
Supplement: Scalable Structure Learning of Continuous-Time Bayesian
Networks from Incomplete Data

In this supplementary, we give detailed descriptions on algorithms, data processing and derivations.
Further, we provide an additional comparison to other methods for network reconstruction. All
equation references point to the main text.

A Likelihood of Mixture of CIMs: Complete Data

A.1 Likelihood of mixture of CIMs

We start with the log-likelihood of a CTBN

lnP (M, T | R) =

N∑
i=1

∑
x

∑
u

∑
y 6=x

{Mi(x, y, u) ln (Ri(x, y, u))− Ti(x, u)Ri(x, y, u)}

We choose to represent the rates as an expectation over different parent sets

Ri(x, y, u) =
∑

m∈P(parG(i))

πi(m)Ri(x, y, um)

lnP (M, T | R) =

N∑
i=1

∑
x

∑
u

∑
y 6=x

Mi(x, y, u) ln

 ∑
m∈P(parG(i))

πi(m)Ri(x, y, um)


−Ti(x, u)

 ∑
m∈P(parG(i))

πi(m)Ri(x, y, um)


We apply Jensens inequality

ln

 ∑
m∈P(parG(i))

πi(m)Ri(x, y, um)

 ≥ ∑
m∈P(parG(i))

πi(m) ln (Ri(x, y, um)) ,

and define (as in the main text) Mi(x, y, um) ≡
∑
u/um

Mi(x, y, u) and Ti(x, um) ≡∑
u/um

Ti(x, u). This finally yields

lnP (M, T | R) ≥
N∑
i=1

∑
m∈P(parG(i))

πi(m)
∑
x

∑
um

∑
y 6=x

{Mi(x, y, um) ln (Ri(x, y, um))− Ti(x, um)Ri(x, y, um)}

=

N∑
i=1

Eπi

∑
x

∑
um

∑
y 6=x

{Mi(x, y, um) ln (Ri(x, y, um))− Ti(x, um)Ri(x, y, um)}

 .
We note that Jensen’s inequality becomes sharp if πi(m) = 0 ∀m 6= m∗.

A.2 Marginal Likelihood of Mixture of CIMs

Assuming independent priors Ri(x, y, um) ∼ Gam(α(x, y, um), β(x, y, um)) we can calculate a
marginal likelihood via

P (M, T | π) =

∫
dR P (M, T | π,R)P (R | α, β).

With the lower bound to the mixture likelihood,

P (M, T | π,R) ≥
N∏
i=1

∏
m

∏
um

∏
x,y

exp [πi(m) {Mi(x, y, um) ln (Ri(x, y, um))−Ri(x, y, um)Ti(x, um)}]

=

N∏
i=1

∏
m

∏
um

∏
x,y

Ri(x, y, um)πi(m)Mi(x,y,um) exp [−πi(m)Ri(x, y, um)Ti(x, um)]
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we can calculate a lower bound to the marginal mixture likelihood

P (M, T | π) ≥
∫
dR

N∏
i=1

∏
m

∏
um

∏
x,y

Ri(x, y, um)πi(m)Mi(x,y,um)+α(x,y,um)−1

× exp {− (πi(m)Ti(x, um) + β(x, y, um))Ri(x, y, um)} .

Using the identity I =
∫∞

0
qM+a−1e−(T+τ)qdq = (T + τ)−(M+a)Γ(M + a), we can solve this

integral analytically

P (M, T | π) ≥
N∏
i=1

∏
m

∏
um

∏
x,y

(πi(m)Ti(x, um) + β(x, y, um))−{πi(m)Mi(x,y,um)+α(x,y,um)}

×Γ (πi(m)Mi(x, y, um) + α(x, y, um)) .

B Likelihood of Mixture of CIMs: Incomplete Data

B.1 (Marginal) likelihood: Incomplete Data

In [2] an approximation to the likelihood of a CTBN given incomplete data was derived via an
expansion in a coupling parameter ε

lnP (D | R,G) ≥
N∑
i=1

∑
x

∑
u

∑
y 6=x

{Eq[Mi(x, y, u)] ln (Ri(x, y, u))− Eq[Ti(x, u)]Ri(x, y, u)}︸ ︷︷ ︸
≡Ei

+

N∑
i=1

Hi + Eq[lnP (D | X)] + o(ε),

with the parameter independent entropy

Hi =

∫ T

0

dt
∑
x,u

∑
y 6=x

τi(x, y, u; t)

[
1− ln

τi(x, y, u; t)

qi(x; t)qui (t)

]
,

and marginals and expected statistics as defined in the main text. We notice the similarity between
the parameter-dependent part Ei and the exact likelihood of a CTBN given complete data. By the
exact same calculation as in the case of complete data, one arrives at

lnP (π | D, α, β) ≥
N∑
i=1

Fi[D, π, q] +

N∑
i=1

Hi + Eq[lnP (D | X)] + lnZ + o(ε)

Fi[D, π, q] ≡
∑

m,um,x,x′ 6=x

{
ln Γ (ᾱqi (x, x

′ | um))− ᾱqi (x, x
′ | um) ln β̄qi (x | um)

}
+ ln Dir(πi | ci),

with the updated posterior parameters ᾱqi (x, x
′ | um) ≡ πi(m)Eq[Mi(x, x

′ | um)] + αi(x, x
′ | um)

and β̄qi (x | um) ≡ πi(m)Eq[Ti(x | um)] + β(x | um).

B.2 Computing expected sufficient statistics via Euler-Lagrange Equations

Using Stirlings approximation Γ(z) =
√

2π
z

(
z
e

)z
+O

(
1
z

)
we can approximate

Fi[D, π, q] =
∑
m

∑
um

∑
x,x′ 6=x

ᾱqi (x, x
′ | um)

{
ln
ᾱqi (x, x

′ | um)

β̄qi (x | um)
− 1

}
+ ln Dir(πi | ci)
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We can now derive Euler–Lagrange equations that maximize

L[D, π, q, λ] =

N∑
i=1

Fi[D, π, q]− ∑
x,x′ 6=x,u

∫ T

0

dt λi(x; t)

{
d

dt
qi(x; t)− [τi(x,

′ x, u; t)− τi(x, x′, u; t)]

} .
We have to calculate the derivatives

∂qi(x;t)Ei =
∑
m

∑
um

∑
x′ 6=x

q(um; t)πi(m)
ᾱqi (x, x

′ | um)

β̄qi (x | um)

≡
∑
m

∑
um

∑
x′ 6=x

q(um; t)Rπi (x, x′ | u) = Eui [Rπi (x, x′ | u)]

∂qi(x;t)Ej =
∑
m:i∈m

∑
um

∑
x′,y 6=x′

qj(x
′; t)qj(um/i; t)πi(m)

ᾱqi (x
′, y | um/i)

β̄qi (x′ | um)

≡
∑

x′,y 6=x′

qj(x
′; t)Euj [Rπj (x′, y | u) | i, x]

∂qi(x;t)Hi = −
∑
u

∑
x′ 6=x

τi(x, x
′, u; t)

qi(x; t)
, ∂qi(x;t)Hj = −

∑
x,u/i

∑
x′,y 6=x′,uß

τj(x
′, y, u; t)

qi(x; t)
,

∂ dqi(x;t)

dt

L[D, π, q] = −λi(x; t)

and jump conditions follow from ∂qi(x;t)Eq[lnP (D | X)] =
∑
k δ(t, tk) lnP (Di(tk) | x), for a

factorized observation model. Thus, we arrive at the first Euler-Lagrange equation

I :
dλi(x; t)

dt
=
∑
u

∑
x′ 6=x

τi(x, x
′, u; t)

qi(x; t)
− Eui [Rπi (x, x′ | u)] + Ψi(x; t) +

∑
k

δ(t, tk) lnP (Di(tk) | x),

with

I.A Ψi(y; t) =

N∑
j=1

 ∑
x,x′ 6=x

τj(x, x
′, u; t)

qi(y; t)
−
∑
x′

qj(x
′; t)Euj [Rπj (x, x′ | u) | i, y]


For the derivatives, with respect to the variational transition matrix, we get

∂τi(x,x′,u;t)Ei = −
∑
m

πi(m) ln
(
β̄qi (x | um)

)
+
∑
m

πi(m) ln (ᾱqi (x, x
′ | um))

and

∂τi(x,x′,u;t)Hi = ln[qi(x; t)qui (t)]− ln τi(x, x
′, u; t).

This forms the algebraic equation

0 =λi(x
′; t)− λi(x; t) + ln[qi(x; t)qui (t)]− ln τi(x, x

′, u; t)−
∑
m

πi(m) ln
(
β̄qi (x | um)

)
+
∑
m

πi(m) ln (ᾱqi (x, x
′ | um)) .

Thus by defining ρi(x; t) ≡ exp(−λi(x; t)), we get

τi(x, x
′, u; t) = qi(x; t)qui (t)

ρi(x
′; t)

ρi(x; t)

∏
m

(
ᾱqi (x, x

′ | um)

β̄qi (x | um)

)πi(m)

And we define

II : τi(x, x
′, u; t) ≡ qi(x; t)qui (t)R̃πi (x, x′ | u)

ρi(x
′; t)

ρi(x; t)
.
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Figure 1: Investigation of the effect of the Dirichlet prior for different concentrations c on the
normalized lower bound of the marginal posterior (5) as described in the main text. We plotted the
sample mean (dashed) to indicate the trend.

Derivation with respect to the Lagrange multipliers recovers the master equation

III :
d

dt
qi(x; t) =

∑
x′ 6=x,u

[τi(x,
′ x, u; t)− τi(x, x′, u; t)] .

Inserting the identity II for τi(x, y, u; t) into the other equations I, I.A and III, yields the Euler-
Lagrange equations from the main text. In particular we get

Ψi(y; t) =

N∑
j=1

∑
x,x′ 6=x

qj(x; t)

{
Euj

[
R̃πj (x, x′,M, T ) | y

] ρj(x′; t)
ρj(x; t)

− Euj
[
Rπj (x, x′ | u) | i, y

]}
.

C Experiments

C.1 Effect of Dirichlet prior

We investigated the effects of different Dirichlet prior parameters c on the approximate marginal
likelihood (5) in the main text. We ran an experiment on a minimal CTBN example (2 nodes with a
bidirectional coupling) in Figure 1 . We plotted the normalized lower bound of the marginal posterior
Fi (eq. 5) for the node i = 1 (color coded) vs the mixture probability π1[1] (x-axis) for the node of
having one parent (left, π1[1] = 0) and having no parent (right, π1[1] = 1) and the dashed sample
mean to indicate the trend. The y-axis denotes the number of trajectories. While for a large amount
of trajectories the mass is allocated at the ground-truth π∗1 [1] = 0 for all concentration parameters c
in the Dirichlet prior, for a small number of trajectories c can either force selection (c = 2) or force a
mixture through the convexity of the profile (c = 0).

C.2 British household data

As this dataset does not have groundtruth, we can only check whether our predicted network is
stable. For this consistency check, we predicted networks for varying numbers of samples and show
convergence in the Hamming distance in Figure 2 towards the network from the main text. Note
that the Hamming distance converges at a non-zero value - indicating that there is some variability
remaining due to local optima and the restricted search space of K = 2 parents.

C.3 IRMA data

Processing IRMA data. In this section we present our approach of processing IRMA data. The
IRMA dataset consists of expression data of genes, measured in concentrations, which are continuous.
We can not capture continuous data using CTBNs, but need to map this data to a set of latent states.
We identify two states over-expressed (X = 1) and under-expressed (X = 0) with respect to the
basal (equilibrium) concentration cB . This motivates the following observation model given the basal
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Figure 2: Convergence of predicted networks from different numbers of subsamples von BHPS
dataset.

concentration

P (Y | X = 1, cB) =

{
1/|Y0| , Y ≥ cB and Y ≤ Y0

0 , else
,

P (Y | X = 0, cB) =

{
1/|Y | , Y < cB and Y ≥ −Y0

0 , else
,

where we have to choose some Y0, so that the likelihood is normalized. We set Y0 to some large value
Y0 ≥ argmax|Y |∈DATA as our method remains invariant under each choice.

We model the basal concentration itself is a random variable, which we assume is gaussian distributed.
We can estimate the parameters of the gaussian distribution µB and σB from the data. The marginal
observation model is then acquired by integration

P (Y | X) =

{
1− erf((Y − µB)/σB) , X = 1

erf((Y − µB)/σB) , X = 0
.

Given this observation model we can assign each measurement a likelihood and can process the data
using our method. We note that other models for IRMA data can be thought of that may return better
(or worse) results using our method.

Comparsion to other methods for network reconstruction. We compare our method to the meth-
ods for network reconstruction from time-series expression data considered in [3], see table in the
main text. These tests have, in contrast to [1], been performed on the full IRMA network. We
adopt the shorthands of this paper to refer to different methods. The methods are based on dynamic
Bayesian networks (DBNs), ODEs (TNSI), non-parametrics (NDS) and Granger Causality (GC).
For more details on these methods we refer to [3]. For our evaluation, we used the original data
and evaluation script from the DREAM challenge (http://wiki.c2b2.columbia.edu/dream/
index.php/The_DREAM_Project.).
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