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1 Proofs of theorems

Proposition 1. We assume that the probability density p0(z) of the squared input |x(0)|2 =∑N0

i=1 x
(0)
i is known. Then, the distribution pl(z) of the squared signal vector |x(l)|2 depends only on

the distribution of the previous layer as transformation by a linear operator Tl : L1(R+)→ L1(R+)
so that pl = Tl(pl−1). T is defined as

Tl(p)[z] =

∫ ∞
0

kl(y, z)p(y)dy, (1)

where k(y, z) is the distribution of the squared signal z at layer l given the squared signal at
the previous layer y so that kl(y, z) = p

∗Nl−1

φ(hy)2
(z), where ∗ stands for convolution and pφ(hy)2(z)

denotes the distribution of the squared transformed pre-activation hy , which is normally distributed
as hy ∼ N

(
0, σ2

wy
2 + σ2

b

)
. This distribution serves to compute the cumulative distribution function

(cdf) of each signal component xli as

Fx(l)(x) =

∫ ∞
0

dzpl−1(z)Φ

(
φ−1(x)√
σ2
wz + σ2

b

)
, (2)

where φ−1 denotes the generalized inverse of φ and Φ the cdf of a standard normal random variable.
Accordingly, the components are jointly distributed as

F
x
(l)
1 ,...,x

(l)
Nl

(x) =

∫ ∞
0

dzpl−1(z)ΠNl
i=1Φ

(
φ−1(xi)

σz

)
, (3)

where we use the abbreviation σz =
√
σ2
wz + σ2

b .

Proof. Let’s focus on a signal vector x conditional on the signal of the previous layer x . As
explained in the main manuscript, a single signal component is distributed as xi ∼ Φ

(
φ−1(·)
σi

)
with

σ2
i = σ2

w|x|2 + σ2
b given |x|2. As the weights and biases are independent in the computation of

different components, also the components xi given |x|2 are independent. Their joint distribution is
therefore just the product of the marginal distributions. Their distribution depends on the previous
signal only via the squared norm |x|2, which is distributed as pl−1. According to Bayes’ theorem,
we only need the knowledge of the distribution pl−1(·) of the squared norm at the previous layer
to determine the signal distribution by Equation 3. We receive pl of the next layer by successive
conditioning on the previous layer and the application of Bayes’ Theorem that states

pl(y) =

∫ ∞
0

p
|x|2
∣∣|x|2pl−1(y) dy. (4)
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Equation 1 follows with the definition kl(y, z) = p
|x|2
∣∣|x|2=y(z). Thus, the kernel kl(y, z) is

defined as the density of the random variable |x|2 given the squared norm |x|2 of the previous
layer. We have to deduce its distribution to conclude the proof. |x|2 =

∑Nl

i=1 x
2
i =

∑Nl

i=1 φ(hi)
2,

where the random variables φ(h)2i are independent and the pre-activations are normally distributed

as hi ∼ N
(
0, σ2

w|x|2 + σ2
b

)
conditional on the previous layer. Thus, the x2i ∼ Φ(

φ−1(
√

(·))√
σ2
w|x|2+σ2

)

are also identically independently distributed and so that their sum is given by their convolution:

|x|2 ∼ F−1
(
FΦ(

φ−1(
√

(·))√
σ2
w|x|2+σ2

)

)∗Nl

, where F denotes the Fourier transformation.

Proposition 2. For rectified linear units, the linear operator T in Theorem 1 is defined by

kl(y, z) = 0.5Nl

(
δ0(z) +

Nl∑
k=1

(
Nl
k

)
1

σ2
y

pχ2
k

(
z

σ2
y

))
(5)

with σy =
√
σ2
wy + σ2

b . For σb = 0, the functions fm(y) = ym1]0,∞](y) are eigenfunctions of
Tl for any m ∈ R (even though they are not elements of L1(R+) and thus not normalizable as
probability measures) with corresponding eigenvalue λl,m ∈ R: Tlfm = λl,mfm with

λl,m = 0.5Nl−m−1 1

σ2m+2
w

Nl∑
k=1

(
Nl
k

)
Γ(k/2−m− 1)

Γ(k/2)
. (6)

Proof. We specialize Prop. 1 to rectified linear units, i.e. φ(x) = max(0, x). Thus, the components
xi = φ(hi) are the sum of a δ distribution in 0, i.e. δ0, and a truncation of a normal distribution with
mean 0 and variance σ2

y given the previous layer |x|2 = y.

xi
∣∣|x|2 = y ∼ 0.5δ0(·) + 1]0,∞](·)pN

(
·
σy

)
/σy, where pN (z) = exp(−z2/2)/

√
2π denotes the

density of a Standard normal random variable. The squared component x2i = (φ(hi))
2 ∼ ps(·) =

0.5δ0(·) + 0.5 1
σy
pχ2( ·σy

) is thus either 0 with probability 0.5, i.e. the probability Φ(0) = 0.5 that
hi is negative or, in case that hi is positive with probability 0.5, it follows a χ2 distribution as a
squared normal random variable with mean 0. As the squared components are independent and
identically distributed given the previous layer, their sum (given the previous layer) is distributed as
the Nlth convolution of the squared component distribution, i.e. pl

∣∣|x|2 ∼ p∗Nl
s . Its functional form

is provided by Equation (5), which adds all possible cases where Nl − k of the components are zero,
i.e. x2i = 0 and the remaining k are positive and χ2 distributed. As the sum of k independent χ2

distributed random variables is χ2
k distributed, Equation (5) follows.

To show that Tlfm =
∫∞
0
kl(y, z)fm(y)dy = λl,mfm(z), we focus on the summands∫∞

0
δ0(y)fm(y) dy and

∫∞
0

1
σ2
y
pχ2

k

(
z
σ2
y

)
fm(y) dy separately. First, we have

∫∞
0
δ0(y)fm(y) dy =

fm(0) = 0. Second, we note that σ2
y = yσ2

w for σb = 0 and integrate∫ ∞
0

1

σ2
y

pχ2
k

(
z

σ2
y

)
fm(y) dy =

0.5k/2

Γ(k/2)

∫ ∞
0

zk/2−1

σkwy
k/2

× exp

(
z

2σ2
wy

)
ym dy =

zm

σ
2(m+1)
w

0.5k/2

Γ(k/2)

∫ ∞
0

exp (x/2)

xk/2−(m+1)−1 dx = zm
2m+1

σ
2(m+1)
w

Γ(k/2− (m+ 1))

Γ(k/2)

after use of the definition of the χ2 density and a variable transformation x = z/(σ2
wy). Accordingly,

the integration of the product with the full kernel k(y, z) leads to

Tlfm = zm
2m+1

σ
2(m+1)
w

0.5Nl

Nl∑
k=1

(
Nl
k

)
Γ(k/2− (m+ 1))

Γ(k/2)

= zmλl,m.
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Corollary 3. For rectified linear units, the expectation value of the squared signal conditional on the
squared signal of the previous layer is given by:

E
(
|x(l)|2

∣∣|x(l−1)|2 = y
)

= (σ2
wy + σ2

b )
Nl
2
. (7)

Consequently, the expectation of the final squared signal norm depends on the initial input as:

E
(
|x(L)|2

∣∣|x(0)|2
)

=|x(0)|2ΠL
l=1

Nlσ
2
w,l

2
+ σ2

b,L

NL
2

+

L−1∑
l=1

σ2
b,l

Nl
2

ΠL
n=l+1

Nnσ
2
w,n

2

(8)

The expectation value and variance of a single signal component conditional on the squared signal
norm of the previous layer are given by:

E
(
xi
∣∣|x|2 = y

)
=

1√
2π

√
σ2
wy + σ2

b , (9)

V
(
xi
∣∣|x|2 = y

)
=
π − 1

2π
(σ2
wy + σ2

b ). (10)

The last layer depends on the input as:

E
(
x
(L)
i

∣∣x(0)
)
≤ 1√

2π

[
|x(0)|2ΠL−1

l=1

Nlσ
2
w,l

2
σ2
w,L

+ σ2
b + σ2

w,L

(
σ2
b,L−1

NL−1
2

+

L−1∑
l=1

σ2
b,l

Nl
2

ΠL−1
n=l+1

Nnσ
2
w,n

2

)]1/2
,

V
(
x
(L)
i

∣∣x(0)
)

=|x(0)|2π − 1

2π
σ2
w,LΠL−1

l=1

Nlσ
2
w,l

2
+
π − 1

2π

×
(
σ2
b,L + σ2

w,L

(
σ2
b,L−1

NL−1
2

+

L−1∑
l=1

σ2
b,l

Nl
2

ΠL−1
n=l+1

Nnσ
2
w,n

2

))
.

Proof. Prop. 2 states that |x(l)|2
∣∣|x(l−1)|2 = y ∼ kl(y, ·) as given by Equation (5). Using the linearity

of expectation and the knowledge of the average of a χ2 distribution
∫∞
0

z
σ2
y
pχ2

k

(
z
σ2
y

)
dz = kσ2

y ,
we receive

E
(
|x(l)|2

∣∣|x(l−1)|2 = y
)

= 0.5Nl

Nl∑
k=1

(
Nl
k

)∫ ∞
0

pχ2
k

(
z

σ2
y

)

× z

σ2
y

dz = 0.5Nlσ2
y

Nl∑
k=1

(
Nl
k

)
k = 0.5Nlσ2

yNl2
Nl−1

= σ2
y

Nl
2

= (σ2
wy + σ2

b )
Nl
2
.
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Iterative application of this result leads to Equation (8), since we have

E
(
|x(L)|2

∣∣|x(0)|2
)

=

∫
y∈RL

+

yLΠL
l=1kl(yl, yl−1) dy

=

∫
y∈RL−1

+

E
(
|x(L)|2

∣∣|x(L−1)|2 = yL−1

)
ΠL−1
l=1 kl(yl, yl−1) dy

=
NL
2

∫
y∈RL−1

+

(σ2
w,LyL−1 + σ2

b,L)ΠL−1
l=1 kl(yl, yl−1) dy

=
NL
2
σ2
w,LE

(
|x(L−1)|2

∣∣|x(0)|2
)

+
NL
2
σ2
b,L.

where we define y ∈ RL+ as y = (y1, ..., yL) and y0 = |x(0)|2. This leads to Equation (8).

As shown in the proof of Prop. 1, a single component is distributed as xi
∣∣(|x|2 = y) ∼ 0.5δ0(·) +

1]0,∞](·)pN
(
·
σy

)
/σy . Thus, its average is

E
(
xi
∣∣|x|2 = y

)
= σy

∫ ∞
0

pN (z)z dz =
1√
2π
σy

and is identical to Equation (9) according to the definition of σy . The variance reads as

V
(
xi
∣∣|x|2 = y

)
= E

(
x2i
∣∣|x|2 = y

)
− E

(
xi
∣∣|x|2 = y

)2
= σy

∫ ∞
0

pN (z)z dz =
σ2
y

2
−
σ2
y

2π
=
π − 1

2π
σ2
y.

To derive the respective expressions conditional on the input, we combine these results with Equa-
tion (8). Yet, we cannot compute the average in closed form. But applying Jensen’s inequality (for
the concave function

√
σ2
w · σ2

b yields the simplification

E
(
x
(L)
i

∣∣x(0)
)

=
1√
2π

E
(√

σ2
w|x(L−1)|2 + σ2

b

∣∣∣x(0)

)
≤ 1√

2π

√
σ2
wE
(
|x(L−1)|2

∣∣∣x(0)
)

+ σ2
b .

For the variance, we receive exactly

V
(
xi
∣∣x(0)

)
= σ2

wE
(
|x(L−1)|2

∣∣∣x(0)
)

+ σ2
b .

1.1 Joint signal propagation for multiple inputs

Proposition 4. The same component of pre-activations of signals h1, ..., hD corresponding to
different inputs x(0)

1 , ...,x
(0)
D , are jointly normally distributed with zero mean and covariance matrix

V defined by

vij = Cov(hi, hj) = σ2
w < xi,xj > +σ2

b (11)

for i, j = 1, ..., D conditional on the signals xi of the previous layer corresponding to x
(0)
i .

Proof. Let’s assume two different inputs x(0)
i ,x

(0)
j to the same neural network. We study a the same

component c of signal pre-activations (at layer l) given the previous layer and denote them by hi, hj .
They are given by hi =

∑Nl−1

k=1 wckxi,k+bc and correspondingly hj =
∑Nl−1

k=1 wckxj,k+bc, are thus
normally distributed, and depend on the same mutually independent, normally distributed random
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variables wck, bc. As we know, E(hi/j) = 0 so that their covariance conditional on the previous layer
is

vij = Cov(hi, hj) = E (hihj) =
∑
k,n

xi,kxj,nE (wckwcn)

+
∑
k

(xi,k + xj,k)E (wckbc)

=
∑
k

xi,kxj,kσ
2
w + σ2

b

= σ2
w < xi,xj > +σ2

b ,

because of the mutual independence of weights and biases wck, bc. Since h1, ..., hD are jointly
normally distributed, they are completely determined by their mean and covariance matrix.

Theorem 5. Assume rectified linear units as activation functions. Let two signals x1 = φ(h1), x2 =

φ(h2) of the same neuron correspond to two different inputs x
(0)
1 ,x

(0)
2 . The variables y1 = x21,

y2 = x22, y3 = x1x2 are jointly distributed as:

p(y1, y2, y3) =g(ρ)δ(0,0,0)(y1, y2, y3) + f1(y1)δ(0,0)(y2, y3)

+ f2(y2)δ(0,0)(y1, y3)

+ pW (y1, y2, y3)1R3
+

(y1, y2, y3)

(12)

conditional on |x|21, |x|22, < x1,x2 > of the previous layer. g(ρ) is defined as g(ρ) =

1√
2π

∫∞
0

Φ

(
ρ√
1−ρ2

u

)
exp

(
− 1

2u
2
)
du for ρ 6= 1 and g(1) = 1/2.

f1(y1) =
1√

2πv22

1

2
√
y1

Φ

(
− ρ√

1− ρ2

√
y1√
v22

)

× exp

(
−1

2

y1√
v22

)
is the density of |x1|2 for zero |x2|2. f2(y2) is defined accordingly. pW refers to the density
pW (y1, y2, y3) = 1

4
√
y1y2

ph1,h2(
√
y1,
√
y2)δ√y1y2(y3), where ph1,h2 denotes the density of the

pre-activations, i..e. two jointly normally distributed random variables with zero means and covari-
ance matrix V , while ρ refers to the correlation of the two components: ρ = v12/

√
v11v22. The

variables |x1|2, |x2|2, < x1,x2 >
∣∣|x1|2, |x1|2, < x1,x2 > are distributed as 3-dimensional convo-

lutions p∗∗∗Nl and determine the joint signal distribution of the next layer.

Proof. According to the last theorem, the pre-activation signal components h1, h2 are jointly normally
distributed with 2-dimensional covariance matrix V (and zero means). The shape of the joint
distribution of (y1, y2, y3) can be deduced from that knowledge. The variables of interest are
(y1, y2, y3) = (0, 0, 0) exactly when h1 ≤ 0 and h2 ≤ 0. This is the case with probability

g(ρ) =

√
1− ρ2
2π

∫ 0

−∞

∫ 0

−∞

× exp

(
−1

2

(
u21 + u22 − 2ρu1u2

))
du1 du2

=

√
1− ρ2

2π

∫ 0

−∞
Φ (−ρu) exp

(
−1

2
u2(1− ρ2)

)
du

=
1√
2π

∫ ∞
0

Φ

(
ρ√

1− ρ2
u

)
exp

(
−1

2
u2
)
du,

where the last equality follows from a change of variable if ρ 6= 0. The case that only one of the
marginals, say h2, is negative, the variables y2 = 0 and y3 = 0 are both zero and the remaining y1
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is distributed with density f1(y1) = 1
2
√
y1
px1

(√
y1
)
, where px1 denotes the density of the signal

component. px1
is given by integrating out all cases when x2 = 0, i.e. h2 ≤ 0:

px1
(x1) =

1

2π
√

det(V )

∫ 0

−∞
exp

(
− 1

2 det(V )
(v11x

2
1

+ v22h
2
2 − 2v12x1h2)

)
dh2

=
1√

2πv22
Φ

(
− ρ√

1− ρ2
x1√
v22

)

× exp

(
−1

2

x21√
v22

)
.

The last case, when both h1 > 0, h2 > 0 and thus also (y1, y2, y3) > 0 can be tied to the joint normal
distributions of the pre-activations, since y1 = x21 = h21, y2 = x22 = h22, y3 = h1h2 then. The given
density follows directly from variable substitution.

Since
(
|x1|2, |x2|2, < x1,x2 >

)
given the previous layer is the sum of Nl independent random vari-

ables that are distributed as (y1, y2, y3), their joint distributions coincides with the Nlth convolution
of p(y1, y2, y3).

Theorem 6. Assume rectified linear units as activation functions. Let two signals x1 = φ(h1), x2 =

φ(h2) of the same neuron correspond to two different inputs x
(0)
1 ,x

(0)
2 . Let the correlation ρ =

v12/
√
v11v22 of the pre-activations h1, h2 be given, where V denotes the 2-dimensional covariance

matrix as defined in Theorem 4. The correlation after non-linear activation is then

Cor (x1, x2) =

√
1− ρ2 − 1 + 2πρg(ρ)

π − 1
(13)

where g(ρ) =
∫∞
0

Φ

(
ρu√
1−ρ2

)
e−

1
2u

2

/
√

2π. The average of the sum of all components

E (< x1,x2 >) conditional on the previous layer is:

E (< x1,x2 >) = Nl
√
v11v22

(
g(ρ)ρ+

√
1− ρ2
2π

)
≈ Nl

√
v11v22

1

4
(ρ+ 1). (14)

Furthermore, conditional on the signals of the previous layer, < x1,x2 > is distributed as f∗Nl

prod(t),
where

fprod(y3) = (1− g(ρ)) δ0(y3) +
1

2π
√

det(V )

× exp

(
v12y3

2 det(V )

)
K0

(√
v11v22

det(V )
y3

)
and K0(w) =

∫∞
0

cos(w sinh(t)) dt denotes the modified Bessel function of second kind.

Proof. The correlation of two random variables can be calculated as Cor (x1, x2) =
E(x1x2)−E(x1)E(x2)√

V(x1)V(x2)
. For the correlation between the same signal component corresponding to two dif-

ferent inputs conditional on the previous layer, we can use our insights about the marginal distributions
in Equation (9) as

Cor (x1, x2) =
E (x1x2)− E (x1)E (x2)√

V (x1)V (x2)

=
E (x1x2)

π−1
2π

√
v11v22

− 1

π − 1
.

6



After lengthy but not very insightful calculations we obtain

E (x1x2) =
1

2π
√

det(V )

∫ ∞
0

∫ ∞
0

exp
(
− 1

2 det(V )(
v11x

2
1 + v22x

2
2 − 2v12x1x2

) )
x1x2 dx1 dx2

=

√
v11v22
2π

√
1− ρ2

(
ρg(ρ)

2π√
1− ρ2

+ 1

)
,

which proofs Equation (13). The average E (< x1,x2 >) conditional on the previous layer is based
on this result:

E (< x1,x2 >) =

Nl∑
i=1

E(x1,ix2,i) = NlE(x1x2)

= Nl
√
v11v22

(
g(ρ)ρ+

√
1− ρ2
2π

)
.

Fig. 1 justifies the approximation of this term by Nl
√
v11v22

1
4 (ρ+ 1).

●
●●

●●
●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●

0.0

0.1

0.2

0.3

0.4

0.5

−1.0 −0.5 0.0 0.5 1.0
ρ

f(ρ
)

Figure 1: E (< x1,x2 >) with v11 = 1, v22 = 1, Nl = 1 in dependence on the correlation ρ of
pre-activations according to Eq. (14) (black circles) versus the approximation 1

4 (ρ+ 1) (red line).

Next, we have to derive the distribution of y3 = x1x2 conditional on the previous layer. Again,
y3 = 0 except for the case h1 > 0, h2 > 0, thus with probability

fprod(0) = 1− P (h1 > 0, h2 > 0) = 1− 1

2π
√

det(V )∫ ∞
0

∫ ∞
0

exp
(
− 1

2 det(V )
(v11x

2
1 + v22x

2
2 − 2v12x1x2)

)
dx1 dx2 = 1−

√
1− ρ2
2π

∫ ∞
0

∫ ∞
0

exp
(
− 1

2

(
u21 + u22

− 2ρu1u2
))

du1 du2 = 1− 1√
2π

∫ ∞
0

∫ ∞
0

Φ

(
ρu√

1− ρ2

)
e−

1
2u

2

du

(
ρg(ρ)

2π√
1− ρ2

+ 1

)
= 1− g(ρ).

The case y3 = x1x2 > 0 is governed by the joint distribution of x1 = h1 and x2 = h2 when
h1 > 0, h2 > 0. We note that since x2 = y3/x1 with dx2

dy3
= 1

x1
, we can change the variable x2 to y3

7



to obtain the joint density of x1 and y3 as

p(x1, y3) =
1

2π
√

det(V )
exp

(
− 1

2 det(V )
(v11x

2
1 + v22

y23
x21

− 2v12y3)
) 1

x1
.

The marginal density of y3 is thus for y3 > 0

fprod(y3) =
1

2π
√

det(V )

∫ ∞
0

exp
(
− 1

2 det(V )
(v11x

2
1

+ v22
y23
x21
− 2v12y3)

) 1

x1
dx1 =

1

2π
√

det(V )

exp

(
v12y3

det(V )

)
1

2

∫ ∞
0

exp

(
−v − v11v22

det(V )

y23
v2

)
dv

=
1

2π
√

det(V )
exp

(
v12y3

2 det(V )

)
K0

(√
v11v22

det(V )
y3

)
.

2 Additional experiments

Figure 2: Time for training 104 steps on MNIST for different initialization schemes, width N , depth
L, with σw =

√
2/N, σb = 0. Average time for 100 instances of each configuration is reported along

with a 0.95 confidence interval.

In addition to prediction accuracy, in Fig. 2, we report the time required to train each of the aforemen-
tioned networks for 104 steps. Clearly, the width and depth of a network has a high effect on training
time. Yet, among networks with the same architecture, our proposed orthogonal W0 initialization
scheme allows to train feed-forward neural networks faster, in particular, in case of wider networks
with more parameters.

Fig. 3 supports this insight by comparing the learning dynamics of all considered networks on
CIFAR-10. OrthogonalW0 initialization achieves a higher accuracy faster (i.e. after a smaller number
of training epochs) and more stable, as the variance between different instances is small. While GSM
(Gaussian submatrix) initialization outperforms He initialization in these aspects, orthogonal W0

initialization compares still favorable with GSM. Interestingly, shallow layers always outperform
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Figure 3: CIFAR-10 test accuracy for different initialization schemes, width N , depth L, with
σw =

√
2/N, σb = 0. The mean accuracy and 0.95 confidence interval are reported for 30 trials.

deeper layers for orthogonalW0 initialization at all epochs (on this dataset), while shallow layers train
more slowly in the beginning for GSM initialization and then take over deeper layers in performance
after 8− 10 epochs. However, we have to note that the overall accuracy is far away from the state of
the art, as we neither use convolutional layers nor do we apply data augmentation or regularization
techniques. In consequence, deeper networks can have the tendency to overfit early. As they also
need longer to train in general, we might also not give them long enough time to develop their full
potential. We focus solely on the effect of the initialization scheme here and observe that deeper
networks become trainable with our initialization scheme than with He initialization.

In summary, the proposed orthogonal W0 initialization allows us to achieve dynamical isometry for
deep feed-forward neural networks with ReLU activation and, therefore, improve both accuracy (for
deep networks) and training time (for wide networks).

The code for all experiments is provided as additional supplementary material.
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