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1 Proof of Lemma 1

Note that

e21 = P1(p̂2(x) ≥ p̂1(x)) = P1(p̂2(x) ≥ p̂1(x),x ∈ Sp1,t1) + P1(p̂2(x) ≥ p̂1(x)),x ∈ Scp1,t1)

≤ P1(Scp1,t1) + P1(p̂2(x) ≥ p̂1(x),x ∈ Sp1,t1)

≤ q + P1(p̂2(x) ≥ p̂1(x),x ∈ Sp1,t1 ,x ∈ Sp2,t2) + P1(p̂2(x) ≥ p̂1(x),x ∈ Sp1,t1 ,x ∈ Scp2,t2)

≤ q + P1((1 + δ)p2(x) ≥ (1− δ)p1(x)) + P1(p̂2(x) ≥ p̂1(x),x ∈ Sp1,t1 ,x ∈ Scp2,t2)

≤ q + P1(
1 + δ

1− δ
p2(x) ≥ p1(x)) + P1((1 + δ)t2 ≥ (1− δ)p1(x)), (1)

which yields the desired result.

2 Proof of Lemma 2

Let t be the threshold in the definition of (δ, q) approximation. Where p exceeds t, we have
E[(p̂−p)2 | Sp,t] ≤ δ2 E[p2 | Sp,t], and where p is less than t, we have E[(p̂−p)2 | Scp,t] ≤ (1+δ)2t2.
We also know that

E[p2] ≥ E[p2 | Sp,t] P[Sp,t] ≥ t2(1− q)
Hence, we have

E[(p̂− p)2] = E[(p̂− p)2 | Sp,t] P[Sp,t] + E[(p̂− p)2 | Scp,t] P[Scp,t]
≤ δ2 E[p2 | Sp,t] P[Sp,t] + (1 + δ)2t2q

≤ δ2 E[p2] +
(1 + δ)2q

1− q
E[p2].

3 Proof of Lemma 3

First, suppose that x ∈ Sd,t∗ . We have

|d̂(x)− d(x)| ≤
∑
j

|ĉj(x)− cj(x)|

≤
∑

j:cj(x)≥λ

|ĉj(x)− cj(x)|+
∑

j:cj(x)<λ

|ĉj(x)− cj(x)|

Consider the first partial sum, over j for which cj(x) ≥ λ. By assumption each term in the sum
is bounded by δ/2cj(x), and so the partial sum is upper bounded by δ/2d(x). Considering the
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second partial sum, since 0 ≤ cj(x) < λ and 0 ≤ ĉj(x) ≤ λ(1 + δ), each term is upper bounded
by λ(1 + δ), and the partial sum upper-bounded by Jλ(1 + δ) = t∗δ/2. Since d(x) ≥ t∗, the sum
is upper-bounded by δ/2d(x). Putting both sums together, |d̂(x)− d(x)| ≤ δd(x). Thus d̂ has the
required relative accuracy on Sd,t∗ .

Now, suppose x 6∈ Sd,t∗ , i.e. t∗ > d(x) ≥ cj(x). If cj(x) < λ, then ĉj(x) ≤ λ(1 + δ) ≤ t∗δ/(2J).
If cj(x) ≥ λ, then ĉj(x) ≤ (1 + δ/2)cj(x). Putting both together, we have

ĉj(x) ≤ (1 + δ/2)cj(x) +
t∗δ

2J

and ∑
j

ĉj(x) ≤ (1 + δ/2)d(x) +
t∗δ

2

≤ (1 + δ)t∗.

4 Lemmas supporting Theorem 1

In this section, we state and prove some technical lemmas used in the proof of Theorem 1.

Lemma 1 Given range R > 0 and desire accuracy ν > 0, let h(x, a), defined in (2), be constructed
from an activation function σ satisfying Assumptions 1 and 2, with r, M , and τ as defined in those
assumptions. Choose a satisfying a ≥ 2R/r, a ≥ 8MR3/(3νσ(2)(τ)) and a ≥ 4MR/(3σ(2)(τ)).
Then

• h(x, a) ≥ 0 for all x, and

• |h(x, a)− x2| < ν for |x| ≤ 2R, and

• h(x, a) ≥ 4R2 − ν for |x| > 2R.

Proof: From Assumption 1, for |x − τ | ≤ r, σ has three derivatives and in this neighborhood,
there is an M ′ = 2M/σ(2)(τ) such that |σ(3)(x)| ≤ M = M ′σ(2)(τ)/2. Then in the interval
|x| < ar, h(x, a) has three derivatives and the third derivative is bounded by M ′/a. Moreover,
h(0, a) = h′(0, a) = 0, and the 2nd-order Taylor polynomial of h(x, a) at zero is simply T2(x) = x2.
From Taylor’s theorem, it follows that

|h(x, a)− x2| ≤ M ′

3!a
|x|3

on |x| ≤ ar.

Now, |x| ≤ 2R implies |x| ≤ ar. Using Taylor’s theorem and the second constraint on a, we have

|h(x, a)− x2)| ≤ M ′ · 3ν
6 · 4M ′R3

|x|3 ≤ ν,

as desired. Also, on this interval, using Taylor’s theorem and the third constraint on a, we have

h(x, a) ≥ |x|2 − M ′ · 3
6 · 2M ′R

|x|3 = |x|2(1− |x|/(4R)) ≥ (1/2)|x|2 ≥ 0,

establishing the non-negativity of h on this interval.

To show h(x, a) ≥ 4R2 − ν, for |x| > 2R, we rely on Assumption 2, which implies that h(x, a)
is monotonically increasing for x ≥ 0. For |x| > 2R, we have h(x, a) = h(|x|, a) ≥ h(2R, a) ≥
4R2 − ν. �

Summing the outputs of n supernodes, we obtain ĝ(x) =
∑n
i=1 h(xi, a), which is an approximation

to g(x), as expressed in the following corollary.

Corollary 1 Given a function h(x, a) and associated range R > 0 and accuracy ν > 0 as defined
in Lemma 1, the function ĝ(x) =

∑n
i=1 h(xi, a) satisfies
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• ĝ(x) ≥ 0

• |ĝ(x)− g(x)| ≤ nν when g(x) ≤ 4R2

• ĝ(x) ≥ 4R2 − nν when g(x) > 4R2

Proof: The first statement is trivial. To see the second statement, suppose g(x) ≤ 4R2. Then
|xi| ≤ 2R for each i and |h(xi, a)− x2

i | ≤ ν for each i, yielding the result. For the second statement,
suppose g(x) > 4R2. If |xi| > 2R for some i, then h(xi, a) ≥ 4R2 − ν, and non-negativity of h
implies ĝ(x) ≥ 4R2−ν ≥ 4R2−nν. On the other hand, if |xi| < 2R for all i, then h(xi, a) ≥ x2

i−ν
for all i, and so ĝ(x) ≥ g(x)− nν. �

Lemma 2 Given an activation function σ, defined in (4), satisfying Assumption 3 with η = 1, a
range T > 0 and accuracy ε > 0, construct the supernode function ψ(x, σ) using K basic nodes,
where K is chosen so that ∆ = T/K satisfies ∆ ≤ log(1 + ε/40) and ∆ < 1/2. Then this function
satisfies

• |ψ(x, σ)− exp(−x)| ≤ ε exp(−x) for 0 ≤ x ≤ T

• 0 ≤ ψ(x, σ) ≤ exp(−T )(1 + ε) for x ≥ T

Proof: Note that if σ(x) is an indicator function u(x) := 1{x ≥ 0}, this construction simply gives
a piecewise-constant step approximation to exp(−x) over the interval [0, T ]. The relative accuracy
of such an approximation is uniform over the interval when using steps of fixed width ∆.In particular,
in the interval k∆ ≤ x ≤ (k + 1)∆, with k ≤ K, the function ψ(x, u) is equal to exp(−k∆), and
the worst-case relative error for x ∈ [0, T ] is (exp(−k∆)− exp(−(k + 1)∆)/ exp(−(k + 1)∆) =
exp(∆)− 1. Then ∆ ≤ log(1 + ε/40), ensures that the relative error between ψ(x, u) and exp(−x)
is no more than ε/40 on [0, T ].

For a general activation function we can write
|ψ(x, σ)− exp(−x)| ≤ |ψ(x, u)− exp(−x)|+ |ψ(x, σ)− ψ(x, u)|.

The relative accuracy of ψ(x, σ) is thus assured if we can show e.g. that |ψ(x, σ) − ψ(x, u)| ≤
ε/2 exp(−x) on [0, T ]. By virtue of Assumption 3, we know that |σ(x)−u(x)| ≤ exp(−|x|). Hence
we can write

|ψ(x, σ)− ψ(x, u)| ≤
(
e∆ − 1

) K∑
k=1

e−|x/∆−k|−k∆.

The sum can be further upperbounded by summing over all −∞ < k <∞. Denoting m = bx/∆c
and ν = x/∆−m, we can break the sum into ranges k ≤ m and k > m. The first range gives∑

k≤m

e−m−ν+(1−∆)k ≤ e−ν−∆m
∑
j≥0

e−(1−∆)j

≤ e−x+∆

1− e−(1−∆)
= e−x

e∆

1− e−(1−∆)
.

Likewise, the second range gives∑
k>m

em+ν−(1+∆)k ≤ e−(1+∆)+ν−∆m
∑
j≥0

e−(1+∆)j

≤ e−x
e1

1− e−(1+∆)
≤ e−x e1

1− e−1

Using ∆ < 1/2, we can combine terms to get

|ψ(x, σ)− ψ(x, u)| ≤
(
e∆ − 1

) 2e1

1− e−1/2
e−x

Since ∆ ≤ log(1 + (ε/40)) ≤ log(1 + (ε/2)(1 − e−1/2)/(2e)), we obtain |ψ(x, σ) − ψ(x, u)| ≤
ε/2e−x, which completes the proof of relative accuracy on [0, T ].

To show that ψ(x, σ) ≤ exp(−T )(1 + ε) for x ≥ T , we note that ψ(x, u) = exp(−T ) for x ≥ T .
We have already shown that |ψ(x, σ)−ψ(x, u)| ≤ ε/2e−x for all x, and hence |ψ(x, σ)−ψ(x, u)| ≤
ε/2e−T for x ≥ T in particular. �
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Lemma 3 Given desired accuracy 0 < δ < 2 and level 0 < λ < 1/(1 + δ
4 ),

• Let the function ĝ(x) =
∑n
i=1 h(xi, a) be the function defined in Corollary 1 with range

parameter R =
√

log(1/λ) and accuracy parameter ν = 1/n log(1 + δ/4).

• Let ψ(x, σ) be a function satisfying conditions of Lemma 2 with range parameter T = 4R2

and accuracy ε = δ/2.

• Define ĉ(x) = ψ(ĝ(x), σ).

Then

• |ĉ(x)− c(x)| < δc(x) whenever c(x) ≥ λ

• ĉ(x) < λ(1 + δ) whenever c(x) < λ.

Proof: First, let us suppose that c(x) ≥ λ. This implies g(x) ≤ R2 < 4R2. Hence, by Corollary 1,
|ĝ(x) − g(x)| ≤ nν = log(1 + δ/4), and so | exp(−ĝ(x)) − c(x)| ≤ δ/4 c(x). Moreover, since
ĝ(x) ≤ g(x)+log(1+δ/4), g(x) ≤ R2, and log(1+δ/4) ≤ log 1

λ ≤ R
2, we have ĝ(x) ≤ 2R2 ≤ T .

Thus by Lemma 2, |ĉ(x)− exp(−ĝ(x))| = |ψ(ĝ(x), σ)− exp(−ĝ(x))| ≤ δ/2 exp(−ĝ(x)). Thus

|ĉ(x)− c(x)| ≤ |ĉ(x)− exp(−ĝ(x))|+ | exp(−ĝ(x))− c(x)|

≤ δ

4
c(x) +

δ

2
exp(−ĝ(x))

≤ δ

4
c(x) +

δ

2
(1 +

δ

4
)c(x)

≤ δ c(x),

where in the last step we use δ < 2.

Secondly, suppose that c(x) < λ, so that g(x) > R2. Whether or not g(x) ≥ 4R2, Corollary 1
implies that ĝ(x) ≥ R2−nν = − log(λ(1 + δ/4)), so that exp(−ĝ(x)) ≤ λ(1 + δ/4). If ĝ(x) ≤ T ,
then (second layer result, Lemma 2) gives ψ(ĝ(x)) ≤ ε exp(−ĝ(x)) ≤ λ(1 + δ/4)δ/2 ≤ λ(1 + δ)
assuming δ < 4. Or, if x̂(x) > T , it follows from Lemma 2 that ψ(ĝ(x)) ≤ exp(−T )(1 + δ/2) ≤
exp(−R2)(1 + δ/2) ≤ λ(1 + δ) as desired. �

Lemma 4 Let x be a multi-dimensional Gaussian random variable in Rn with pdf p(x), and suppose
that var(Xi) ≤ V for each component. Then

P [p(x) < t] ≤ t4 exp
(n

8
log(32πV )

)
Proof: The pdf can be written as p(x) = ((2π)n|Σ|)−1/2

exp(−g(x)) where g(x) = (x −
µ)TΣ−1(x− µ). Hence

P[p(x) < t] = P
[
g(x) > log(1/t)− 1

2
log |Σ| − n

2
log(2π)

]
.

The eigenvalues of Σ are positive and bounded as
∑n
i=1 λi = trace(Σ) ≤ nV . Maximizing

|Σ| = Πiλi under this constraint, via Lagrange multipliers, yields |Σ| ≤ V n. Thus

P[p(x) < t] ≤ P[g(x) > log(1/t)− n

2
log(2πV )].

For x ∼ N (µ,Σ), g(x) is a standard chi-squared variate with n degrees of freedom. The Chernoff
bound for such a random variable can be expressed as

P [g(x) ≥ (1 + θ)n] ≤ exp
(
−n

2
(θ − log(1 + θ))

)
.

Using a tangent bound to a convex function at θ = 1, we have θ − log(1 + θ) ≥ (θ + 1)/2− log(2),
so that

P [g(x) ≥ (1 + θ)n] ≤ exp
(
−n

4
(θ + 1− 2 log(2))

)
.
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and

P [g(x) ≥ s] ≤ exp

(
−1

4
(s− 2n log(2))

)
.

Putting the bounds together, yields

P [p(x) < t] ≤ exp

(
−1

4

(
log(1/t)− n

2
log(2πV )− n

2
log(16)

))
≤ t4 exp

(n
8

log(32πV )
)

as desired. �

We can now extend the analysis to a GMM.

Lemma 5 Let p(x) =
∑J
j=1 αjpj(x) be the pdf of an n-dimensional GMM, where αj and pj(x),

j = 1, . . . , J , denote the probability and the pdf of the Gaussian distribution j, respectively. Define x
to be a random vector with distribution p. Assume that var(xi) ≤ 1, i = 1, . . . , n, for each element
of x. Given q > 0, choose t∗ > 0 such that

log(1/t∗) ≥ n

32
log(32πJ) +

1

4
log(1/q) + log(J).

Then
P[p(x) < t∗] ≤ q.

Proof: Choose k = arg maxj αj ; we have αk ≥ 1/J . Since var(xi) ≥
∑
j αj var(x

(j)
i ), where

x(j) denotes the j-th Gaussian variable in the mixture, we have var(x
(k)
i ) ≤ 1/αk ≤ J . Now applying

Lemma 4,

P [p(x) < t∗] ≤ P [αkpk(x) < t∗]

≤ P [pk(x) < Jt∗]

≤ (Jt∗)4 exp
(n

8
log(32πJ)

)
≤ q,

where the last line follows from the assumed upper bound on log(1/t∗). �

5 Proof of Theorem 1

We provide an explicit construction of a two-hidden layer subnetwork for approximating a given
cj(x), and show that under Assumptions 1, 2, and 3, the constructed network is accurate enough to
satisfy the conditions of Lemma 3 in the main paper. This is done by showing that super-nodes in the
first layer approximate x2 well enough, and a super-node in the second layer approximates exp(−x)
well enough.

In the rest of the proof we drop the subscript j and focus on a c(x) = β exp(−g(x)), where g(x) =∑
i y

2
i with y = Σ−1/2(x− µ). Given parameters δ > 0 and λ > 0, we construct an approximation

ĉ of c, such that i) |ĉ(x) − c(x)| < δc(x), whenever c(x) ≥ λ, and ii) |ĉ(x) − c(x)| < λ(1 + δ),
whenever c(x) < λ. We show that the total number of nodes used by both hidden layers is O(n).

To simplify the following steps, we normalize by β to obtain c̃(x) = c(x)/β which is to be
approximated accurately above level λ̃ = λ/β. If λ̃ ≥ 1, then it is sufficient to simply take the trivial
approximation ˆ̃c(x) = 0, since c̃(x) ≤ 1 everywhere. Therefore in the following we assume λ̃ < 1.
With notation thus simplified, we seek to approximate c̃(x) = exp(−

∑
i y

2
i ).

The condition c̃(x) ≥ λ̃ corresponds to
∑
i y

2
i ≤ log(1/λ̃). We will define R =

√
log(1/λ̃),

so that
∑
i y

2
i ≤ R2 defines the region over which we must approximate c̃(x) with small relative error.

Uniform approximation of x2. In the first hidden layer, we replace each node with activa-
tion function x2 in the ideal reference model, with a supernode formed from two basic nodes with
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activation function σ satisfying Assumptions 1 and 2. We use a special case of the construction in [1].
In particular, we define the supernode as

h(x, a) =
a2

σ(2)(τ)
(σ(x/a+ τ) + σ(−x/a+ τ)− 2σ(τ)) . (2)

The idea behind the construction is that the first term in the Taylor series of h(x, a) at x = 0 is x2, and
so for sufficiently large a, the function approximates x2 closely over the required range. In particular,
by Lemma 1, choosing a ≥ max(2R/r, 8MR3/(3νσ(2)(τ)), 4MR/(3σ(2)(τ))), we have

• h(x, a) ≥ 0 for all x, and

• |h(x, a)− x2| < ν for |x| ≤ 2R, and

• h(x, a) ≥ 4R2 − ν for |x| > 2R.

Summing the outputs of n supernodes, we obtain

ĝ(x) =

n∑
i=1

h(yi, a). (3)

Then, by Corollary 1, ĝ(x) is an approximation to g(x), such that

• |ĝ(x)− g(x)| ≤ nν, when g(x) ≤ 4R2,

• ĝ(x) ≥ 4R2 − nν, when g(x) > 4R2.

Approximation of exp(−x). After approximating the quadratic term g(x) in the first layer, the role of
the next level is to approximate exp(−x), with a required level of accuracy ε, over a required range
[0, T ], using only O(n) nodes.

For this construction, we rely on Assumption 3. The value of the bounding exponent η in this
assumption is not critical, since if σ(x) satisfies the assumption with exponent η, the scaled function
σ(αx) satisfies it with exponent αη. To simplify notation, we take η = 1.

To form the super-node, we choose a sufficiently large number of components K, divide the range
into intervals of width ∆ = T/K, and then form following sum of shifted activations:

ψ(x, σ) = 1 +

K∑
k=1

(
e−k∆ − e−(k−1)∆

)
σ
( x

∆
− k
)
. (4)

This essentially constructs a staircase-like approximation to exp(−x). Lemma 2 states that if
∆ ≤ min(log(1 + ε/40), 1/2), then

• |ψ(x, σ)− exp(−x)| ≤ ε exp(−x), for 0 ≤ x ≤ T ,

• 0 ≤ ψ(x, σ) ≤ exp(−T )(1 + ε), for x ≥ T .

Accuracy of composed layers. Consider ĝ defined in (3), with range parameter R =
√

log(1/λ̃) and
accuracy parameter ν = 1

n log(1 + δ/4). Also, consider ψ(x, σ) defined in (4), with range parameter
T = 4R2 and accuracy ε = δ/2. Define

ˆ̃c(x) = ψ(ĝ(x), σ). (5)

By Lemma 3,

• |ˆ̃c(x)− c̃(x)| < δc̃(x), whenever c̃(x) ≥ λ̃,

• ˆ̃c(x) < λ̃(1 + δ), whenever c̃(x) < λ̃.

We have thus established that, for arbitrarily small λ̃ > 0, we can construct an approximation ˆ̃c(x)
with the accuracy required by Lemma 3 in the main paper. The same statement evidently holds for
ĉ(x) = βˆ̃c(x) with respect to λ = βλ̃. Hence by Lemma 3 in the main body, we can construct a
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(δ, q)-approximation d̂ of d, for any δ and q. It remains to show that that the number of nodes required,
Mn, is O(n) and that the coefficient sizes grow no faster than O(n5).

Bounding the number of hidden nodes. The final step is to show that the described network giving ĉ(x)
consists of O(n) nodes. Exactly 2n nodes are needed in the first layer, since each of the n functions
hi(x, a) is constructed with two nodes. In the second layer, the number of nodes is K = T/∆.

Since our network is designed with ε = δ/2, and since ∆ ≤ min(log(1 + ε/40), 1/2) is sufficient
for Lemma 2, the interval width ∆ does not depend on n. So, it remains to show that the range T is
O(n).

At this step in the proof, we introduce notation related to the assumption that the eigenvalues of the
covariances Σj have constant upper and lower bounds. If the eigenvalues of Σj are {ωji }, i = 1, . . . , n,
we require ω̌ ≤ ωji ≤ ω̂, where 0 < ω̌ ≤ ω̂ are the fixed bounds. Intuitively, upper bounds relate
to the typical case in practice that input distributions have bounded variance. The lower bound on
eigenvalues prevents the model from approaching degenerate Gaussian distributions, or equivalently
having arbitrarily sharp spatial detail.

Our network is designed with T = 4R2 = 4 log(1/λ̃) = 4 log(β) + 4 log(1/λ). Recall from
Section 1.4 that β = φw(2π)−n/2|Σ|−1/2 for fixed probabilities φ and w. From the assumed lower
bound on eigenvalues of Σ, we have |Σ|−1/2 ≤ (1/ω̌)

n/2, and so 4 log(β) is O(n). It remains to
consider the scaling of log(1/λ) with n.

For a given probability q > 0, Lemma 3 in the main body requires that λ = t∗δ/(2J(1 + δ), where
t∗ is such that P[d(x) < t∗] ≤ q, or equivalently, P[p(x) < t∗/φ] ≤ q, where φ is the fixed prior
probability. Since J and δ are fixed, we need to show that log(1/t∗) is O(n). The existence of such a
t∗ is established by Lemma 5. By assumption in Theorem 1, the variance of each Gaussian distribution
is upperbounded by ω̂. Hence Lemma 5 shows that t∗ has the required scaling; specifically that as
long as

log(φ/t∗) ≥ n

32
log(32πω̂) +

1

4
log(1/q) + log(J),

then P[p(x) < t∗/φ] ≤ q.

To finish the proof, we bound the growth rate of the coefficients used in the constructed two-hidden-
layer network. Recall that the input coefficients of the first hidden layer are formed by the matrix
Σ
−1/2
j used to compute the values yi, followed by the scaling 1/a in the input of the super-node

functions h(yi, a). In addition to the lower bounds on a required by Lemma 1, we can also require
a ≥ 1, for example, so that the first-layer coefficients are determined by the elements of the matrix
Σ
−1/2
j . Since Σj is a positive definite matrix, each element of Σ

−1/2
j is bounded in magnitude by

the trace, which in turn is upper bounded by nω̌−1/2, where ω̌ is the assumed lower bound on the
eigenvalues of Σj . Hence the input coefficients of the first hidden layer grow no faster than O(n).

The linear coefficients between the first and second hidden layers consist of the factor a2/σ(2)(τ) used
in forming the first layer super-nodes h(yi, a), multiplied by the factor 1/∆ used at the input to the
supernodes ψ(x, σ). The requirements on ∆ in Lemma 2, and the constant σ(2)(τ) are independent
of n, and so it remains only to consider the scaling of the factor a2. From the requirements of Lemma
3 in the main body, we have that a must scale at least as fast as R3/ν, where 1/ν is O(n). We also
have that R2 = log(1/λ̃), which was shown earlier to be O(n). Putting these factors together, we
have that a is O(n5/2) and the coefficients between first and second layer can be constructed as
O(n5).

The linear coefficients in the output layer include the o(1) coefficients exp(−k∆) − exp(−(k −
1)∆) used to construct the super-node in (4), and the final multiplier βj in the expression d(x) =∑

j βjcj(x). Similar to the scaling done for the single hidden layer network in Section 4, we can
define the renormalized system d′(x) =

∑
j β
′
jc
′
j(x) where E[d′(x)2] = 1 and E[c′j(x)2] = 1. Since

all terms are positive, we have

1 = E[d′(x)2] ≥
∑
j

(β′j)
2 E[c′j(x)2] ≥

∑
j

(β′j)
2,

showing that the last layer coefficients have a constant bound not depending on n.
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In summary, we have shown that the coefficients used in the two-hidden-layer construction are
polynomially bounded, in addition to the main result that the number of nodes is O(n).

6 Proof of Theorem 2

Define r ∈ Rn1 , such that, for i = 1, . . . , n1,

ri , E [µc(x)hi(〈wi,x〉)] .

The mean squared error can be lower-bounded as

E[|µc(x)− f(x)|2] ≥ E[|µc(x)|2]− 2 E [µc(x)f(x)] + E
[
|f(x)|2

]
≥ 1− 2

∑
i

ai E [µc(x)hi(〈wi,x〉)]

≥ 1− 2‖a‖‖r‖,

where the last step follows from the Cauchy-Schwarz inequality.

We next bound the value of ri, showing that each is exponentially small in n. By the rotational
symmetry of µc and µ, we have

E [µc(x)hi(〈wi,x〉)] = E[µc(x)hi(x1)].

Defining α = 1 + 2sx/sf and β = (1/sx + 1/sf )
−1, we write

ri = αn/4 (2πsx)
−n/2

∫
hi(x1)e−

1
2β ‖x‖

2

dx

= αn/4 (2πsx)
−n/2

(2πβ)
(n−1)/2

∫
hi(x1)e−

1
2β x

2
1dx1

= αn/4 (β/sx)
n/2
∫
hi(x1)e−

1
2β x

2
1 (2πβ)

−1/2
dx1

Note that
∫
hi(x1)e−

1
2β x

2
1 (2πβ)

−1/2
dx1 is the expected value of hi(x1), with respect to x1 ∼

N (0, β). Therefore, using Jensen’s inequality,(∫
hi(x1)e−

1
2β x

2
1 (2πβ)

−1/2
dx1

)2

≤
∫

(hi(x1))2e−
1
2β x

2
1 (2πβ)

−1/2
dx1.

Therefore,

r2
i ≤ αn/2 (β/sx)

n
∫

(hi(x1))
2
e−

1
2β x

2
1 (2πβ)

−1/2
dx1

≤ αn/2 (β/sx)
n−1/2

∫
(hi(x1))

2
e−

1
2sx

x2
1 (2πsx)

−1/2
dx1

≤ αn/2 (β/sx)
n−1/2

where the second step holds because β = sxsf/(sf + sx) < sx, and therefore, exp(−x2
1/(2β)) <

exp(−x2
1/(2sx)), and the last step follows from our initial assumption that E[(hi(x1))2] = 1. Noting

that

αn/4 (β/sx)
n/2

=

[(
sf + 2sx

sf

)(
sf

sf + sx

)2
]n/4

=

(
s2
f + 2sfsx + s2

x

s2
f + 2sfsx

)−n/4
= ρ−n/4,

we obtain

|ri| ≤ ρ−n/4(1 + sx/sf )1/4 (6)

This establishes that ‖r‖ ≤ √n1ρ
−n/4(1 + sx/sf )1/4, which finishes the proof.
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7 Proof of Theorem 3

Consider random weights wi ∈ Rn, i = 1, . . . , n1, that are mutually independent and distributed as
N (0, In). By construction, given weights w1, . . . ,wn1 , we have

fw(x) =
α
n
4

n1

n1∑
i=1

cos

(
1
√
sf
〈wi,x〉

)
. (7)

Here the subscript w highlights the dependency of this function of the specific values of the weights.
For a fixed x, 〈wi,x〉 is a zero-mean Gaussian random variable with variance ‖x‖2. Therefore, since
wi’s are i.i.d. themselves, for a fixed x, cos( 1

sf
〈wi,x〉), i = 1, . . . , n1, are i.i.d. bounded random

variables. Moreover,

Ew

[
cos

(
1
√
sf
〈wi,x〉

)]
=

1√
2π

∫
cos

(
‖x‖
√
sf
u

)
e−

u2

2 du

(a)
= e

− 1
2sf
‖x‖2

, (8)

where (a) holds because of the following identity∫
e−at

2

cos(bt)dt =

√
π

a
e−

1
4a b

2

.

Therefore, for a fixed x,

Ew[fw(x)] = α
n
4 e
− 1

2sf
‖x‖2

= µc(x). (9)

The expected approximation error corresponding to a fixed w can be written as

Ex

[
(fw(x)− Ew[fw(x)])2

]
. (10)

But, for a fixed x,

Ew

[
(fw(x)− Ew[fw(x)])2

]
=
α
n
2

n1
varw

(
cos

(
1
√
sf
〈wi,x〉

))
, (11)

where

varw

(
cos

(
1
√
sf
〈wi,x〉

))
=

1√
2π

∫
cos2

(
‖x‖
√
sf
u

)
e−

u2

2 du− e
− 1
sf
‖x‖2

=
1

2
√

2π

∫ (
1 + cos

(
2‖x‖
√
sf
u

))
e−

u2

2 du− e
− 1
sf
‖x‖2

=
1

2
+

1

2
e
− 2
sf
‖x‖2 − e

− 1
sf
‖x‖2

. (12)

Therefore, from (11), we have

Ew

[
(fw(x)− Ew[fw(x)])2

]
=
α
n
2

n1

(
1

2
+

1

2
e
− 2
sf
‖x‖2 − e

− 1
sf
‖x‖2

)
. (13)

Taking the expected value of both sides with respect of x, and applying the Fubini’s theorem (see
e.g. [2]) to the left hand side, it follows that

Ew

[
Ex[
[
(fw(x)− Ew[fw(x)])2

]]
=
α
n
2

2n1
+
α
n
2

2n1
Ex[e

− 2
sf
‖x‖2

]− α
n
2

n1
Ex[e

− 1
sf
‖x‖2

]

=
α
n
2

2n1

(
1 +

( sf
sf + 4sx

)n
2 − 2

( sf
sf + 2sx

)n
2

)
<
α
n
2

n1
. (14)

But by assumption n1 >
1
εα

n
2 , therefore,

Ew

[
Ex[
[
(fw(x)− Ew[fw(x)])2

]]
< ε, (15)

This shows that there exists at least one set of weights w1, . . . ,wn1
which satisfies the desired error

bound.
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