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Abstract

In many scientific settings there is a need for adaptive experimental design to guide1

the process of identifying regions of the search space that contain as many true2

positives as possible subject to a low rate of false discoveries (i.e. false alarms).3

Such regions of the search space could differ drastically from a predicted set4

that minimizes 0/1 error and accurate identification could require very different5

sampling strategies. Like active learning for binary classification, this experimental6

design cannot be optimally chosen a priori, but rather the data must be taken7

sequentially and adaptively. However, unlike classification with 0/1 error, collecting8

data adaptively to find a set with high true positive rate and low false discovery9

rate (FDR) is not as well understood. In this paper we provide the first provably10

sample efficient adaptive algorithm for this problem. Along the way we highlight11

connections between classification, combinatorial bandits, and FDR control making12

contributions to each.13

1 Introduction14

As machine learning has become ubiquitous in the biological, chemical, and material sciences, it has15

become irresistible to use these techniques not only for making inferences about previously collected16

data, but also for guiding the data collection process, closing the loop on inference and data collection17

[9, 37, 39, 38, 32, 30]. However, though collecting data randomly or non-adaptively can be inefficient,18

ill-informed ways of collecting data adaptively can be catastrophic: a procedure could collect some19

data, adopt an incorrect belief, collect more data based on this belief, and leave the practitioner with20

insufficient data in the right places to infer anything with confidence.21

In a recent high-throughput protein synthesis experiment [32], thousands of short amino acid se-22

quences (length less than 60) were evaluated with the goal of identifying and characterizing a subset23

of the pool of all possible sequences ( ≈ 1080) containing many sequences that will fold into stable24

proteins. That is, given an evaluation budget that is just a minuscule proportion of the total number25

of sequences, the researchers sought to make predictions about individual sequences that would26

never be evaluated. An initial first round of sequences uniformly sampled from a predefined subset27

were synthesized to observe whether each sequence was in the set of sequences that will fold,H1,28

or inH0 = Hc1. Treating this as a classification problem, a linear logistic regression classifier was29

trained, using these labels and physics based features. Then a set of sequences to test in the next30

round were chosen to maximize the probability of folding according to this empirical model - a31

procedure repeated twice more. This strategy suffers two flaws. First, selecting a set to maximize32

the likelihood of hits given past rounds’ data is effectively using logistic regression to perform33

optimization similar to follow-the-leader strategies [13]. While more of the sequences evaluated34

may fold, these observations may provide little information about whether sequences that were not35

evaluated will fold or not. Second, while it is natural to employ logistic regression or the SVM36
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Figure 1: The distribution of a feature that is highly correlated with the fitted logistic model (bottom plot) and
the proportion of sequences that fold (top plot). The distribution of this feature for the sequences drifts right.

to discriminate between binary outcomes (e.g., fold/not-fold), in many scientific applications the37

property of interest is incredibly rare and an optimal classifier will just predict a single class e.g.38

not fold. This is not only an undesirable inference for prediction, but a useless signal for collecting39

data to identify those regions with higher, but still unlikely, probabilities of folding. Consider the40

data of [32] reproduced in Figure 1, where the proportion of sequences that fold along with their41

distributions for a particularly informative feature are shown in each round for two different protein42

topologies. In the last column of Figure 1, even though most of the sequences evaluated are likely to43

fold, we are sampling in a small part of the overall search space. This limits our overall ability to44

identify under-explored regions that could potentially contain many sequences that fold, even though45

the logistic model does not achieve its maximum there. On the other hand, in the top plot of Figure 1,46

sequences with topology βαββ (shown in blue) so rarely folded that a near-optimal classifier would47

predict “not fold” for every sequence.48

Instead of using a procedure that seeks to maximize the probability of folding or classifying sequences49

as fold or not-fold, a more natural objective is to predict a set of sequences π in such a way as to50

maximize the true positive rate (TPR) |H1 ∩π|/|H1| while minimizing the false discovery rate (FDR)51

i.e. |H0 ∩ π|/|π|. That is, π is chosen to contain a large number of sequences that fold while the52

proportion of false-alarms among those predicted is relatively small. For example, if a set π for βαββ53

was found that maximized TPR subject to FDR being less than 9/10 then π would be non-empty54

with the guarantee that at least one in every 10 suggestions was a true-positive; not ideal, but making55

the best of a bad situation. In some settings, such as for topology ααα (shown in orange), training56

a classifier to minimize 0/1 loss may be reasonable. Of course, before seeing any data we would57

not know whether classification is a good objective so it is far more conservative to optimize for58

maximizing the number of discoveries.59

Contributions. We propose the first provably sample-efficient adaptive sampling algorithm for60

maximizing TPR subject to an FDR constraint. This problem has deep connections to active binary61

classification (e.g., active learning) and pure-exploration for combinatorial bandits that are necessary62

steps towards motivating our algorithm. We make the following contributions:63

1. We improve upon state of the art sample complexity for pool-based active classification in the64

agnostic setting providing novel sample complexity bounds that do not depend on the disagreement-65

coefficient for sampling with or without replacement. Our bounds are more granular than previous66

results as they describe the contribution of a single example to the overall sample complexity.67

2. We highlight an important connection between active classification and combinatorial bandits.68

Our results follow directly from our improvements to the state of the art in combinatorial bandits,69

extending methods to be near-optimal for classes that go beyond matroids where one need not70

sample every arm at least once.71

3. Our main contribution is the development and analysis of an adaptive sampling algorithm that72

minimizes the number of samples to identify the set that maximizes the true positive rate subject73

to a false discovery constraint. To the best of our knowledge, this is the first work to demonstrate a74

sample complexity for this problem that is provably better than non-adaptive sampling.75

1.1 Pool Based Classification and FDR Control76

Here we describe what is known as the pool-based setting for active learning with stochastic labels.77

Throughout the following we assume access to a finite set of items [n] = {1, · · · , n} with an78

associated label space {0, 1}. The items can be fixed vectors {xi}ni=1 ∈ Rd but we do not restrict to79
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this case. Associated to each i ∈ [n] there is a Bernoulli distribution Ber(ηi) with ηi ∈ [0, 1]. We80

imagine a setting where in each round a player chooses It ∈ [n] and observes an i.i.d YIt,t where81

where YIt,t ∼ Ber(ηIt). Borrowing from the multi-armed bandit literature, we may also refer to the82

items as arms, and pulling an arm is receiving a sample from its corresponding label distribution.83

We will refer to this level of generality as the stochastic noise setting. The case when ηi ∈ {0, 1},84

i.e. each point i ∈ [n] has a deterministic label Yi,j = ηi for all j ≥ 1, will be referred to as the85

persistent noise setting. In this setting we can define H1 = {i : ηi = 1},H0 = [n] \ H1. This is86

a natural setting if the experimental noise is negligible so that performing the same measurement87

multiple times gives the same result. A classifier is a decision rule f : [n] → {0, 1} that assigns88

each item i ∈ [n] a fixed label. We can identify any such decision rule with the set of items it maps89

to 1, i.e. the set π = {i : i ∈ [n], f(i) = 1}. Instead of considering all possible sets π ⊂ [n], we90

will restrict ourselves to a finite class Π ⊂ 2[n]. With this interpretation, one can imagine Π being a91

combinatorial class, such as the collection of all subsets of [n] of size k, or if we have features, Π92

could be the sets induced by the set of all linear separators over {xi}.93

The classification error, or risk of a classifier is given by the expected number of incorrect labels, i.e.94

R(π) = Pi∼Unif([n]),Yi∼Ber(ηi) (π(i) 6= Yi) =
1

n
(
∑
i 6∈π

ηi +
∑
i∈π

(1− ηi))

for any π ∈ Π. In the case of persistent noise the above reduces toR(π) = |π∩H0|+|πc∩H1|
n = |H1∆π|

n95

where A∆B = (A ∪B)− (A ∩B) for any sets A,B.96

Problem 1:(Classification) Given a hypothesis class Π ⊆ 2[n] identify π∗ := argmin
π∈Π

R(π) by97

requesting as few labels as possible.98

As described in the introduction, in many situations we are not interested in finding the lowest risk99

classifier, but instead returning π ∈ Π that contains many discoveries π ∩H1 without too many false100

alarms π ∩H0. Define ηπ :=
∑
i∈π ηx. The false discovery rate (FDR) and true positive rate (TPR)101

of a set π in the stochastic noise setting are given by102

FDR(π) := 1− ηπ
|π|

and TPR(π) :=
ηπ
η[n]

In the case of persistent noise, FDR(π) = |H0∩π|
|π| = 1 − |H1∩π|

|π| and TPR(π) = |H1∩π|
|H1| . A103

convenient quantity that we can use to reparametrize these quantities is the true positives: TP (π) :=104 ∑
i∈π ηi. Throughout the following we let Πα = {π ∈ Π : FDR(π) ≤ α}.105

Problem 2:(Combinatorial FDR Control) Given an α ∈ (0, 1) and hypothesis class Π ⊆ 2[n]106

identify π∗α = argmax
π∈Π,FDR(π)≤α

TPR(π) by requesting as few labels as possible.107

In this work we are agnostic about how η relates to Π, ala [2, 19]. For instance we do not assume the108

Bayes classifier, argminB∈{0,1}nR(B) is contained in Π.109

2 Related Work110

Active Classification. Active learning for binary classification is a mature field (see surveys [35, 24]111

and references therein). The major theoretical results of the field can coarsely be partitioned into the112

streaming setting [2, 5, 19, 25] and the pool-based setting [18, 23, 31], noting that algorithms for the113

former can be used for the latter, [2], an inspiration for our algorithm, is such an example. These114

results rely on different complexity measures known as the splitting index, the teaching dimension,115

and (arguably the most popular) the disagreement coefficient.116

Computational Considerations. While there have been remarkable efforts to make some of these117

methods more computationally efficient [5, 25], we believe even given infinite computation, many of118

these previous works are fundamentally inefficient from a sample complexity perspective. This stems119

from the fact that when applied to common combinatorial classes (for example the collection of all120

subsets of size k), these algorithms have sample complexities that are off by at least log(n) factors121

from the best algorithms for these classes. Consequently, in our work we focus on sample complexity122

alone, and leave matters of computational efficiency for future work.123
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Other Measures. Given a static dataset, the problem of finding a set or classifier that maximizes124

TPR subject to FDR-control in the information retrieval community is also known as finding a125

binary classifier that maximizes recall for a given precision level. There is extensive work on the126

non-adaptive sample complexity of computing measures related to precision and recall such as AUC,127

and F-scores [34, 8, 1]. However, there have been just a few works that consider adaptively collecting128

data with the goal of maximizing recall with precision constraints [33, 4], with the latter work being129

the most related. We will discuss it further after the statement of our main result. In [33], the problem130

of adaptively estimating the whole ROC curve for a threshold class is considered under a monotonicity131

assumption on the true positives; our algorithm is agnostic to this assumption.132

Combinatorial Bandits: The pure-exploration combinatorial bandit game has been studied for the133

case of all subsets of [n] of size k known as the Top-K problem [21, 28, 29, 27, 36, 16], the bases of a134

rank-k matroid (for which Top-K is a particular instance) [17, 22, 14], and in the general case [10, 15].135

The combinatorial bandit component of our work (see Section A.1) is closest to [10]. The algorithm136

of [10] uses a disagreement-based algorithm in the spirit of Successive Elimination for bandits [21],137

or the A2 for binary classification [2]. Exploring precisely what log factors are necessary has been an138

active area. [15] demonstrates a family of instances in which they show in the worst-case, the sample139

complexity must scale with log(|Π|). However, there are many classes like best-arm identification140

and matroids where sample complexity does not scale with log(|Π|) (see references above). Our own141

work provides some insight into what log factors are necessary by presenting our results in terms142

of VC dimension. In addition, we discuss situtations when a log(n) could potentially be avoided by143

appealing to Sauer’s lemma in the supplementary material.144

Multiple Hypothesis Testing. Finally, though this work shares language with the adaptive multiple-145

hypothesis testing literature [11, 26, 40], the goals are different. In that setting, there is a set of n146

hypothesis tests, where the null is that the mean of each distribution is zero and the alternative is147

that it is nonzero. [26] designs a procedure that adaptively allocates samples and uses the Benjamini-148

Hochberg procedure on p-values to return an FDR-controlled set. We are not generally interested149

in finding which individual arms have means that are above a fixed threshold, but instead, given a150

hypothesis class we want to return an FDR controlled set in the hypothesis class with high TPR. This151

is the situation in many structured problems in scientific discovery where the set of arms corresponds152

to an extremely large set of experiments and we have feature vector associated with each arm. We153

can’t run each one but we may have some hope of identifying a region of the search space which154

contains many discoveries. In summary, unlike the setting of [26], Π encodes structure among the155

sets, we do not insist each item is sampled, and we are allowing for persistent labels - overall we are156

solving a different and novel problem.157

3 Pool Based Active Classification158

We first establish a pool based active classification algorithm that motivates our development of an159

adaptive algorithm for FDR-control. For each i define µi := 2ηi − 1 ∈ [−1, 1] so ηi = 1+µi
2 . By a160

simple manipulation of the definition of R(π) above we have161

R(π) =
1

n

n∑
i=1

ηi +
1

n

∑
i∈π

(2ηi − 1) =
1

n

n∑
i=1

ηi +
1

n

∑
i∈π

µi

so that argmin
π∈Π

R(π) = argmax
π∈Π

∑
i∈π µi. Define µπ :=

∑
i∈π µi. If for some i ∈ [n] we map the162

jth draw of its label Yi,j 7→ 2Yi,j − 1, then E[2Yi,j − 1] = µi and returning an optimal classifier163

in the set is equivalent to returning π ∈ Π with the largest µπ. Algorithm 1 exploits this. The164

algorithm maintains a collection of active sets Ak ⊆ Π and an active set of items Tk ⊆ [n] which is165

the symmetric difference of all sets in Ak. To see why we only sample in Tk, if i ∈ ∩π∈Akπ then166

π and π′ agree on the label of item i, and any contribution of arm i is canceled in each difference167

µ̂π − µ̂π′ = µ̂π\π′ − µ̂π′\π for all π, π′ ∈ Ak so we should not pay to sample it. In each round sets168

π with lower empirical means that fall outside of the confidence interval of sets with higher empirical169

means are removed. There may be some concern that samples from previous rounds are reused. Since170

our sampling strategy is uniformly drawing from [n] in each round, but only paying to see a label171

if It ∈ Tk, the underlying sampling distribution is still uniform regardless of the round and so the172

estimate of µ̂π′,k − µ̂π,k is unbiased. In practice, since the number of samples that land in Tk follow173
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a geometric distribution, instead of using rejection sampling we could instead have drawn a single174

sample from a geometric distribution and sampled that many uniformly at random from Tk.175

Input: δ, Π ⊂ 2[n], Confidence bound C(π′, π, t, δ).
Let A1 = Π, T1 = (∪π∈A1π)− (∩π∈A1π), k = 1, Ak will be the active sets in round k
for t = 1, 2, · · ·

if t == 2k:
Set δk = .5δ/k2. For each π, π′ let
µ̂π′,k − µ̂π,k = n

t
(
∑t
s=1 RIs,s1{Is ∈ π

′ \ π} −
∑t
s=1 RIs,s1{Is ∈ π \ π

′})
Set Ak+1 = Ak −

{
π ∈ Ak : ∃π′ ∈ Akwith µ̂π′,k − µ̂π,k > C(π′, π, t, δk)

}
.

Set Tk+1 =
(
∪π∈Ak+1π

)
−
(
∩π∈Ak+1π

)
.

k ← k + 1
endif
Stochastic Noise:

If Tk = ∅, Break. Otherwise, draw It uniformly at random from [n] and if It ∈ Tk receive an

associated reward RIt,t = 2YIt,t − 1, YIt,t
iid∼ Ber(ηIt).

Persistent Noise:
If Tk = ∅ or t > n, Break. Otherwise, draw It uniformly at random from [n] \ {Is : 1 ≤ s < t}
and if It ∈ Tk receive associated reward RIt,t = 2YIt,t − 1, YIt,t = ηIt .

Output: π′ ∈ Ak such that µ̂π′,k − µ̂π,k ≥ 0 for all π ∈ Ak \ π′

Algorithm 1: Action Elimination for Active Classification

For any A ⊆ 2[n] define V (A) as the VC-dimension of a collection of sets A. Given a family of sets,176

Π ⊆ 2[n], define B1(k) := {π ∈ Π : |π| = k}, B2(k, π′) := {π ∈ Π : |π∆π′| = k}. Also define177

the following complexity measures:178

Vπ := V (B1(|π|)) ∧ |π| and Vπ,π′ := max{V (B2(|π∆π′|, π), V (B2(|π∆π′|, π′))} ∧ |π∆π′|

In general Vπ, Vπ,π′ ≤ V (Π). A contribution of our work is the development of confidence intervals179

that do not depend on a union bound over the class but instead on local VC dimensions. These are180

described carefully in Lemma 1 in the supplementary materials.181

Theorem 1 For each i ∈ [n] let µi ∈ [−1, 1] be fixed but unknown and assume {Ri,j}∞j=1 is an182

i.i.d sequence of random variables such that E[Ri,j ] = µi and Ri,j ∈ [−1, 1]. Define ∆̃π =183

|µπ − µπ∗ |/|π∆π∗|, and184

τπ =
Vπ,π∗

|π∗∆π|
1

∆̃2
π

log
(
n log(∆̃−2

π )/δ
)
.

UsingC(π, π′, t, δ) :=

√
8|π∆π′|nVπ,π′ log(nδ )

t +
4nVπ,π′ log(nδ )

3t for a fixed constant c, with probability185

greater than 1− δ, in the stochastic noise setting Algorithm 1 returns π∗ after a number of samples186

no more than c
∑n
i=1 maxπ∈Π:i∈π∆π∗ τπ and in the persistent noise setting the number of samples187

needed is no more than c
∑n
i=1 min{1,maxπ∈Π:i∈π∆π∗ τπ}188

One always has 1/|π∗∆π| ≤ Vπ,π∗/|π∗∆π| ≤ 1 and both bounds are achievable by different classes189

Π. In addition, in terms of risk ∆̃π = |µπ − µπ∗ |/|π∆π∗| = n|R(π) − R(π∗)|/|π∆π∗|. Since190

sampling is done without replacement for persistent noise, there are improved confidence intervals191

that one can use in that setting described in Lemma 1 in the supplementary materials. Finally, if we192

had sampled non-adaptively, i.e. without rejection sampling, we would have had a sample complexity193

of O(nmaxi∈[n] maxπ:Π:i∈π∆π∗ τπ).194

Remark: Our rewards could be drawn from arbitrary distributions, not just Bernoulli label distri-195

butions. In fact if we allow RIt,t ∼i.i.d. νi, where νi is a distribution supported on [−1, 1] with196

E[νi] = µi, then Algorithm 1 gives state of the art results for the more general pure exploration197

combinatorial bandit problem and furthermore Theorem 1 holds verbatim. Algorithm 1 is similar198

to previous action elimination algorithms for combinatorial bandits in the literature, e.g. Algorithm199

4 in [10]. However, unlike previous algorithms, we do not insist on sampling each item once, an200

unrealistic requirement for classification settings. We discuss this connection further in Section A.1201

in the supplementary materials and prove Theorem 1 in this more general setting.202
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3.1 Comparison with previous Active Classification results.203

One Dimensional Thresholds: In the bound of Theorem 1, a natural question to ask is whether the204

log(n) dependence can be improved. In the case of nested classes, such as thresholds on a line, we205

can replace the log(n) with a log log(n) using empirical process theory. This leads to confidence206

intervals dependent on log log(n) that can be used in place of C(π′, π, t, δ) in Algorithm 1 (see207

sections C for the confidence intervals and A.1 for a longer discussion). Under specific specific208

noise models we can give a more interpretable sample complexity. Let h ∈ (0, 1], α ≥ 0, z ∈ [0, 1]209

for some i ∈ [n − 1] and assume that ηi = 1
2 + sign(z−i/n)

2 h|z − i/n|α so that µi = h|z −210

i/n|αsign(z − i/n) (this would be a reasonable noise model for topology ααα in the introduction).211

Let Π = {[k] : k ≤ n}. In this case, inspecting the dominating term of Theorem 1 for i ∈ π∗212

we have arg maxπ∈Π:i∈π∆π∗
Vπ,π∗

|π∆π∗|
1

∆̃2
π

= [i] and takes a value of
(

1+α
h

)2
n−1(z − i/n)−2α−1.213

Upper bounding the other terms and summing, the sample complexities can be calculated to be214

O(log(n) log(log(n)/δ)/h2) if α = 0, and O(n2α log(log(n)/δ)/h2) if α > 0. These rates match215

the minimax lower bound rates given in [12] up to log log factors. Unlike the algorithms given there,216

our algorithm works in the agnostic setting, i.e. it is making no assumptions about whether the Bayes217

classifier is in the class. In the case of non-adaptive sampling, the sum is replaced with the max times218

n yielding n2α+1 log(log(n)/δ)/h2 which is substantially worse than adaptive sampling.219

Comparison to previous algorithms: One of the foundational works on active learning is the DHM220

algorithm of [19] and the A2 algorithm that preceded it [2]. Similar in spirit to our algorithm, DHM221

requests a label only when it is uncertain how π∗ would label the current point. In general the222

analysis of the DHM algorithm can not characterize the contribution of each arm to the overall sample223

complexity leading to sub-optimal sample complexity for combinatorial classes. For example in224

the the case when Π = {[i]}ni=1, with i∗ = arg maxi∈[n] µi, ignoring logarithmic factors, one can225

show for this problem the bound of Theorem 1 of [19] scales like n2 maxi 6=i∗(µi∗ − µ−2
i ) which is226

substantially worse than our bound for this problem which scales like
∑
i 6=i∗ ∆−2

i . Similar arguments227

can be made for other combinatorial classes such as all subsets of size k. While we are not particularly228

interested in applying algorithms like DHM to this specific problem, we note that the style of its229

analysis exposes such a gross inconsistency with past analyses of the best known algorithms that the230

approach leaves much to be desired. For more details, please see A.3 in the supplementary materials.231

4 Combinatorial FDR Control232

Algorithm 2 provides an active sampling method for determining π ∈ Π with FDR(π) ≤ α233

and maximal TPR, which we denote as π∗α. Since TPR(π) = TP (π)/η[n], we can ignore the234

denominator and so maximizing the TPR is the same as maximizing TP . The algorithm proceeds in235

epochs. At all times a collection Ak ⊆ Π of active sets is maintained along with a collection of FDR-236

controlled sets Ck ⊆ Ak. In each time step, random indexes It and Jt are sampled from the union237

Sk = ∪π∈Ak\Ckπ and the symmetric difference Tk = ∪π∈Akπ − ∩π∈Akπ respectively. Associated238

random labels YIt,t, YJt,t ∈ {0, 1} are then obtained from the underlying label distributions Ber(ηIt)239

and Ber(ηJt). At the start of each epoch, any set with a FDR that is statistically known to be240

under α is added to Ck, and any sets whose FDR are greater than α are removed from Ak in241

condition 1. Similar to the active classification algorithm of Figure 1, a set π ∈ Ak is removed in242

condition 2 if TP (π) is shown to be statistically less than TP (π′) for some π′ ∈ Ck that, crucially,243

is FDR controlled. In general there may be many sets π ∈ Π such that TP (π) > TP (π∗α) that are244

not FDR-controlled. Finally in condition 3, we exploit the positivity of the ηi’s: if π ⊂ π′ then245

deterministically TP (π) ≤ TP (π′), so if π′ is FDR controlled it can be used to eliminate π. The246

choice of Tk is motivated by active classification: we only need to sample in the symmetric difference.247

To determine which sets are FDR-controlled it is important that we sample in the entirety of the union248

of all π ∈ Ak \ Ck, not just the symmetric difference of the Ak, which motivates the choice of Sk.249

In practical experiments persistent noise is not uncommon and avoids the potential for unbounded250

sample complexities that potentially occur when FDR(π) ≈ α. Figure 2 demonstrates a model run251

of the algorithm in the case of five sets Π = {π1, . . . , π5}.252

Recall that Πα is the subset of Π that is FDR-controlled so that π∗α = arg maxπ∈Πα TP (π). The253

following gives a sample complexity result for the number of rounds before the algorithm terminates.254

255
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Input: Confidence bounds C1(π, t, δ), C2(π, π′, t, δ)
Ak ⊂ Π will be the set of active sets in round k. Ck ⊂ Π is the set of FDR-controlled policies in round k.
A1 = Π, C1 = ∅, S1 = ∪π∈Ππ, T1 =

⋃
π∈Π π −

⋂
π∈Π π, k = 1.

for t = 1, 2, · · ·
if t = 2k:

Let δk = .25δ/k2

For each set π ∈ Ak, and each pair π′, π ∈ Ak update the estimates:
F̂DR(π) := 1− n

|π|t
∑t
s=1 YIs,s1{Is ∈ π}

T̂P (π′)− T̂P (π) := n
t

(∑t
s=1 Y

′
Js,s1{Js ∈ π

′\π} −
∑t
s=1 Y

′
Js,s1{Js ∈ π\π

′}
)

Set Ck+1 = Ck ∪ {π ∈ Ak \ Ck : F̂DR(π) + C1(π, t, δk)/|π| ≤ α}
Set Ak+1 = Ak
Remove any π from Ak+1 and Ck+1 such that one of the conditions is true:
1. F̂DR(π)− C1(π, t, δk)/|π| > α

2. ∃π′ ∈ Ck+1 with T̂P (π′)− T̂P (π) > C2(π, π′, t, δk) and add π to a set R
Remove any π from Ak+1 and Ck+1 such that:
3. ∃π′ ∈ Ck+1 ∪R, such that π ⊂ π′.

Set Sk+1 :=
⋃
π∈Ak+1\Ck+1

π, and Tk+1 =
⋃
π∈Ak+1

π −
⋂
π∈Ak+1

π.
k ← k + 1

endif
Stochastic Noise:

if |Ak| = 1, Break. Otherwise:
Sample It ∼ Unif([n]). If It ∈ Sk, then receive a label YIt,t ∼ Ber(ηIt).
Sample Jt ∼ Unif([n]). If Jt ∈ Tk, then receive a label Y ′

Jt,t ∼ Ber(ηJt).
Persistent Noise:

If |Ak| = 1 or t > n, Break. Otherwise:
Sample It ∼ [n]\{Is : 1 ≤ s < t}. If It ∈ Sk, then receive a label YIt,t = ηIt .
Sample Jt ∼ [n]\{Js : 1 ≤ s < t}. If Jt ∈ Tk, then receive a label Y ′

Jt,t = ηJt .
Return maxt∈Ck+1 T̂P (π)

Algorithm 2: Active FDR control in persistent and bounded noise settings.

Theorem 2 Assume that for each i ≤ n there is an associated ηi ∈ [0, 1] and {Yi,j}∞j=1 is an i.i.d.256

sequence of random variables such that Yi,j ∼ Ber(ηi). For any π ∈ Π define ∆π,α = |FDR(π)−α|,257

and ∆̃π = |TP (π∗α)− TP (π)|/|π∆π∗| = |TP (π∗α \ π)− TP (π \ π∗α)|/|π∆π∗|, and258

sFDRπ =
Vπ
|π|

1

∆2
π,α

log
(
n log(∆−2

π,α)/δ
)
, sTPπ =

Vπ,π∗α
|π∆π∗α|

1

∆̃2
π

log
(
n log(∆̃−2

π )/δ
)

In addition define TFDRπ = min{sFDRπ , max{sTPπ , sFDRπ∗α
}, minπ′∈Πα

π⊂π′
sFDRπ′ } and259

TTPπ = min{max{sTPπ , sFDRπ∗α
}, minπ′∈Πα

π⊂π′
sFDRπ′ }. Using C1(π, t, δ) :=

√
4|π|nVπ log(nδ )

t +260

4nVπ log(nδ )
3t and C2 = C for C defined in Theorem 1, for a fixed constant c, with probability at least261

1− δ, in the stochastic noise setting Algorithm 2 returns π∗α after a number of samples no more than262

c

n∑
i=1

max
π∈Π:i∈π

TFDRπ︸ ︷︷ ︸
FDR−Control

+c

n∑
i=1

max
π∈Πα:i∈π∆π∗α

TTPπ︸ ︷︷ ︸
TPR−Elimination

and in the persistent noise setting returns π∗α after no more than263

c
∑n
i=1 min

{
1,
(

maxπ∈Π:i∈π T
FDR
π + maxπ∈Πα:i∈π∆π∗α

TTPπ

)}
264

Though this result is complicated, each term is understood by considering each way a set can be265

removed and the time at which an arm i will stop being sampled. We now unpack underbraced terms.266

Sample Complexity of FDR-Control In any round where there exists a set π ∈ Ak \ Ck with arm267

i ∈ π, i.e. π is not yet FDR controlled, there is the potential for sampling i ∈ Sk. A set π only leaves268

Ak if i) it is shown to not be FDR controlled (condition 1 of the algorithm), ii) because an FDR269

7



Figure 2: Example run of Algorithm 2, showing the evolution of sampling regions Sk (blue stripes), Tk (pink
stripes) and FDR controlled sets Ck (orange fill) at each time kt.

controlled set eliminates it on the basis of TP (condition 2), or iii) it is contained in an FDR controlled270

set (condition 3). These three cases reflect the three arguments of the min in the defined quantity271

TFDRπ , respectively. Taking the maximum over all sets containing an arm i and summing over all i272

gives the total FDR-control term. This is a large savings relative to naive non-adaptive algorithms that273

sample until every set π in Π was FDR controlled which would take O(nmaxπ∈Π s
FDR
π ) samples.274

Sample Complexity of TPR-Elimination An FDR-controlled set π ∈ Πα is only removed from Ck275

when eliminated by an FDR-controlled set with higher TP or if it is removed because it is contained276

in an FDR-controlled set. In general we can upper bound the former time by the samples needed for277

π∗α to eliminate π once we know π∗α is FDR controlled - this gives rise to maxπ∈Πα:i∈π∆π∗α
TTPπ .278

Note that sets are removed in a procedure mimicking active classification and so the active gains279

there apply to this setting as well. A naive passive algorithm that continues to sample until both the280

FDR of every set is determined, and π∗α has higher TP than every other FDR-controlled set gives a281

significantly worse sample complexity of O(nmax{maxπ∈Πα s
FDR
π ,maxπ 6∈Πα s

TP
π }).282

Comparison with [4]. Similar to our proposed algorithm, [4] samples in the union of all active sets283

and maintains statistics on the empirical FDR of each set, along the way removing sets that are not284

FDR-controlled or have lower TPR than an FDR-controlled set. However, they fail to sample in the285

symmetric difference, missing an important link between FDR-control and active classification. They286

also only consider the case of persistent noise. Their proven sample complexity results are no better287

than those achieved by the passive algorithm that samples each item uniformly, which is precisely the288

sample complexity described at the end of the previous paragraph.289

One Dimensional Thresholds Consider a stylized modeling of the topology βαββ from the introduc-290

tion in the persistent noise setting where Π = {[t] : t ≤ n}, ηi ∼ Ber(β1{i ≤ z}) with β < .5, and291

z ∈ [n] is assumed to be small, i.e., we assume that there is only a small region in which positive labels292

can be found and the Bayes classifier is just to predict 0 for all points. Assuming α > 1− β, one can293

show the sample complexity of Algorithm 2 satisfiesO((1−α)−2(log(n/(1−α))+(1+β)z/(1−α)))294

while any naive non-adaptive sampling strategy will take at least O(n) samples.295

Implementation. For simple classes Π such as thresholds or axis aligned rectangles, our algorithm296

can be made computationally efficient. But for more complex classes there may be a wide gap297

between theory and practice, just as in classification [35, 19]. However, the algorithm motivates298

two key ideas - sample in the union of potentially good sets to learn which are FDR controlled, and299

sample in the symmetric difference to eliminate sets. The latter insight was originally made by A2 in300

the case of classification and has justified heuristics such as uncertainty sampling [35]. Developing301

analogous heuristics for the former case of FDR-control is an exciting avenue of future work.302
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A Proofs401

A.1 Connections to Combinatorial Bandits402

A closely related problem to classification is the pure-exploration combinatorial bandit problem. As403

above we have access to a set of arms [n], and associated to each arm is an unknown distribution404

νi. We let {Ri,j}∞j=1 be a sequence of random variables where Ri,j ∼ νi is the jth draw from νi405

satisfying E[Ri,j ] = µi ∈ [−1, 1]. In the persistent noise setting we assume that νi is a point mass at406

µi ∈ [−1, 1]. Given a collection of sets Π ⊆ 2[n], for each π ∈ Π we define µπ :=
∑
i∈π µi the sum407

of means in π.408

Problem 3: (Combinatorial Bandits) Given a hypothesis class Π ⊆ 2[n] identify π∗ =409

argmax
π∈Π

µπ by requesting as few labels as possible.410

The combinatorial bandit extends many problems considered in the multi-armed bandit literature. For411

example if Π = {{i} : i ∈ [n]} then this is equivalent to the best-arm identification problem.412

As discussed in Section C, returning to the classification setting for a moment: for each i define413

µi := 2ηi − 1 ∈ [−1, 1] so ηi = 1+µi
2 . By a simple manipulation of the definition of R(π) above we414

have415

R(π) =
1

n

n∑
i=1

ηi +
1

n

∑
i∈π

(2ηi − 1) =
1

n

n∑
i=1

ηi +
1

n

∑
i∈π

µi

so that argmin
π∈Π

R(π) = argmax
π∈Π

∑
i∈π µi. Hence, if for some i ∈ [n] we map the jth draw of its416

label Yi,j 7→ 2Yi,j − 1 then the E[2Yi,j − 1] = µi and returning an optimal classifier in the set is417

equivalent to returning a subset π with the largest µπ .418

The connection between FDR control and combinatorial bandits is more direct: we are seeking to419

find π ∈ Π with maximum ηπ subject to FDR-constraints. This already highlights a key difference420

between classification and FDR-control. In one we choose to sample to maximize ηπ subject to FDR421

constraints where each ηi ∈ [0, 1], whereas in classification we are trying to maximize µπ where422

each µi ∈ [−1, 1]. A major consequence of this difference is that ηπ ≤ ηπ′ whenever π ⊆ π′, but423

such a condition does not hold for µπ, µπ′ .424

Motivating the sample complexity: As mentioned above, the general combinatorial bandit problem425

is considered in [10]. There they present an algorithm with sample complexity,426

C

n∑
i=1

max
π:i∈π∆π∗

1

|π∆π∗|
1

∆̃2
π

log
(

max(|B(|π∆π∗|, π)|, |B(|π∆π∗|, π∗)|)n
δ

)
This complexity parameter is difficult to interpret directly so we compare it to one more familiar427

in statistical learning - the VC dimension. To see how this sample complexity relates to ours in428

Theorem 1, note that log2 |B(k, π∗)| ≤ log2

(
n
k

)
. k log2(n). Thus by the Sauer-Shelah lemma,429

V (B(r, π∗)) . log2(|B(r, π∗)|) . min{V (B(r, π∗)), r} log2(n) where . hides a constant. The430

proof of Lemma 1 below effectively combines these two facts along with a union bound over all sets431

in B(r, π∗).432

It’s natural to ask whether the log(n) on the right can be dropped. In specific examples,like nested433

classes, tools from empirical process theory (see Theorem 13.7 in [6]) imply that it can be improved434

to a log log(n). We give such an example where the log(n) is not necessary in Appendix C for the435

case of one-dimensional thresholds.436

A.2 Confidence Bounds for Combinatorial Bandits437

In this section, we build confidence intervals useful in our general combinatorial bandit setup438

discussed in the previous section. The union bounds presented are motivated by those in [10]. The439

constants used in the case without replacement are motivated by Corollary 3.6 in [3].440

Lemma 1 Assume that for each arm i ≤ n there is an associated distribution νi with support [−1, 1],441

mean µi and variance σ2
i ≤ 1. Assume access to the observations (I1, yI1) · · · , (It, yIt) in two442

different but related settings, let s ≤ t,443
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1. Stochastic Noise Is ∼ Unif([n]) and yIs ∼ νIs .444

2. Persistent Noise Is ∈ [n] are drawn without replacement, yIs = µIs , s ≤ n445

Let µ̂π = n
T

∑T
k=1 ys1{Is ∈ π}. Then446

1. With probability greater than 1− δ for all π ∈ Π447

|µ̂π − µπ| ≤ C1(π, t, δ) :=

√
4ρt|π|nVπ log(nδ )

t +
4nκtVπ log

(
n
δ

)
3t

(1)

2. Fix π′ ∈ Π. With probability greater than 1− δ for all t > 0 and π ∈ Π448

∣∣µ̂π′\π − µ̂π\π′ − (µπ′\π − µπ\π′)
∣∣ ≤ C2(π, π′, t, δ) :=

√
8ρt|π∆π′|nVπ,π′ log(nδ )

t (2)

+
4κtnVπ,π′ log(nδ )

3t (3)

where ρt, κt = 1 in the stochastic case and in the persistent case449

ρt =

{
1− t−1

n t ≤ n/2
1− t

n t ≥ n/2 κt =
4

3
+


√

t(t−1)
n(n−t+1) t ≤ n/2√
(n−t−1)(n−t)

(t+1)n t ≥ n/2

Note that by negative associativity the confidence bounds that hold in the case of sampling with450

replacement also hold when sampling without replacement.451

Proof: Define the complexity measures452

B1(k) = {π ∈ A : |π| = k}, B2(k, π′) = {π ∈ A : |π∆π′| = k}.

Firstly note that for any π ∈ Π453

var(µ̂π) =
n2

T
var (y11{I1 ∈ π})

=
n2

T

E[y2
11{I1 ∈ π \ π′}]−

 1

n

∑
i∈π\π′

µi

2


≤ n2

T

(
1

n

∑
i∈π

(σ2
i + µ2

i )

)
≤ 2|π|n

T

Thus by Bernstein’s inequality and a union bound,454

P

(
∃π ∈ Π : |µ̂π − µπ| >

√
2|π|n log(nB1(|π|)/δ)

T
+

2n log(nB1(|π|)/δ)
3T

)
≤
∑
π∈Π

δ

nB1(|π|)

≤
n∑
k=1

B1(k)
δ

nB1(k)
≤ δ
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For the second assertion, firstly note that for any π, π′, µ̂π − µ̂π′ = µ̂π\π′ − µ̂π′\π and so455

var(µ̂π − µ̂π′)
= var(µ̂π\π′ − µ̂π′\π)

= var(µ̂π\π′) + var(µ̂π′\π))

=
n2

T
var (y11{I1 ∈ π \ π′}) +

n2

T
var (y11{I1 ∈ π \ π′})

=
n2

T

E[y2
11{I1 ∈ π \ π′}]−

 1

n

∑
i∈π\π′

µi

2

+ E[y2
11{I1 ∈ π′ \ π}]−

 1

n

∑
i∈π′\π

µi

2


≤ n2

T

 1

n

∑
i∈π\π′

(σ2
i + µ2

i ) +
1

n

∑
i∈π′\π

(σ2
i + µ2

i )


≤ 4|π∆π′|n

T
Let bπ = max{|B2(|π∆π′|, π)|, |B2(|π∆π′|, π′)|)}456

P

(
∃π ∈ Π : |µ̂π′\π − µ̂π\π′ − µπ′\π − µπ\π′ | >

√
8|π∆π′| log(nbπ/δ)

T
+

2n log(bπ/δ)

3T

)

≤
∑
π∈Π

δ

nbπ

≤
n∑
k=1

∑
π∈Π

1{|π∆π′| = k} δ

nbπ

=

n∑
k=1

∑
π∈Π

1{|π∆π′| = k} δ

nmax{|B2(|π∆π′|, π)|, |B2(|π∆π′|, π′)|}

≤
n∑
k=1

∑
π∈Π

1{|π∆π′| = k} δ

n|B2(|π∆π′|, π′)|

≤
n∑
k=1

δ

n
≤ δ

Now by the Sauer-Shelah Lemma for any k457

log(B1(k)) ≤ V (B1(k)) log(en/V (B1(k))).

where V (·) denotes the VC-dimension. At the same time, |B1(k)| ≤ |{π ∈ Π : |π| = k}| ≤ nk.458

Hence459

log(n|B1(k)|/δ) ≤ min{V (B1(k)) log(en/V (B1(k))) + log(n/δ), (k + 1) log(n/δ)}
≤ 4 min{V (B1(k)), k} log(en/δ)

Similarly for any k,460

log(B2(k, π′)) ≤ V (B2(k, π′)) log(en/V (B2(k, π′)))

and |{π ∈ Π : |π∆π∗| = k}| =
(
n
k

)
≤ nk. In particular,461

log(n|B2(k, π′)|/δ) ≤ min{V (B2(k, π′)) log(en/V (B2(k, π′))) + log(n/δ), (k + 1) log(n/δ)}
≤ 4 min{V (B2(k, π′)), k} log(en/δ)

So using identical logic462

log(nbπ/δ) ≤ log(nmax{|B2(|π∆π′|, π)|, |B2(|π∆π′|, π′)|)}/δ)
≤ max{log(n|B2(|π∆π′|, π)|/δ), log(n|B2(|π∆π′|, π′)|)/δ)}
≤ 4 min{max{V (B2(|π∆π′|, π)), V (B2(|π∆π′|, π′))}, |π∆π′|} log(en/δ)

Finally, in the case of without replacement, we can use the confidence intervals from Theorem 3.6 of463

[3] and the result follows. �464
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A.3 Comparison to the Disagreement Coefficient465

One of the foundational works on active learning is the DHM algorithm of [19] and the A2 algorithm466

that preceded it [2]. In their setting a set of points, x1, x2, · · · are streamed to a learner who chooses467

whether to label a point or not. Similar in spirit to our algorithm, DHM determines whether it is468

certain or not about how π∗ would label the current point, and if not, would request the label. Thus,469

DHM only requests the labels of any point that it is uncertain about given all the information up to470

that time. A key quantity arising in the sample complexity of DHM (and many previous works on471

active classification) has been that of the disagreement coefficient of the set π∗: θ = θ(ε, π∗) :=472

supr≥n(ε+ν)

{
|x:x∈π∆π∗,π∈Π and |π∆π∗|≤r|

r

}
where ν = P(π∗(x) 6= y) and ε is a bound on the473

excess error of the set π̂ returned by an active learning algorithm. After being streamed m points,474

DHM returns a classifier with error at most O(ν + V (Π) log(m/δ)/m +
√
V (Π)ν log(m/δ)/m)475

after labeling O
(
θ
(
νm+ V (Π) log2(m) + log

(
log(m)
δ

)))
samples (provided ε ≤ ν–the realistic476

setting in the non-realizable noisy case). Ignoring log factors, this roughly says that a classifier with477

error at most ν + ε is returned after θV (Π)νmax{ε−1, νε−2} requested labels.478

In general the analysis of the DHM algorithm can not characterize the contribution of each arm to479

the overall sample complexity leading to sub-optimal sample complexity for combinatorial classes.480

Consider the case when Π = {πi}ni=1, with πi = {i}, and π∗ = {i∗} where i∗ = argmaxi≤nµi. If481

we take µi ∈ [−1/2, 1/2] for all i then 1
4 −

1
2n ≤ ν ≤

3
4 + 1

2n and for best-arm we necessarily have482

ε = minj 6=i∗
1
n (µi∗ − µj). One can show for this problem θ = 1

ν+ε and so the bound of Theorem483

1 of [19] scales like θdνmax{ε−1, νε−2} = ν
ν+ε max{ε−1, νε−2} ≈ ε−2 = n2 maxi 6=i∗ ∆−2

i for484

∆i = µi∗ − µi, which is substantially worse than our bound for this problem which scales like485 ∑
i 6=i∗ ∆−2

i , describing the contribution from each individual item. Similar arguments can be made486

for other combinatorial classes such as all subsets of size k. We emphasize that it is not that we are487

particularly interested in applying algorithms like DHM to this specific problem, but that it exposes488

such a gross inconsistency with the best known algorithms that its application in general should be489

questioned.490

A.4 Proof of Theorem 1491

Since Active Classification is a specific case of the more general combinatorial bandit problem as492

described in A.1, we focus on the more general case throughout the following. Algorithm 1 is493

repeated in this more general case below - all that changes are the reward distributions are more494

general than just Bernoulli distributions.495

Proof: Throughout the following, let ∆π := µπ∗\π − µπ\π∗ . Define496

E =
⋂
k∈N

⋂
π∈Π

{|(µ̂π∗,k − µ̂π,k)− (µπ∗ − µπ)| ≤ C(π∗, π, tk, δk)}

where we recall C(π∗, π, tk, δk) = C(π, π∗, tk, δk). By Lemma 1 we have that P(E) ≥ 1 −497 ∑∞
k=1 δk ≥ 1− δ so assume E holds in what follows.498

First we show π∗ ∈ Ak for all k. Assume π∗ ∈ Ak. Then for any π̂ ∈ Ak we have499

µ̂π̂\π∗,k − µ̂π∗\π̂,k
E
≤ µπ̂\π∗ − µπ∗\π̂ + C(π̂, π∗, tk, δk)

≤ C(π̂, π∗, tk, δk)

which implies that π∗ ∈ Ak+1. The result follows by the fact that π∗ ∈ A0.500

501

Now we bound the number of samples taken with high probability. For an arm i to be sampled at502

time t, there must be at least two policies π, π′ ∈ At such that i ∈ π∆π′. Since we just showed that503

π∗ ∈ At for all t, it follows that min
{
k : µ̂π∗\π,k − µ̂π\π∗,k > C(π∗, π, tk, δk)

}
is an upper bound504

on the number of rounds before π is removed from Πt. Since µπ∗ > µπ for all π ∈ Π, for each505

π ∈ Π there exists a random first round Kπ when506

µ̂π∗\π,Kπ − µ̂π\π∗,Kπ ≥ C(π∗, π, tKπ , δKπ ).
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Input: δ, Confidence bound C(π′, π, t, δ).
Let A1 = Π, T1 = (∪π∈A1π)− (∩π∈A1π), k = 1, Ak will be the active sets in round k
for t = 1, 2, · · ·

if t == 2k:
Set δk = .5δ/k2. Let tk = 2k. For each π, π′ let
µ̂π′,k − µ̂π,k = n

t
(
∑t
s=1 RIs,s1{Is ∈ π

′ \ π} −
∑t
s=1 RIs,s1{Is ∈ π \ π

′})
Set Ak+1 = Ak −

{
π ∈ Ak : ∃π′ ∈ Akwith µ̂π′,k − µ̂π,k > C(π′, π, tk, δk)

}
.

Set Tk+1 =
(
∪π∈Ak+1π

)
−
(
∩π∈Ak+1π

)
.

k ← k + 1
endif
Stochastic Noise:

If Tk = ∅, Break. Otherwise, draw It uniformly at random from [n] and if It ∈ Tk receive an

associated reward RIt,t
iid∼ µIt .

Persistent Noise:
If Tk = ∅ or t > n, Break. Otherwise, draw It uniformly at random from [n] \ {Is : 1 ≤ s < t}
and if It ∈ Tk receive associated reward RIt,t = µIt .

Output: π′ ∈ Ak such that µ̂π′,k − µ̂π,k ≥ 0 for all π ∈ Ak \ π′

Algorithm 3: Action Elimination for Combinatorial Bandits

But for every π ∈ Π and k ∈ N we have507

µ̂π∗\π,k − µ̂π\π∗,k
E
≥ ∆π − C(π∗, π, tk, δk)

so define508

kπ := min{k : ∆π/2 ≥ C(π∗, π, tk, δk)}.

Also define kmax = maxπ kπ and note that kmax is finite and deterministic since C(π∗, π, tk, δk) is509

decreasing in k. Now we have that510

Sk = {i ∈ [n] : ∃π ∈ Π : i ∈ π∗∆π,Kπ ≥ k}
E
⊆ {i ∈ [n] : ∃π ∈ Π : i ∈ π∗∆π, kπ ≥ k}
=: sk

Thus, we trivially have 1{Is ∈ Sk} ≤ 1{Is ∈ sk} where the right hand side is a deterministic511

function. Furthermore, whether or not Is are drawn uniformly at random from [n] (with replacement)512

or uniformly at random from [n] \ {i : Is = i, 1 ≤ s < t} (without replacement for persistent noise),513

the Is indices are negatively associated random variables [20]. Consequently, standard multiplicative514

Chernoff bounds apply:515

P

kmax∑
k=1

tk∑
s=tk−1+1

1{Is ∈ Sk} ≥ (1 + r)

kmax∑
k=1

tk
|sk|
n


≤ P

kmax∑
k=1

tk∑
s=tk−1+1

1{Is ∈ sk} ≥ (1 + r)

kmax∑
k=1

tk
|sk|
n


≤ exp

(
−min{r,r2}

3

kmax∑
k=1

tk
|sk|
n

)
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Taking r = max

{
3 log(1/δ)∑kmax
k=1 tk

|sk|
n

,

√
3 log(1/δ)∑kmax
k=1 tk

|sk|
n

}
we have with probability at least 1− δ that516

kmax∑
k=1

tk∑
s=tk−1+1

1{Is ∈ Sk} ≤ max

3 log(1/δ),

√√√√3 log(1/δ)

kmax∑
k=1

tk
|sk|
n

+

kmax∑
k=1

tk
|sk|
n

≤ 9

2
log(1/δ) +

3

2

∞∑
k=1

tk
|sk|
n

where the last inequality follows by the arithmetic-geometric mean inequality. Now517

∞∑
k=1

tk
|sk|
n

=

∞∑
k=1

tk

n∑
i=1

1

n
1{∃π ∈ Π : i ∈ π∗∆π, kπ ≥ k}

=

∞∑
k=1

n∑
i=1

tk
n
1{∃π ∈ Π : i ∈ π∗∆π, kπ ≥ k}

=

n∑
i=1

∞∑
k=1

2k

n
1{∃π ∈ Π : i ∈ π∗∆π, 2kπ ≥ 2k}

≤
n∑
i=1

max
π∈Π:i∈π∗∆π

2kπ+1

n

Now, using the specific confidence interval C2(π′, π, tk, δk) from 1518

2k
π

≤ 2 min{t ∈ N : ∆π/2 < C2(π∗, π, t, δdlog2 te)}

≤ c1nVπ,π′
(
|π∗∆π|

∆2
π

+
1

∆π

)
log

(
n log

(
∆−2
π

)
δ

)

≤ c2nVπ,π′
|π∗∆π|

∆2
π

log

(
n log

(
∆−2
π

)
δ

)

≤ c2
nVπ,π′

|π∗∆π|
1

∆̃2
π

log

n log
(

∆̃−2
π

)
δ


where the second to last line follows from519

|π∗∆π|
∆2
π

+
1

∆π
≤ 1

∆π

(
|π∗∆π|

∆π
+ 1

)
≤ 2|π∗∆π|

∆2
π

since ∆π ≤ |π∗∆π|. But for the persistent noise case we have kπ ≤ log2(n) which implies for any i,520

maxπ∈Π:i∈π∗∆π
2kπ+1

n ≤ 2. The result now follows. �521

B Proof of Theorem 2522

Proof: Step 1: Correctness Let tk = 2k. Let E be the event that, for each k and for each π ∈ Π,523 ∣∣∣F̂DR(π)− FDR(π)
∣∣∣ < C1(πt, n, tk, δk)/|π|

and524

|(T̂P (π∗ \ π)− T̂P (π \ π∗))− (TP (π∗ \ π)− TP (π \ π∗))| ≤ C2(π∗, π, tk, δk).

By Lemma 1 and a union bound,525

P(Ec) ≤
∑
k≥1

2
2δ

8k2
≤ δ
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First we argue that π∗ is never eliminated on event E . Note that since FDR(π∗) < α526

F̂DR(π∗)− α
E
≤ FDR(π∗)− α+ C1(π, tk, δk)/|π|
< C1(π, tk, δk)/|π|.

Also for any π ∈ Πα,527

T̂P (π \ π∗)− T̂P (π∗ \ π)
E
≤ TP (π \ π∗)− TP (π∗ \ π) + C2(π, π∗, tk, δk)

= TP (π)− TP (π∗) + C2(π, π∗, tk, δk)

≤ C2(π, π∗, tk, δk),

and by definition π∗ is the maximal TP set in Πα so π∗ will never be removed by another π.528

Finally note that on event E , any π′ (not just π∗) can knock out π using line 2 or 3 of the algorithm iff529

TP (π′) > TP (π) and π′ ∈ Πα.530

We define a few key random rounds531

Kπ := max{k : π ∈ Ak}
KFDR,1
π := max{k : π ∈ Ak \ Ck}

KFDR,2
π := min{k : |F̂DR(π)− α| > C1(π, tk, δk)}

KTP
π := min{k : ∃π′ ∈ Ck such that T̂P (π′ \ π)− T̂P (π \ π′) > C2(π′, π, tk, δk)}

K<
π := min{k : ∃π′ ∈ Ck with π ⊂ π′}

Our objective is to bound maxπ∈Π\π∗ Kπ , which marks the termination of the algorithm.532

Bound on KFDR,1
π : We begin by establishing a deterministic bound on KFDR,1

π that holds when533

event E is true. Note that KFDR,1
π is immediately before the first k such that π 6∈ Ak \ Ck. There534

are three ways this can occur: i) if π becomes FDR-controlled or if π is determined to not be FDR-535

controlled, and ii) a π′ ∈ Ck knocks out π using statistics about TP (i.e., line 2 of the algorithm), or536

iii) a π′ ∈ Ck knocks out π deterministically by line 3 of the algorithm. These cases are reflected537

with the min respectively:538

KFDR,1
π = min{KFDR,2

π ,KTP
π ,K<

π }.
We provide a bound for each one of these terms under E .539

• Since C1(π, tk, δk) is a decreasing function of k, note that540

|FDR(π)− α| > 2C1(π, tk, δk)/|π| =⇒ |F̂DR(π)− α| > C1(π, tk, δk)/|π|
so on event E , KFDR,2

π < kFDR,2π where541

kFDR,2π := min{k : ∆π,α/2 > C1(π, tk, δk)/|π|}.
• On event E , only sets from Πα will enter Ck, so only they can be used to knock out other542

sets in Line 2 of the algorithm. Since π∗ is never eliminated on event E , we have that:543

KTP
π

E
≤ min{k : π∗ ∈ Ck and T̂P (π∗ \ π)− T̂P (π \ π∗) > C2(π∗, π, tk, δk)}.

Thus denoting ∆π = TP (π∗ \ π)− TP (π \ π∗)let544

kTPπ := min{k : ∆π/2 > C2(π∗, π, tk, δk) and ∆π∗,α/2 > C1(π∗, tk, δk)/|π∗|}

and note that KTP
π

E
≤ kTPπ (note that this is potentially infinite if TP (π) > TP (π∗)).545

• Using similar logic, on event E a set π′ will knock out a set π using Line 3 of the algorithm546

only if π′ is in Ck ∪ R and π ⊂ π′. If π′ ∈ Ck then TP (π′) ≥ TP (π) so we can remove547

π. If π′ ∈ R but π′ 6∈ Ck yet, there exists a π′′ ∈ Ck (in particular, the π′′ that eliminated548

π′ into R) with TP (π′′) > TP (π′) > TP (π) so we can safely remove π. Either way this549

implies that the K<
π is bounded by the time it takes to guarantee that π′ is FDR-controlled,550

hence551

K<
π

E
≤ min
π′∈Πα
π⊂π′

KFDR,2
π′

E
≤ min
π′∈Πα
π⊂π′

kFDR,2π′ .
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Putting all of this together we set552

kFDR,1π := min{kFDR,2π , kTPπ , min
π∈Πα
π⊂π′

kFDR,2π′ } (4)

This is necessarily finite since kFDR,2π is finite.553

Summarizing:, on event E , kFDR,1π is an upper bound on KFDR,1
π , the minimal round where554

π 6∈ Ak+1 \ Ck+1.555

556

Part 2 Bound on Kπ: If π ∈ Πα, on event E , π will be removed fromAk only when it demonstrably557

has lower TP than some other set π′ ∈ Πα regardless of whether it is in Ck or not. If π 6∈ Πα, on558

event E , KFDR,1
π = Kπ , since the moment it’s FDR is confirmed to be greater than α it is removed.559

Hence using the exact same logic as above, we have Kπ

E
≤ kπ where560

kπ :=

min{kTPπ ,minπ′∈Πα
π⊂π′

kFDR,2π′ } π ∈ Πα

kFDR,1π π 6∈ Πα

(5)

Summarizing: On event E , kπ is an upper bound on Kπ and thus the algorithm terminates at some561

random round K ≤ kmax := maxπ∈Π\π∗ kπ and outputs π∗.562

563

Part 3: Bound the contribution of each arm. By the last step, we clearly have that the total sample564

complexity is bounded by565

kmax∑
k=1

tk∑
t=tk−1+1

1{It ∈ Sk}+ 1{Jt ∈ Tk}.

Since It, Jt are uniformly distributed over [n], we have E[1{It ∈ Sk}|Sk] = |Sk|
n and E[1{Jt ∈566

Tk}|Tk] = |Tk|
n . However, because |Sk| and |Tk| are random variables, we will upper bound them by567

deterministic quantities, and then show that the sample complexity concentrates.568

For each i ∈ [n], in round k, note that arm i ∈ Sk if there is a set π ∈ Ak \ Ck with i ∈ π. Hence569

Sk = {i ∈ [n] : ∃π ∈ Π : KFDR,1
π > k}

E
⊂ {i ∈ [n] : ∃π ∈ Π : kFDR,1π > k} =: ψk

Similarly, i ∈ Tk if there is π, π′ ∈ Ak with i ∈ π∆π′. On event E , π∗ ∈ Ak for all k, thus i ∈ Tk570

iff i ∈ π∆π∗ for some π ∈ Ak. Thus571

Tk = {π ∈ Π : i ∈ π∆π∗,Kπ > k}
E
⊂ {∃π ∈ Π : i ∈ π∆π∗, kπ > k} =: τk

We now follow an argument similar to that in the proof of Theorem 1. Thus 1{It ∈ Sk} ≤ 1{It ∈572

ψk} and 1{Jt ∈ Tk} ≤ 1{Jt ∈ τk} regardless of whether It, Jt are drawn uniformly at random from573

[n] or uniformly at random from [n]\{i : Is = i, 1 ≤ s ≤ t} respectively [n]\{i : Js = i, 1 ≤ s ≤ t}.574

In particular, It, Jt are negatively associated so we can apply standard multiplicative Chernoff Bounds.575

In particular,576

P
( kmax∑
k=1

tk∑
t=tk−1+1

1{It ∈ Sk} ≥ (1 + r)

kmax∑
k=1

tk
|ψk|
n

)

≤ P

kmax∑
k=1

tk∑
t=tk−1+1

1{It ∈ ψk} ≥ (1 + r)

kmax∑
k=1

tk
|ψk|
n


≤ exp

(
−min{r, r2}

3

kmax∑
k=1

tk
|ψk|
n

)
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with the appropriate choice of r, with probability greater than 1− δ,577

kmax∑
k=1

tk∑
t=tk−1+1

1{It ∈ Sk} ≤
9

2
log(2/δ) +

3

2

∞∑
k=1

tk
|ψk|
n

An identical argument gives that with probability greater than 1− δ,578

kmax∑
k=1

tk∑
t=tk−1+1

1{Jt ∈ Tk} ≤
9

2
log(2/δ) +

3

2

∞∑
k=1

tk
|τk|
n
.

While we have provided a bound on the sample complexity in terms of deterministic quantities ψk579

and τk, we now want to provide natural and interpretable upper bounds on these quantities for a final580

result.581

Putting it all together we have that582

∞∑
k=1

tk
ψk + τk

n
=

∞∑
k=1

2k

n
(ψk + τk)

=

n∑
i=1

∞∑
k=1

2k

n
(1{∃π ∈ Π : i ∈ π, kFDR,1π > k}

+ 1{∃π ∈ Π : i ∈ π∆π∗, kπ > k})

≤
n∑
i=1

∞∑
k=1

2k

n
(1{∃π ∈ Π : i ∈ π, kFDR,1π > k}

+ 1{∃π ∈ Π, π ∈ Πα : i ∈ π∆π∗, kπ > k}
+ 1{∃π ∈ Π, π 6∈ Πα : i ∈ π∆π∗, kπ > k})

≤
n∑
i=1

max
i∈π

2k
FDR,1
π +1

n
+ max

π 6∈Πα
i∈π∆π∗

2k
FDR,1
π +1

n
+ max

π∈Πα
i∈π∆π∗

2kπ+1

n

≤
n∑
i=1

2 max
i∈π

2k
FDR,1
π +1

n
+ max

π∈Πα
i∈π∆π∗

2kπ+1

n

The fourth line follows from Equation (5) and the last line follows from upper bounding the second583

term in the fourth line by the first. Solving for k, shows that for some constant c1584

2k
FDR,2
π ≤ min

{
m : 2C(π, n,m, δblog2(m)c) < |FDR(π)− α|

}
≤ c1nVπ

log(n log(∆−2
π,α)

|π|∆2
π,α

An identical argument shows that for arbitrary π, π′, there is a constant c2 such that585

2k
TP
π ≤ max

{
c2nVπ,π∗

(
|π∆π∗|

∆2
π

+
1

∆π

)
log

(
n log(∆−2

π )

δ

)
, 2k

FDR,2
π∗

}
= max

{
c2
nVπ,π∗

|π∆π∗|
1

∆̃2
π

log

(
n log(∆̃−2

π )

δ

)
, 2k

FDR,2
π∗

}

Finally, for the persistent noise case we have kπ, kFDR,2 ≤ log2(n) which implies for any i,586

maxπ∈Π:i∈π∗∆π
2kπ+1

n ≤ 2. The theorem now follows.587

�588
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C One-dimensional thresholds589

We can get tighter characterizations of Lemma and consequently, better sample complexity guarantees590

for particular VC classes. In particular, those classes that have sets with substantial overlap like591

thresholds. In the case of Thresholds we have the following improvement that manages to remove592

the extra log(n) terms in Lemma 1.593

Lemma 2 Assume that for each i ∈ [n] there is an associated distribution νi with support [−1, 1],594

mean µi and variance σ2
i ≤ 1. Assume access to the observations (y1, I1) · · · , (yT , IT ) where595

Ik ∼ Unif([n]) and yk ∼ νIk . Let µ̂t = 1
T

∑T
k=1 yk1{Ik ≤ t}. Fix t′ ≤ n. Then with probability596

greater than 1− δ for any s ≤ n,597

|µ̂s − µ̂t′ − (µs − µt′)| ≤
√

2|s−t′|
nT

(
43 + 2

√
2 log(2 log2

2(4|s− t′|)/3δ)
)

+
12+log(2 log2

2(4|s−t′|)/3δ)
3T

An analogous result can be proven in the persistent noise case of sampling without replacement.598

Active Classification for One-dimensional thresholds with Tsybakov Noise - Let h ∈ (0, 1],599

α ≥ 0, z ∈ [0, 1] for some i ∈ [n − 1] and assume that Xi,j ∈ {−1, 1} are Bernoulli with600

P(Xi,j = SIGN(z − i/n)) = 1
2 + 1

2h|z − i/n|
α so that µi = h|z − i/n|αSIGN(z − i/n). Let601

Π = {[k] : k ≤ n}. In this case, inspecting the dominating term of 1 for i ∈ π∗ we have602

arg maxπ∈Π:i∈πδπ∗
Vπ,π∗

|π∆π∗|
1

∆̃2
π

= [i] and takes a value of
(

1+α
h

)2
n−1(z − i/n)−2α−1. Trivially603

upper bounding the other terms and summing, the sample complexities can be calculated to be within604

a constant of605

if α = 0, log(n) log(log(n)/δ)/h2 if α > 0 n2α log(log(n)/δ)/h2

These rates match the minimax lower bound rates given in [12] up to log log factors. Note that606

unlike the algorithms given there, our algorithm works in the agnostic setting, i.e. it is making no607

assumptions about whether the Bayes classifier is in the class. In the case of non-adaptive sampling,608

the sum is replaced with the max times n yielding609

if α ≥ 0 n2α+1 log(log(n)/δ)/h2

which is substantially worse than adaptive sampling.610

We are now ready to prove the theorem.611

Proof: Let612

ft(Ik, yk) =

{
yk1{Ik ∈ [t′, t]} t ≥ t′
−yk1{Ik ∈ [t, t′]} t ≤ t′

In particular, µ̂t − µ̂t′ = 1
T

∑T
k=1 ft(Ik, yk). Note that the random variables (ys, Is), for s =613

1, · · · , n are by definition i.i.d. drawn from a distribution on [n]× {0, 1}. Note614

E

[
1

T

n∑
k=1

ft(Ik, yk)

]
=

{
1
n

∑t
k=t′ ηi t ≥ t′

1
n

∑t′

k=t−ηi t ≤ t′

and (assuming that t ≤ t′, an identical computation applies when t ≥ t′)615

var(ft) = var(ys1{Is ∈ [t, t′]})
≤ E[y2

s1{Is ∈ [t, t′]}]

=
1

n

t′∑
i=t

(σ2
i + η2

i ) ≤ 2

n
|t′ − t|.

By Theorem 2.3 in [7], given δ > 0, for each {s : s ≤ n, |s− t′| ≤ τ} we have that616

P
( ∣∣∣∣∣ 1

T

T∑
k=1

fs(Ik, yk)− E[fs]

∣∣∣∣∣ > 2E

[
sup

|s−t′|≤τ

∣∣∣∣∣ 1

T

T∑
k=1

fs(Ik, yk)− E[fs]

∣∣∣∣∣
]

+

√
2τ log(1/δ)

nT
+ 7 log(1/δ)

3T

)
≤ δ
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To obtain a bound over all time, we now face two major tasks. Firstly, we must apply a peeling617

argument to the set of t’s. Secondly, and perhaps more immediate, we need bounds on the empirical618

process619

E

[
sup

|s−t′|≤τ

∣∣∣∣∣ 1

T

T∑
k=1

fs(Ik, yk)− E[fs]

∣∣∣∣∣
]

Let’s start with the latter. Denote Zt = 1
T

∑T
k=1 ft(Ik, yk) − E[ 1

T

∑T
k=1 ft(Ik, yk)]. Firstly note620

that,621

|(fs − ft)(Ik, yk)| =
{
yk1{Ik ∈ [t, s]} s > t

−yk1{Ik ∈ [s, t]} t > s

In particular the computation above shows,622

var ((fs − ft)(Ik, yk)) ≤ 2
|t− s|
n

.

Hence,623

var

(
1

T

T∑
k=1

ft(Ik, yk)− E[ft]−

(
1

T

T∑
k=1

fs(Ik, yk)− E[fs]

))
=

var(ft(Ik, yk)− fs(Ik, yk))

T

≤ 2|t− s|
nT

In particular, since | 1T ft(Is, ys)| ≤
1
T , Bernstein’s inequality implies,624

log(E[eλ(Zt−Zs))] ≤
λ2 2|t−s|

nT

2(1− λ/3T )
.

Let d2(t, s) = | tn −
s
n |. Then, Lemma 13.1 of [6] with ν = 2/T and c = 1/3T we have that,625

E

[
sup

|s−t′|≤τ
|Zs|

]
≤ 12

√
2√
T

∫ √τ/n/2
0

√
log(

√
τ/n

2u )du+
4

T

∫ √τ/n/2
0

log(

√
τ/n

2u )du

≤ 12
√

2√
T

∫ ∞
0

√
τ

n
v2e−v

2

dv +
4

T

∫ ∞
0

1

2

√
τ

n
ve−vdv

≤ 12
√
π√
T

√
τ

n
+

2

T

√
τ

n

≤ 12
√
π

√
τ

nT
+

2

T

the third line follows from the second by doing the substitution, v =
√

log(
√
τ/n/u)) and similarly626

u = log(
√
τ/n/u)) on the second integral.627

Hence for all s : |s− t′| ≤ τ , using the fact that
√
a+
√
b ≤

√
2(a+ b)628

P
(∣∣∣ 1

T

∑T
k=1 fs(Ik, yk)− E[fs]

∣∣∣ >√ τ
nT

(
43 + 2

√
2 log( 1

δ )
)

+ 12+log(1/δ)
3T

)
≤ δ

At this point we need to apply a peeling argument. Let Sr = {s ≤ n : 2r−1 ≤ |s− t′| ≤ 2r}. Note629

that r ≤ log2(2|s− t′|+ 2) ≤ log2(4|s− t′|). For each s ∈ Sr simultaneously, since 2r ≤ 2|s− t′|,630

with probability greater than 1− 2δ
3r2 ,631

∣∣∣ 1
T

∑T
k=1 fs(Ik, yk)− E[fs]

∣∣∣ <√2|s− t′|
nT

(
43 + 2

√
2 log(2r2

3δ )
)

+
12+log

(
2r2

3δ

)
3T

≤
√

2|s− t′|
nT

(
43 + 2

√
2 log(

2 log2
2(4|s−t′|)

3δ )
)

+
12+log

(
2 log2

2(4|s−t′|)
3δ

)
3T
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Now union-bounding over each r = 1, · · · , log2(n− t′), we have that632

∣∣∣ 1
T

∑T
k=1 fs(Ik, yk)− E[fs]

∣∣∣ ≤√ 2|s−t′|
nT

(
43 + 2

√
2 log(

2 log2
2(4|s−t′|)

3δ )
)

+
12+log

(
2 log2

2(4|s−t′|)
3δ

)
3T

with probability greater than633

log2(n−t′)∑
k=1

2δ

3k2
≤
∞∑
k=1

2δ

3
k2 ≤ δ

�634
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