
Initialization of ReLUs for Dynamical Isometry

Rebekka Burkholz
Department of Biostatistics

Harvard T.H. Chan School of Public Health
655 Huntington Avenue, Boston, MA 02115

rburkholz@hsph.harvard.edu

Alina Dubatovka
Department of Computer Science

ETH Zurich
Universitätstrasse 6, 8092 Zurich
alina.dubatovka@inf.ethz.ch

Abstract

Deep learning relies on good initialization schemes and hyperparameter choices
prior to training a neural network. Random weight initializations induce random
network ensembles, which give rise to the trainability, training speed, and some-
times also generalization ability of an instance. In addition, such ensembles provide
theoretical insights into the space of candidate models of which one is selected
during training. The results obtained so far rely on mean field approximations
that assume infinite layer width and that study average squared signals. We derive
the joint signal output distribution exactly, without mean field assumptions, for
fully-connected networks with Gaussian weights and biases, and analyze deviations
from the mean field results. For rectified linear units, we further discuss limitations
of the standard initialization scheme, such as its lack of dynamical isometry, and
propose a simple alternative that overcomes these by initial parameter sharing.

1 Introduction

Deep learning relies critically on good parameter initialization prior to training. Two approaches are
commonly employed: random network initialization [4, 7, 14] and transfer learning [26] (including
unsupervised pre-training), where a network that was trained for a different task or a part of it
is retrained and extended by additional network layers. While the latter can speed up training
considerably and also improve the generalization ability of the new model, its bias towards the
original task can also hinder successful training if the learned features barely relate to the new task.
Random initialization of parameters, meanwhile, requires careful tuning of the distributions from
which neural network weights and biases are drawn. While heterogeneity of network parameters is
needed to produce meaningful output, a too big variance can also dilute the original signal. To avoid
exploding or vanishing gradients, the distributions can be adjusted to preserve signal variance from
layer to layer. This enables the training of very deep networks by simple stochastic gradient descent
(SGD) without the need of computationally intensive corrections as batch normalization [8] or variants
thereof [12]. This approach is justified by the similar update rules of gradient back-propagation and
signal forward propagation [20]. In addition to trainability, good parameter initializations also seem
to support the generalization ability of the trained, overparametrized network. According to [3], the
parameter values remain close to the initialized ones, which has a regularization effect.

An early example of approximate signal variance preservation is proposed in [4] for fully connected
feed forward neural networks, an important building block of most common neural architectures.
Inspired by those derivations, He et al. [7] found that for rectified linear units (ReLUs) and Gaussian
weight initialization w ∼ N (µ, σ2) the optimal choice is zero mean µ = 0, variance σ2 = 2/N and
zero bias b = 0, where N refers to the number of neurons in a layer. These findings are confirmed by
mean field theory, which assumes infinitely wide network layers to employ the central limit theorem
and focus on normal distributions. Similar results have been obtained for tanh [16, 18, 20], residual
networks with different activation functions [24], and convolutional neural networks [23]. The same

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

derivations also lead to the insight that infinitely wide fully-connected neural networks approximately
learn the kernel of a Gaussian process [11]. According to these works, not only the signal variance
but also correlations between signals corresponding to different inputs need to be preserved to ensure
good trainability of initialized neural networks. This way, the average eigenvalue of the signal input-
output Jacobian in mean field neural networks is steered towards 1. Furthermore, a high concentration
of the full spectral density of the Jacobian close to 1 seems to support higher training speeds [14, 15].
This property is called dynamical isometry and is better realized by orthogonal weight initializations
[19]. So far, these insights rely on the mean field assumption of infinite layer width. [6, 5] have
derived finite size corrections for the average squared signal norm and answered the question when
the mean field assumption holds.

In this article, we determine the exact signal output distribution without requiring mean field ap-
proximations. For fully-connected network ensembles with Gaussian weights and biases for general
nonlinear activation functions, we find that the output distribution only depends on the scalar products
between different inputs. We therefore focus on their propagation through a network ensemble. In
particular, we study a linear transition operator that advances the signal distribution layer-wise. We
conjecture that the spectral properties of this operator can be more informative of trainability than
the average spectral density of the input-output Jacobian. Additionally, the distribution of the cosine
similarity indicates how well an initialized network can distinguish different inputs.

We further discuss when network layers of finite width are well represented by mean field analysis and
when they are not. Furthermore, we highlight important differences in the analysis. By specializing
our derivations to ReLUs, we find variants of the He initialization [7] that fulfill the same criteria but
also suffer from the same lack of dynamical isometry [14]. In consequence, such initialized neural
networks cannot be trained effectively without batch normalization for high depth. To overcome
this problem, we propose a simple initialization scheme for ReLU layers that guarantees perfect
dynamical isometry. A subset of the weights can still be drawn from Gaussian distributions or
chosen as orthogonal while the remaining ones are designed to ensure full signal propagation. Both
consistently outperform the He initialization in our experiments on MNIST and CIFAR-10.

2 Signal propagation through Gaussian neural network ensembles

2.1 Background and notation

We study fully-connected neural network ensembles with zero mean Gaussian weights and biases.
We thus make the following assumption:

An ensemble {G}L,Nl,φ,σw,σb
of fully-connected feed forward neural networks consists of networks

with depths L, widths Nl, l = 0, ..., L, independently normally distributed weights and biases with
w

(l)
ij ∼ N

(
0, σ2

w,l

)
, b(l)i ∼ N

(
0, σ2

b,l

)
, and non-decreasing activation function φ : R→ R. Starting

from the input vector x(0), signal x(l) propagates through the network, as usual, as:

x(l) = φ
(
h(l)
)
, h(l) = W(l)x(l−1) + b(l),

x
(l)
i = φ

(
h
(l)
i

)
, h

(l)
i =

Nl−1∑
j=1

w
(l)
ij x

(l−1)
j + b

(l)
i ,

for l = 1, . . . , L, where h(l) is the pre-activation at layer l, W(l) is the weight matrix, and b(l) is the
bias vector. If not indicated otherwise, 1-dimensional functions applied to vectors are applied to each
component separately. To ease notation, we follow the convention to suppress the superscript (l) and
write, for instance, xi instead of x(l)i , xi instead of x(l−1)i , and xi instead of x(l+1)

i , when the layer
reference is clear from the context.

Ideally, the initialized network is close to the trained one with high probability and can be reached
fast in a small number of training steps. Hence, our first goal is to understand the ensemble above
and the trainability of an initialized network without requiring mean field approximations of infinite
Nl. In particular, we derive the probability distribution of the output x(L). Within this framework,
our second goal is to learn how to improve on the He initialization, i.e., the choice σw,l =

√
2/Nl

and b(l)i = 0. Even though it preserves the variance for ReLUs, i.e., φ(x) = max{0, x}, as activation

2

functions [7], neither this parameter choice nor orthogonal weights lead to dynamical isometry [14].
Thus, the average spectrum of the input-output Jacobian is not concentrated around 1 for higher
depths and infinite width. In consequence, ReLUs are argued to be an inferior choice compared to
sigmoids [14]. Thus, our third goal is to provide an initialization scheme for ReLUs that overcomes
the resulting problems and provides dynamical isometry.

We start with our results about the signal propagation for general activation functions. The proofs
for all theorems are given in the supplementary material. As we show, the signal output distribution
depends on the input distribution only via scalar products of the inputs. Higher order terms do
not propagate through a network ensemble at initialization. In consequence, we can focus on the
distribution of such scalar products later on to derive meaningful criteria for the trainability of
initialized deep neural networks.

2.2 General activation functions

Let’s first assume that the signal x of the previous layer is given. Then, each pre-activation component
hi of the current layer is normally distributed as hi =

∑Nl

j=1 wijxj + bi ∼ N
(

0, σ2
w

∑
j x

2
j + σ2

b

)
,

since the weights and bias are independently normally distributed with zero mean. The non-linear
monotonically increasing transformation xi = φ(hi) is distributed as xi ∼ Φ

(
φ−1(·)
σ

)
, where φ−1

denotes the generalized inverse of φ, i.e. φ−1(x) := inf{y ∈ R | φ(y) ≥ x}, Φ the cumulative
distribution function (cdf) of a standard normal random variable, and σ2 = σ2

w|x|2 + σ2
b . Thus, we

only need to know the distribution of |x|2 as input to compute the distribution of xi. The signal
propagation is thus reduced to a 1-dimensional problem. Note that the assumption of equal σ2

w for all
incoming edges into a neuron are crucial for this result. Otherwise, hi ∼ N

(
0,
∑
j σ

2
w,jx

2
j + σ2

b,i

)
would require the knowledge of the distribution of

∑
j σ

2
w,jx

2
j , which depends on the parameters

σ2
w,j . Based on σ2

w,j = σ2
w however, we can compute the probability distribution of outputs.

Proposition 1. Let the probability density p0(z) of the squared input norm |x(0)|2 =
∑N0

i=1

(
x
(0)
i

)2
be known. Then, the distribution pl(z) of the squared signal norm |x(l)|2 depends only on the
distribution of the previous layer pl−1(z) as transformed by a linear operator Tl : L1(R+) →
L1(R+) so that pl = Tl(pl−1). Tl is defined as

Tl(p)[z] =

∫ ∞
0

kl(y, z)p(y) dy, (1)

where k(y, z) is the distribution of the squared signal z at layer l given the squared signal at
the previous layer y so that kl(y, z) = p

∗Nl−1

φ(hy)2
(z), where ∗ stands for convolution and pφ(hy)2(z)

denotes the distribution of the squared transformed pre-activation hy , which is normally distributed
as hy ∼ N

(
0, σ2

wy
2 + σ2

b

)
. This distribution serves to compute the cumulative distribution function

(cdf) of each signal component x(l)i as

F
x
(l)
i

(x) =

∫ ∞
0

dz pl−1(z)Φ

(
φ−1(x)√
σ2
wz + σ2

b

)
, (2)

where φ−1 denotes the generalized inverse of φ and Φ the cdf of a standard normal random variable.
Accordingly, the components are jointly distributed as

F
x
(l)
1 ,...,x

(l)
Nl

(x) =

∫ ∞
0

dz pl−1(z)ΠNl
i=1Φ

(
φ−1(xi)

σz

)
, (3)

where we use the abbreviation σz =
√
σ2
wz + σ2

b .

As common, the N -fold convolution of a function f ∈ L1(R+) is defined as repeated convolution
with f , i.e., by induction, f∗N (z) = f ∗ f∗(N−1)(z) =

∫ z
0
f(x)f∗(N−1)(z − x) dx. In Prop. 1, we

note the radial symmetry of the output distribution. It only depends on the squared norm of the input.
For a single input x(0), p0(z) is given by the indicator function p0(z) = 1|x(0)|2(z). Interestingly,

3

●●●●●●●●●
●●●

●●●
●●

●●
●

●
●●

●
●
●

●

●

●
●
●

●●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●●

●
●

●●

●
●●●●●

●●
●●●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●

●●●●●●●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●
●●●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●●●

●●●●
●●

●
●
●

●
●
●
●

●
●
●
●

●
●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●
●●

●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●●●
●
●
●●●●

●●
●●

●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●
●●●

●
●●●

●
●●

●●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●●
●●

●●
●●●

●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●

●●
●
●●●●

●●●
●
●●

●●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●
●●●●●●

●●●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●●
●●●●●●●●

●●●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●●

●
●●

●●
●●●

●●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●●●●●●●●

●●●●
●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●
●●

●
●
●
●●

●
●●●●

●●●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●●
●●●●●●

●●
●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●
●●

●
●
●
●●●

●●●●
●●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●●●

●●●●●●●
●●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●
●
●
●
●
●
●●●

●●
●●●

●●●●
●●0.000

0.005

0.010

0.015

0.020

0 5 10 15 20

|x|2

P

L
●

●

●

●

●

●

●

●

●

●

0
1
2
3
4
5
6
7
8
9

(a) Squared signal norm distribution at different
depths for Nl = 200. The initial distribution (L =
0) is defined by MNIST.

●

●

●

●
●
●
●
●
●
●●

●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●
●●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

0.0

0.5

1.0

1.5

−50 −40 −30 −20 −10 0
m

λ

(b) Eigenvalues λ corresponding to eigenfunctions
ym of Tl. Nl = 10 (black circles), Nl = 20 (blue
triangles), Nl = 100 (red +).

Figure 1: Layer-wise transition of the squared signal norm distribution for ReLUs with He initializa-
tion parameters σw =

√
2/Nl, σb = 0.

mean field analysis also focuses on the average or the squared signal, which is likewise updated
layer-wise. Prop. 1 explains and justifies the focus of mean field theory on the squared signal norm.
More information is not transmitted from layer to layer to determine the state (distribution) of a single
neuron. The difference to mean field theory here is that we regard the full distribution pl−1 of the
previous layer instead of its average only on infinitely large layers. The linear operator Tl governs this
distribution. px(L) =

∏L
l=1 Tlpx(0) , where the product is defined by function composition. Hence, the

linear operator
∏L
l=1 Tl can also be interpreted as the Jacobian corresponding to the (linear) function

that maps the squared input norm distribution to the squared output norm distribution. Tl is different
from the signal input output Jacobian studied in mean field random matrix theory, yet, its spectral
properties can also inform us about the trainability of the network ensemble. Conveniently, we only
have to study one spectrum and not a distribution of eigenvalues that are potentially coupled as in
random matrix theory. For any nonlinear activation function, Tl can be approximated numerically on
an equidistant grid. The convolution in the kernel definition can be computed efficiently with the
help of Fast Fourier Transformations. The eigenvalues of the matrix approximating Tl define the
approximate signal propagation along the eigendirections.

However, we only receive the full picture when we extend our study to look at the joint output
distribution, i.e., the outputs corresponding to different inputs.
Proposition 2. The same component of pre-activations of signals h1, ..., hD corresponding to
different inputs x(0)

1 , ...,x
(0)
D , are jointly normally distributed with zero mean and covariance matrix

V defined by

vij = Cov(hi, hj) = σ2
w〈xi,xj〉+ σ2

b (4)

for i, j = 1, ..., D conditional on the signals xi of the previous layer corresponding to x
(0)
i , where D

denotes the number of data points.

After non-linear activation, the signals are not jointly normally distributed anymore. But their
distribution is a function of the squared norms and scalar products between signals of the previous
layer only. Thus, it is sufficient to propagate the joint distribution of three variables that can
attain different values, i.e., |x1|2, |x2|2 , 〈x1,x2〉, through the layers to determine the joint output
distribution of two signals x1 and x1 corresponding to different inputs. No other information about the
joint distribution of inputs, e.g., higher moments, can influence the ensemble output distribution and
thus our choice of weight and bias parameters. In consequence, the focus on quantities corresponding
to the above in mean field theory is justified for Gaussian parameter initialization and does not require
any approximation. Yet, the mean field assumption that pre-activation signals are exactly normally
distributed and not only conditional on the previous signal is approximate. Accordingly, the output
distribution for finite neural networks does not follow a Gaussian process with average covariance
matrix V as in mean field theory [11]. V follows a probability distribution that is determined by

4

the previous layers. For the initialization scheme for ReLUs that we propose later, we can state
the distribution of V explicitly. First however, we analyze ReLUs in the standard framework and
specialize the above theorems.

2.3 Rectified Linear Units (ReLUs)

The minimum initialization criterion to avoid vanishing or exploding gradients is to preserve the
expected squared signal norm. For finite networks, this is given as follows.
Corollary 3. For ReLUs, the expectation value of the squared signal conditional on the squared
signal of the previous layer is given by:

E
(
|x(l)|2

∣∣ |x(l−1)|2 = y
)

= (σ2
w,ly + σ2

b,l)
Nl
2
. (5)

Consequently, the expectation of the final squared signal norm depends on the initial input as:

E
(
|x(L)|2

∣∣|x(0)|2
)

=|x(0)|2ΠL
l=1

Nlσ
2
w,l

2
+ σ2

b,L

NL
2

+

L−1∑
l=1

σ2
b,l

Nl
2

ΠL
n=l+1

Nnσ
2
w,n

2
(6)

Similar relations for the expected signal components and their variance follow from Eq. (6) and are
covered in the supplementary material. [6] has derived a simpler version of Eq. (6) for equal σw,l and
Nl across layers.

A straightforward way to preserve the average squared signal or the squared output signal norm
distribution is exactly the He initialization σb,l = 0 and σw,l =

√
2/Nl [7], which is also confirmed

by mean field analysis. Yet, we have many more choices even when σ2
b,l = 0. We only need to fulfill

one condition, i.e., 0.5LΠL
l=1Nlσ

2
w,l ≈ 1. In case that we normalize the input so that |x(0)|2 = 1,

σ2
b,l 6= 0 is also a valid option and we have 2L− 1 degrees of freedom.

There remains the question whether there exist further criteria to be fulfilled that improve the
trainability of the initial network ensemble. The whole output distribution could provide those and its
derivation is given in the supplementary material. According to Prop. 2, it is guided by the layer-wise
joint distribution of the variables

(
|x1|2, |x2|2, 〈x1,x2〉

)
given

(
|x1|2, |x2|2, 〈x1,x2〉

)
. As this is

computationally intensive to obtain, we focus on marginals, i.e., the distributions of |x|2 and 〈x1,x2〉.
These are sufficient to highlight several drawbacks of the initialization approach and provide us with
insights to propose an alternative that overcomes these shortcomings.

First, we focus on |x(l)|2 and derive a closed form solution for the integral kernel kl(y, z) of Tl
in Prop. 1 and analyse some of its spectral properties for ReLUs. This allows us to reason about
the shape of the stationary distribution of Tl, i.e., the limit output distribution for networks with
increasing depth.
Proposition 4. For ReLUs, the linear operator Tl in Prop. 1 is defined by

kl(y, z) = 0.5Nl

(
δ0(z) +

Nl∑
k=1

(
Nl
k

)
1

σ2
y

pχ2
k

(
z

σ2
y

))
(7)

with σy =
√
σ2
wy + σ2

b , where δ0(z) denotes the δ-distribution peaked at 0 and pχ2
k

the density of
the χ2 distribution with k degrees of freedom. For σb = 0, the functions fm(y) = ym1]0,∞](y) are
eigenfunctions of Tl for any m ∈ R (even though they are not elements of L1(R+) and thus not
normalizable as probability measures) with corresponding eigenvalue λl,m ∈ R: Tlfm = λl,mfm
with

λl,m = 0.5Nl−m−1 1

σ2m+2
w

Nl∑
k=1

(
Nl
k

)
Γ(k/2−m− 1)

Γ(k/2)
(8)

Note that, for σb = 0, the eigenfunctions ym cannot be normalized on R+, as the antiderivative
diverges at zero for m ≤ −1. However, if we discretize Tl in numerical experiments they can
be normalized and the real eigenvectors representing probability distributions attain shapes ≈ ym.

5

Fig. 1a provides an example of the output distribution for 9 layers each consisting of Nl = 200
neurons with He initialization parameters. The average squared signal is indeed preserved but
becomes more right tailed for deeper layers. Fig. 1b shows the corresponding eigenvalues of Tl
as in Prop. 4. In summary, we observe a window mcrit < m ≤ −1 with eigenvalues λl,m < 1.
Specifically, for the He values σb,l = 0 and σw,l =

√
2/Nl, numerical experiments reveal a

relation mcrit ≈ −3.2559793− 1.6207083Nl. Signal parts within this window are damped down in
deeper layers, while the remaining parts explode. Only ymcrit is preserved through the layers and
depends on the choice of σw,l. Interestingly, for m = −1, λl,m is independent of σw,l and given by
λl,−1 = 1− 0.5Nl . Thus, it approaches λl,−1 = 1 for increasing Nl. For the He initialization, ymcrit

converges to the δ0(y) for increasing Nl. In contrast to mean field analysis, not the whole space of
eigenfunctions corresponds to eigenvalue 1 for the He initialization. In particular, eigenvalues bigger
than one exist that can be problematic for exploding gradients. To reduce their number, broader layers
promise better protection as well as smaller values of σw,l. Ultimately, we care about the product of
layer-wise eigenvalues, i.e., the eigenvalues of ΠlTl. Again, setting these to 1 imposes a constraint
only on the product Πlσ

2
w,l like in Cor. 3. Hence, we gain no additional constraint on our initial

parameters and have no means to prevent eigenvalues larger than 1.

The biggest challenge for trainability, however, is the ability to differentiate similar signals. We
therefore study the evolution of the cosine similarity 〈x(l)

1 ,x
(l)
2 〉 of two inputs x(0)

1 and x
(0)
2 or the

unnormalized scalar product through layers l.
Theorem 5. For ReLUs, let x1 = φ(h1), x2 = φ(h2) be the same signal component, i.e., neuron,
where each corresponds to a different input x(0)

1 or x(0)
2 . Let the correlation ρ = v12/

√
v11v22 of the

pre-activations h1, h2 be given, where V denotes the 2-dimensional covariance matrix as defined in
Prop. 2. Then, the correlation after non-linear activation is

Cor (x1, x2) =

√
1− ρ2 − 1 + 2πρg(ρ)

π − 1
. (9)

g(ρ) is defined as g(ρ) = 1√
2π

∫∞
0

Φ

(
ρ√
1−ρ2

u

)
exp

(
− 1

2u
2
)
du for |ρ| 6= 1 and g(−1) = 0,

g(1) = 0.5. The average of the sum of all components E (〈x1,x2〉) conditional on the previous layer
is:

E (〈x1,x2〉 | ρ) = Nl
√
v11v22

(
g(ρ)ρ+

√
1− ρ2
2π

)
≈ Nl

√
v11v22

1

4
(ρ+ 1). (10)

Furthermore, conditional on the signals of the previous layer, 〈x1,x2〉 is distributed as f∗Nl

prod(t),

where fprod(y) = (1− g(ρ)) δ0(y) + 1

2π
√

det(V)
exp

(
v12y

2 det(V)

)
K0

(√
v11v22

det(V) y
)

and K0(w) =∫∞
0

cos(w sinh(t)) dt denotes the modified Bessel function of second kind.

Note that [2] studies a similar integral but in the mean field limit. The correlation of the signal
components only depends on ρ (and is always smaller than ρ). Analogous to the c-map in mean field
approaches [18], the actual quantity of interest would be the distribution of the correlation ρ, i.e.,
ρ =

σ2
w〈x1,x2〉+σ2

b√
(σ2

w|x1|2+σ2
b)(σ2

w|x2|2+σ2
b)

. Interestingly, for σb = 0, ρ = 〈x1,x2〉
|x1||x2| coincides with the cosine

similarity of the two signals. The preservation of this quantity on average has been shown to be the
most indicative criterion for trainability of ReLU residual networks [24]. We therefore take a closer
look at its distribution. To save computational time and space, we sample Nl components iid from a 2
dimensional normal distribution as introduced in Prop. 2 and transform the components by ReLUs to
obtain two vectors x1 and x2 and calculate their cosine similarity. Repeating this procedure 106 times
results in Fig. 2. First, we note that correlations can only be positive after the first layer, since all
signal components are positive (or zero) after transformation by ReLUs. Negative cosine similarities
cannot be propagated through Gaussian ReLU ensembles. Data transformation to obtain positive
inputs can mitigate this issue. Yet, Eq. (10) highlights an unavoidable problem for deep models, i.e.,
the average cosine similarity increases from layer to layer until it reaches 1 at high depths. Then, all
signals become parallel and thus indistinguishable.

While this effect cannot be mitigated completely within our initialization scheme, a slightly smaller
choice of σw than the He initialization reduces the average cosine distance and a smaller number

6

of neurons in one layer increases the variance of the cosine distance, as shown in Fig. 2. A higher
variance increases the probability that smaller values of the cosine distance can be propagated.
We hypothesize that this effect contributes to the better trainability of ReLU neural networks with
DropOut or DropConnect [22], since both reduce the effective number of neurons Nl. Yet, a smaller
σw and DropOut (or DropConnect) introduce a risk of vanishing gradients in deep neural networks
[17]. An adjustment of σw by the DropOut rate to avoid this effect [17] would also destroy possible
beneficial effects on the cosine similarity.

●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●●● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●0.00

0.03

0.06

0.09

0.12

0.00 0.25 0.50 0.75 1.00
cosine similarity

P

Figure 2: Probability distribution of the cosine similarity
conditional on the previous layer with |x1| = |x2| = 1 and
〈x1,x2〉 equals 0 (circles), 0.25 (squares), 0.5 (diamonds),
and 0.75 (triangles) for Nl = 100 (dashed lines and filled
symbols) andNl = 200 (lines and unfilled symbols) neurons.

For smaller σ2 = 1/N , [1] observes a
phenomenon related to the cosine sim-
ilarity, i.e. shattered gradients. How-
ever, in this setting, the effect of van-
ishing gradients and increasing corre-
lations are indistinguishable. In fact,
the authors observe decreasing corre-
lations, while we highlight the prob-
lem of increasing ones for the He ini-
tialization. Interestingly, in the He
case (σ2 = 2/N), [1] finds that also
batch normalization cannot provide
better trainability. For “typical” inputs
that are shown to be common in net-
works with batch normalization (but
not in networks without, which we
study here), the covariance between
outputs corresponding to different in-
puts decays exponentially.

We therefore discuss an alternative solution that [1] proposes also for convolutional and residual
neural networks and has first been introduced by [21].

3 Alternative initialization of fully-connected ReLU deep neural networks

The issues of training deep neural networks with ReLUs are caused by the fact that negative signal
can never propagate through the network and a neuron’s state is zero in half of the cases. Hence, we
discuss an initialization, where the full signal is transmitted. We set the bias vector b(l)i = 0 and the

weight matrices W (l) ∈ RNl−1×Nl are initially determined by a submatrix W (l)
0 ∈ R

Nl−1
2 ×Nl

2 as

W (l) =

[
W

(l)
0 −W (l)

0

−W (l)
0 W

(l)
0

]
.

Regardless of the choice of W (l)
0 , we receive a signal vector x(l), where half of the entries correspond

to the positive part of the pre-activations and the second half to the negative part, i.e., if i ≤ Nl/2

and h(l)i =
∑
j w

(l)
ij x

(l−1)
j > 0, we have x(l)i = h

(l)
i and x(l)i+Nl/2

= 0 or the other way around for

h
(l)
i < 0. This way, effectively h(l)i =

∑Nl/2
j=1 w

(l)
0,ijh

(l−1)
j is propagated so that we have initially

linear networks h(L) =
∏L
l=0W

(l)
0 h0. Note that we still have to train the full Nl−1Nl parameters

of W (l) and can learn non-linear functions. [21] observed that convolutional neural networks even
trained the first layers to resemble linear neural networks, which inspired this choice of initialization.

In this setting, we have several good choices of W (l)
0 . First, we assume iid entries w(l)

0,ij ∼
N
(
0, σ2

w,l

)
as before. We call this variant Gaussian submatrix (GSM) initialization. In this

case, our assumptions from the previous sections are met and we can repeat the analysis for networks
of width Nl/2 and φ(h) = h, i.e. set the activation function to the identity. The same parameter
choice as in Cor. 3, e.g., σ2

w,l = 2/Nl, preserves the variance and now also the cosine distance
between signals corresponding to different inputs. The analysis is rather straight-forward and the
output distribution is defined by the distribution of

∏L
l=0W

(l)
0 x(0).

∏L
l=0W

(l)
0 follows a product

Wishart distribution with known spectrum [13, 14].

7

According to [14] however, dynamical isometry leads to better training results and speed. This
demands an input-output Jacobian close to the identity or a spectrum of the signal propagation
operator Tl that is highly concentrated around 1. Previously, this was believed to be better achievable
by tanh or sigmoid rather than by ReLU as choice of activation functions [14]. Yet, in the parameter
sharing setting above, perfect dynamical isometry for h can be achieved by orthogonal W (l)

0 , i.e., it is
drawn uniformly at random from all matrices W fulfilling WTW = σ2

w,lI with σ2
w,l = 1. This is

our second initialization proposal in addition to GSM.

Alternatively, [25] recommends to shift the signal h(l)i by a non-zero bias b(l)i to enable negative
signal to pass through a ReLU activation instead of the proposed parameter sharing solution. We also
considered a similar approach but decided for the proposed one as it is point-symmetric, guaranties
therefore perfect dynamical isometry, is computational less intensive, as it does not need to compute
a data dependent bias b(l)i as in batch normalization, and is more convenient for theoretical analysis,
which can rely on a rich literature on linear deep neural networks.

4 Experiments for different initialization schemes

Figure 3: Classification test accuracy on MNIST for different widths N , depths L, and weight
initialization with parameters σb = 0, σw =

√
2/N for He and GSM initialization, and σw = 1 for

orthogonal W0 after 104 SGD steps. We report the average of 100 realizations and the corresponding
0.95 confidence interval. The right plot is a section of the left. Note that the legends apply to both
plots.

We train fully-connected ReLU feed forward networks of different depth consisting of L = 1, . . . , 10
hidden layers with the same number of neurons Nl = N = 100, 300, 500 and an additional softmax
classification layer on MNIST [10] and CIFAR-10 [9] to compare three different initialization
schemes: the standard He initialization and our two proposals in Sec. 3, i.e., GSM and orthogonal
weights. We focus on minimizing the cross-entropy by Stochastic Gradient Descent (SGD) without
batch normalization or any data augmentation techniques. Hence, our goal is not to outperform the
classification state of the art but to compare the initialization schemes under similar realistic conditions.
Since deep networks normally require a smaller learning rate than the ones with a small number of
hidden layers, as in Ref. [14], we adapt the learning rate to (0.0001 + 0.003 · exp(−step/104))/L
for MNIST and (0.00001 + 0.0005 · exp(−step/104))/L for CIFAR-10 for 104 SGD steps with a
batch size of 100 in all cases. To reduce the number of parameters and speed up computations, we
clipped original CIFAR-10 images to 28× 28 size. For each configuration, we train 100 instances
on MNIST and 30 instances on CIFAR-10 and report the average accuracy with a 0.95 confidence
interval in Fig. 3 and Fig. 4 respectively. Each experiment on MNIST was run on 1 Nvidia GTX 1080
Ti GPU, while each experiment on CIFAR-10 was performed on 4 Nvidia GTX 1080 Ti GPUs.

Note that the accuracy on CIFAR-10 is lower than for convolutional architectures, as we restrict
ourselves to deep fully-connected networks to focus on their trainability. [1] shows that a similar

8

Figure 4: Classification test accuracy on CIFAR-10 for different widths N , depths L, and weight
initialization with parameters σb = 0, σw =

√
2/N for He and GSM initialization, and σw = 1 for

orthogonal W0 after 104 SGD steps. We report the average of 30 realizations and the corresponding
0.95 confidence interval. The right plot is a section of the left.

orthogonal initialization improves training results also for convolutional and residual neural networks.
As suggested by our theoretical analysis, both proposed initialization schemes consistently outperform
the He initialization and show stable training results, in particular, for deeper network architectures,
where the He initialized networks decrease in accuracy. GSM and orthogonal W0 both perform better
for higher width N , while orthogonal W0 seems to be the most reliable choice.

5 Discussion

We have introduced a framework for the analysis of deep fully-connected feed forward neural
networks at initialization with zero mean normally distributed weights and biases. It is exact, does
not rely on mean field approximations, provides distribution information of output and joint output
signals, and applies to networks with arbitrary layer widths. It has led to the insight that only the
scalar products between inputs determine the shape of the output distribution, but it is not influenced
by higher interaction terms.

Hence, for ReLUs, we have analysed the propagation of these quantities through the deep neural
network ensemble. While mean field analysis provides only the He initialization for good training
results, we have extended the number of possible parameter choices that avoid vanishing or exploding
gradients. However, no parameter choice can avoid the tendency that signals become more aligned
with increasing depth. Deep ReLU Gaussian neural network ensembles cannot distinguish different
input correlations and are therefore not well trainable without batch normalization. Even batch
normalization does not guaranty the transmission of correlations between different inputs.

As solution to this problem, we have discussed an alternative but simple initialization scheme that
relies on initial parameter sharing. One variant guarantees perfect dynamical isometry. Experiments
on MNIST and CIFAR-10 demonstrate that deeper fully-connected ReLU networks can become
better trainable in the proposed way than by the standard approach.

Acknowledgments

We would like to thank Joachim M. Buhmann and Alkis Gotovos for their valuable feedback on the
manuscript and the reviewers for their insightful comments. This work was partially funded by the
Swiss Heart Failure Network, PHRT122/2018DRI14 (J. M. Buhmann, PI). RB was supported by a
grant from the US National Cancer Institute (1R35CA220523).

9

References
[1] David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The

shattered gradients problem: If resnets are the answer, then what is the question? In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 342–350, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

[2] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing
Systems 22, pages 342–350. Curran Associates, Inc., 2009.

[3] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations, 2019.

[4] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pages 249–256, 2010.

[5] Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients? In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 582–591. Curran Associates, Inc., 2018.

[6] Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 571–581. Curran Associates, Inc., 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15, pages 1026–1034, Washington, DC, USA, 2015. IEEE
Computer Society.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
448–456, Lille, France, 07–09 Jul 2015. PMLR.

[9] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).
Technical report, 2009.

[10] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[11] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and Yasaman
Bahri. Deep neural networks as gaussian processes. In International Conference on Learning Representa-
tions, 2018.

[12] Dmytro Mishkin and Jiri Matas. All you need is a good init. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[13] Thorsten Neuschel. Plancherel-rotach formulae for average characteristic polynomials of products of
products of ginibre random matrices and the fuss-catalan distribution. Random Matrices: Theory and
Applications, 3(1), 2014.

[14] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 4788–4798, 2017.

[15] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. The emergence of spectral universality in
deep networks. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11
April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pages 1924–1932, 2018.

[16] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 3360–3368.
Curran Associates, Inc., 2016.

10

[17] Arnu Pretorius, Elan van Biljon, Steve Kroon, and Herman Kamper. Critical initialisation for deep signal
propagation in noisy rectifier neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
5717–5726. Curran Associates, Inc., 2018.

[18] Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2847–2854, 2017.

[19] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[20] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

[21] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convolu-
tional neural networks via concatenated rectified linear units. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages 2217–2225.
JMLR.org, 2016.

[22] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks
using dropconnect. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
1058–1066, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[23] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-
namical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural
networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5393–5402,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[24] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 7103–7114. Curran Associates, Inc., 2017.

[25] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A mean
field theory of batch normalization. In International Conference on Learning Representations, 2019.

[26] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 3320–3328. Curran Associates, Inc., 2014.

11

