frames and 4 random seeds for 20M frames. The network is trained by RMSProp optimizer
with a learning rate of 0.00025. At each update (4 agent steps or 16 frames), we update transitions in
minibatch with size 32. The replay buffer size is 1 million steps (4M frames). The target network is
updated every 10,000 steps. The discount factor is v = 0.99.

We divide the training process into 40 epochs (80 epochs for 20M frames) of 250,000 frames each.
At the end of each epoch, the agent is tested for 30 episodes with ¢ = 0.05. The agent plays the game
until it runs out of lives or time (18,000 frames, 5 minutes in real time).

Below are detailed specifications for each algorithm.

1. Episodic Backward Update

We used 3 = 0.5 for the version EBU with constant diffusion factor. For adaptive EBU, we used 11
parallel learners (/X = 11) with diffusion factors 0.0, 0.1, ..., 1.0. We synchronize the learners at
every 250,000 frames (B = 62, 500 steps).

2. Prioritized Experience Replay
We use the rank-based DQN version of Prioritized ER and use the hyperparameters chosen by the
authors (Schaul et al., 2016): « = 0.5 — 0 and 8 = 0.

3. Retrace(\)

Just as EBU, we sample a random episode and then generate the Retrace target for the transitions in
the sampled episode. We follow the same evaluation process as that of Munos et al., 2016. First, we
calculate the trace coefficients from s = 1 to s = 1" (terminal).

Ccs = Amin (1,W> (D)
mlas|zs)

Where p is the behavior policy of the sampled transition and the evaluation policy 7 is the current

policy. Then we generate a loss vector for transitions in the sample episode from¢ =T to ¢t = 1.

AQ(wi—1,a1-1) = ctAAQ(wy, ap) + [r(T—1,a1-1) + VERQ(24,:) — Qp-1,00-1)] . (2)
4. Optimality Tightening
We use the source code (https://github.com/ShibiHe/Q-0ptimality-Tightening), modify
the maximum test steps and test score calculation to match the evaluation policy of Nature DQN.


https://github.com/ShibiHe/Q-Optimality-Tightening

Appendix E

Line #7 of Algorithm 2: Sample a random episode E.

Supplementary figure: backward update algorithm

S Sy Sr—2 Sr-1 Sr
. A Ay Ar_, Ar_4 Ar
R Ry Rr— Rr_y
s S, Sr-1 Sr Sr41

Line # 8~9: Generate a temporary target Q table @ with the next state vector §’. Initialize a target vector y.
Let there be n possible actions in the environment. A = {a®,a®, ...,a™}.
Note that @ is the target Q-value and Q(Sy41,:) = 0.

Q(Sz,a™) Q(Sr-1,aM) Q(Sr,a®) 0
_ Q(Sz,a®) Q(Sr-1,a®) Q(Sr,a®) 0
Q

Q(Sz,a(")) Q(ST—lla(n)) Q(ST,a(")) 0
y 0 | | 0 | 0 |

Line # 10~12, first iteration (k = T-1): Update @ and y. Let the T-th action in the replay memory be Ay = a®.
@ line # 15: update Q[Ax11, k] = Q[Ar, T — 1] = Q[a®,T — 1] « B yr + (1 = B)Q(Sr,a®)
@ line # 16: update y, = yp_; « Rp_y +ymaxQ [;, T-1]

index 1 T-2 T-1 T
a®|  Q(Sza®) Q(Sr-1,a™) Q(Sr,a®) 0
_a® Q(Sz,a®) Q(Sr-1,a®) Blyr I"‘ 1 -pB)Q(Sr,a®) 0
Q
a®|  Q(Sza™) Q(Sr_1,a™) Q(Sr,a™) 0
T i
o I+ [womes

Line # 10~12, second iteration (k = T-2): Update @ and y. Let the (T-1)-th action in the replay memory be Ay_; = a®.

@ line # 15: update Q[Ag41, k] = Q[Ar—_y, T — 2] = Q[a®, T = 2] « B yr_y + (1 — B)Q(S7—y,aD)
@ line # 16: update y, = yy_ < Rp_p +ymaxQ [;, T-2]

index 1 T-2 T-1 T
(OF ] €} Blyr_i} A o
a Q(SZAQ ! ) + (1 — ﬁ)O(ST—lla(l)) Q(ST'a ! ) 0
_a® 0(52‘ a(Z)) Q(ST—L a(z)) Byr+(1— ﬁ)@(sr. a(z)) 0
a™ 0(52_ a(n)) O(ST—lr a(")) O(S-r. a(n)) 0
'
y 0 | | Rr_; + ymaxla [z, T—Z]I |‘I Rr_, +ymaxQ[;, T—1]| | Ry

Repeat this update until k =1.

Figure 2: Target generation process from the sampled episode E



Appendix F Comparison to other multi-step methods.

0 0 0 0 a 0 0

’

Tho1 =1 T om=n
rn=2 AN S, ¢ r3=3 7'1—71—1\ ] n-1 @ n
N N N
: @ : ’
b

Figure 3: A motivating example where )(\) underperforms Episodic Backward Update. Left: A
simple navigation domain with 3 possible episodes. s; is the initial state. States with ’ signs are the
terminal states. Right: An extended example with n possible episodes.

Imagine a toy navigation environment as in Figure 3, left. Assume that an agent has experienced all
possible trajectories: (s; — 57); (51 — s2 — $4) and (s — sy — s4). Let the discount factor ~
be 1. Then optimal policy is (s; — so — s4). With a slight abuse of notation let Q(s;, s;) denote
the value of the action that leads to the state s; from the state s;. We will show that Q(\) and Q*(X)
methods underperform Episodic Backward Update in such examples with many suboptimal branching
paths.

@ () method cuts trace of the path when the path does not follow greedy actions given the current
Q-value. For example, assume a Q()\) agent has updated the value Q(s1, s;) at first. When the agent
tries to update the values of the episode (s; — s — sé), the greedy policy of the state s; heads to

5/1 Therefore the trace of the optimal path is cut and the reward signal r3 is not passed to Q(s1, $2).
This problem becomes more severe if the number of suboptimal branches increases as illustrated in
Figure 3, right. Other variants of Q(\) algorithm that cut traces, such as Retrace()\), have the same
problem. EBU does not suffer from this issue, because EBU does not cut the trace, but performs max
operations at every branch to propagate the maximum value.

Q*(\) is free from the issues mentioned above since it does not cut traces. However, to guarantee

convergence to the optimal value function, it requires the parameter A to be less than 12_—;’ In
convention, the discount factor v /= 1. For a small value of )\ that satisfies the constraint, the update
of distant returns becomes nearly negligible. However, EBU does not have any constraint of the

diffusion factor S to guarantee convergence.



Appendix G Theoretical guarantees

Now, we will prove that the episodic backward update algorithm converges to the true action-value
function Q™ in the case of finite and deterministic environment.

Definition 1. (Deterministic MDP)

M = (S, A, P, R) is a deterministic MDP if 3g : S x A — S s.t.
v

P(s'|s,a) = {1 ' =9050) yig 0 9y e S x AxS,

0 else

In the episodic backward update algorithm, a single (state, action) pair can be updated through
multiple episodes, where the evaluated targets of each episode can be different from each other.
Therefore, unlike the bellman operator, episodic backward operator depends on the exploration policy
for the MDP. Therefore, instead of expressing different policies in each state, we define a schedule to
represent the frequency of every distinct episode (which terminates or continues indefinitely) starting
from the target (state, action) pair.

Definition 2. (Schedule)

Assume a MDP M = (S, A, P, R) , where R is a bounded function. Then, for each state (s,a) €
S x Aand j € [1, 00|, we define j-length path set p, ,(j) and path set p(s,a) for (s, a) as

Ps,alf) = {(Si,ai){:0|(so,a0) = (s,a), P(si+1lsi,a;) >0 Vie[0,j—1],s; is terminal}.

and Ps,a = Ujo‘ilps,a(j)'

Also, we define a schedule set )\, ,, for (state action) pair (s, a) as

)‘s’a = {()‘i)ipzsia“ZﬁSia‘ Ai=1LA>0 Vie [L |ps,a|]}-

Finally, to express the varying schedule in time at the RL scenario, we define a time schedule set )\
for MDP M as

A= { DO} esxaims Poalt) € A, V(s,0) € S x At € [1,00] .

Since no element of the path can be the prefix of the others, the path set corresponds to the enumeration
of all possible episodes starting from each (state, action) pair. Therefore, if we utilize multiple
episodes from any given policy, we can see the empirical frequency for each path in the path set
belongs to the schedule set. Finally, since the exploration policy can vary across time, we can group
independent schedules into the time schedule set.

For a given time schedule and MDP, now we define the episodic backward operator.

Definition 3. (Episodic backward operator)
Foran MDP M = (S, A, P, R), and a time schedule {\ o(t)},-, (s.)eSxA €A

Then, the episodic backward operator H,gB is defined as

(H{Q)(s,a) (3)
[Ps,al 50
_ ! . I ! N .
=Eyes pisjs,a) [T(5:a,8") +7 ; (As,a)(1))il(s51 = 8") 15]‘%&1{@)” T(pm)i(J)
09 (4) )

(ps,a)i

j—1
= Z BF AT Br(Sins @i, Sie1)) + (1= B)Q(sik, air) } + 57714771 e Q(8ij, aij)-
k=1 J



Where (ps,q); is the i-th path of the path set, and (s;;, a;;) corresponds to the j-th (state, action) pair
of the i-th path.

Episodic backward operator consists of two parts. First, given the path that initiates from the target
(state, action) pair, the function T(ﬁ @ ), computes the maximum return of the path via backward

update. Then, the return is averaged by every path in the path set. Now, if the MDP M is deterministic,
we can prove that the episodic backward operator is a contraction in the sup-norm, and the fixed point
of the episodic backward operator is the optimal action-value function of the MDP regardless of the
time schedule.

Theorem 2. (Contraction of the episodic backward operator and the fixed point)

Suppose M = (S, A,P,R) is a deterministic MDP. Then, for any time schedule
Aaa®}2, (s.a)esxA €N HY? is a contraction in the sup-norm for any t, i.e

I @1) = (H Q2) o < |Q1 — Q2 w- 5)
Furthermore, for any time schedule {\s o (t)},~ (s,a)eSxA € A, the fixed point oth’B is the optimal

Q function Q*.

Proof. First, we prove T(i Q ) () is a contraction in the sup-norm for all 5.

Since M is a deterministic MDP, we can reduce the return as

j—1
Téi)l(j) = (Z BN Br(si, air) + (1= B)Q(sik, air) } + 5771977 gﬁf@(sz‘j’ aij)) :

k=1
(6)
j—1 ) )
ITE2, () = TE, ()l < {(1 B Y B +ﬁf—w-1} Q1 Qs
1— 1— Jj—1 . ,
_ {( 6)( — (B’Y) ) +6j—1’y_7—1} ||Q1 _ Q2Hoo
1— By
_ LB+ By
= Q- @all
ﬁjvj‘l }
=<1 l—y)——— 00
fira-25 e - ol
<@ = Q2lle (B €[0,1],7€[0,1)).
@)
Also, at the deterministic MDP, the episodic backward operator can be reduced to
5 [Ps.al 50
(H;Q)(s,a) =r(s,a) + v ; (As,a))i(t) ng&fﬂ)i T(ps a)l( DIE (8)



Therefore, we can finally conclude that

ICHY Q1) = (HY Q2)lloo

= max
s,a

(,0) = HY Qa(s,0)

‘ps,a|
< | 3 OO |{_mox 769 @)= { _max | 129 )

1<5<(ps,a)il 1<5<(Ps,a)il

‘p5,0|
< ) ThQ1 (5 _ bR (s ‘
< ymax ;(A(sm(t)) po X ‘{‘ (e, ) = T2 (4) }
(1Pl
< ymax | Y A ()il Q1 — Q2ll
’ i=1

= ymax[|Q: — Qall]

=7]|Q1 — Q2| -
)

Therefore, we have proved that the episodic backward operator is a contraction independent of the
schedule. Finally, we prove that the distinct episodic backward operators in terms of schedule have
the same fixed point, Q*. A sufficient condition to prove this is given by

|:InaX1<j<\(pé a)il 5)?&)7(.]) = M V1 <1< |ps,a|‘

We will prove this by contradiction. Assume Ji s.t. [maxléjg‘(ps,a)il T([;’Q*)_ ()] # M

First, by the definition of Q* fuction, we can bound Q* (s;x, a;) and Q*(s;k, :) for every k > 1 as
follows.

-1

k
Q*(sik,a) <Y 7FQ*(s,a) — Y V" Fr(Sim, Qi) (10)
m=0

Note that the equality holds if and only if the path (s;, az)k‘ is the optimal path among the ones that
T,B an)L (] )

start from (s, ag ). Therefore, V1 < j < |(ps.a),], p



T2, ()

j—1
= Zﬂk_17k_l {Br(sik, air) + (1 — B)Q(sik, azr)} + 114771 Eﬁx Q(si5, aij)

k=1
< {(Zu — B)BE) + ﬂj‘l} 1Q* (5.a)
k=1

j-1 k—1
+ Z {5k_1’7k_1 <5T(Sik7az‘k) - Z (1- 5)7m_kr(sim,aim)> }

k=1 m=0

j—1
= BT T T (Sims Qi)

j—1
=77'Q"(s,a) + Z BE T (sin, ain)

Jj—1 j—1
- Z { Z B)Bklfymlr(simyaim)} - Z 5j717milr(5imaaim)

m=0 \k=m+1 m=0

j—1
— '@ (s.0) + Z B 1 (Sim, i)

j—2

j—1
— B (i, @im) — Z B (Sim s Qi)

m=0

(=)

m=

Q*(87 a) — 7“(8, a).

=v7'Q*(s,a) — v 'r(si0, ai0) =

~y
1D
Since this occurs for any arbitrary path, the only remaining case is when
. B.Q7 (. Q" (s,a)—r(s,a)
Jis.t. [maxlgjg\(ps,a)i\ Tip ()] < =—==—7.
Now, let’s turn our attention to the path so, s1, S2, ..., S|(p, ,),)|- Let’s first prove the contradiction

when the length of the contradictory path is finite. If Q*(s;1, a;1) < v~ 1(Q*(s,a) — (s, a)), then by
the Bellman equation, there exists an action a # a;1 s.t. Q*(s;1,a) = v~ (Q*(s,a) —r(s,a)). Then,

we can find that T(Z’Q*)l (1) =y 1(Q*(s,a) — r(s,a)). It contradicts the assumption, therefore a;;
should be the optimal action in s;;.

Repeating the procedure, we conclude that a;1, a2, ..., @|(p, ,),)|—1 are optimal with respect to their
corresponding states.

Finally, T(ﬁ @ ' (|(ps,a)i)|) = v~1(Q*(s,a) — r(s,a)) since all the actions satisfy the optimality
condition of the inequality in equation 7. Therefore, it contradicts the assumption.
In the case of an infinite path, we will prove that for any € > 0, there is no path that satisfies

Q*(Sva)fr(s’a) — T ’Q ():| = .

Yy maxlﬁjél(ps,a) ‘ (ps CL)’L

10



Since the reward function is bounded, we can define r,,x as the supremum norm of the reward
function. Define gy ax = maxs q |Q(s,a)| and Ryax = max{rmax, dmax ;- We can assume Ry ax >
0. Then, let’s set n. = [log, %1 + 1. Since v € [0, 1), RmaX% < €. Therefore, by applying
the procedure on the finite path case for 1 < 5 < n., we can conclude that the assumption leads to a
contradiction. Since the previous n. trajectories are optimal, the rest trajectories can only generate a
return less than e.

Finally, we proved that {maxlﬁjgl(ps,a)i\ T@’Qa*)i(j)} = M V1 <i < |ps,q| and there-
fore, every episodic backward operator has QQ* as the fixed point. O

Finally, we will show that the online episodic backward update algorithm converges to the optimal @
function Q*.

Restatement of Theorem 1. Given a finite, deterministic, and tabular MDP M = (S, A, P, R), the
episodic backward update algorithm, given by the update rule

Qt+1 (Sm at)

|p5t:at‘

= (1= ) Qe(s1,a1) + |:T(St7at) 21 Asran))i(t) [maxgjg\(p%at) T@’f,%)i(j)ﬂ

i

converges to the optimal Q-function w.p. 1 as long as
o The step size satisfies the Robbins-Monro condition;
o The sample trajectories are finite in lengths 1: E[l] < oo;

e Every (state, action) pair is visited infinitely often.

For the proof of Theorem 1, we follow the proof of Melo, 2001.
Lemma 1. The random process /\; taking values in R™ and defined as

Api(@) = (1 = au(2)) A() + ay(z) Fi ()

converges to zero w.p. 1 under the following assumptions:
00 <a; <1,Y, a(z) =ocoand Y, a?(x) < oc;

o [E[E(z)|F] lw < Al|Adllw, with v < 1;

e var [F(2)|F] < C (1+ | Al}), for C > 0.

By Lemma 1, we can prove that the online episodic backward update algorithm converges to the
optimal Q*.

Proof. First, by assumption, the first condition of Lemma 1 is satisfied. Also,
we can see that by substituting Ai(s,a) = Q(s,a) — Q*(s,a), and Fi(s,a) =
r(s,0) + 7 2 ea)i®) [maxigicio, 0 T2, 0] = Q7(s,0). [E[Fils, @)|Fi] o =

s,a)i
(7 Qi) (s, a) = (HIQ")(s.a)l|oo < 7| A
of the episodic backward operator.

|oo, Where the inequality holds due to the contraction

Then, var [F;(x)|F;] = var [T(Sv a) + 7 5 A1) [maxlsjgw(ps,am Tg,’,fa)i(j)} ‘ft:| .

Since the reward function is bounded, the third condition also holds as well. Finally, by Lemma 1,
@ converges to Q™.

O

Although the episodic backward operator can accommodate infinite paths, the operator can be
practical when the maximum length of the episode is finite. This assumption holds for many RL
domains, such as the ALE.

11



