
Supplemental Material

A Topic Modeling Structure

Not only do the Coat and MovieLens-100k datasets have block structure, they can also be explained
using topic modeling structure, which is again a low rank model for the propensity score matrix P
(and is thus a special case of the general low nuclear norm structure we assume provided that P
be bounded away from 0). We build on our biclustering data exploration example from Figure 1.
Specifically, in the MovieLens-100k dataset, each user can be thought of as a distribution over
movie “topics”, and each movie topic corresponds to a distribution over movie genres, as shown in
Figure 2. Meanwhile, in the Coat dataset, each item can be represented as a distribution over user
topics, and each user topic can be thought of as a distribution over user features, as shown in Figure 3.

Figure 2: Average item features for each movie topic in MovieLens-100k.

Figure 3: Average user features for each user topic in Coat.

Topic models reveal co-occurrence information. For example, movie topic 1 in Figure 2 corresponds
to users who tend to reveal ratings for action, adventure, musical, sci-fi, and war movies, but not
documentaries. Movie topic 4 corresponds to users who tend to reveal ratings for mysteries and
thrillers. Users can be associated with multiple topics to varying degrees. Ratings for documentaries
tend to mostly be revealed by users associated with movie topic 0. We can also find such patterns in
the Coat dataset, where we look at topics over rows instead of columns as an illustration. We can see
what sorts of user features tend to be co-occur. For example, user topic 2 consists of men uninterested
in fashion. Coats can be associated with different user topics to varying degrees.

Note that the biclustering uses only the missingness information. We are interpreting the biclustering
results here with the help of user/item features to identify co-occurrence relationships.
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B Proof of Theorem 1

Denote the objective function (which is a log likelihood) of optimization problem (3) as

LM (Γ) :=

m∑
u=1

n∑
i=1

[Mu,i log σ(Γu,i) + (1−Mu,i) log(1− σ(Γu,i))].

We specialize Theorem 2 of Davenport et al. [2014] to the setting in which all entries of the matrix
are observed. Their proof makes use of an offset version of the log likelihood function:

LM (Γ) := LM (Γ)− LM (0) =

m∑
u=1

n∑
i=1

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]
.

We let Fτ,γ denote the feasible set of optimization problem (3), i.e.,

Fτ,γ :=
{

Γ ∈ Rm×n : ‖Γ‖∗ ≤ τ
√
mn, ‖Γ‖max ≤ γ

}
.

Moreover, we actually let the function σ be a bit more general: σ must be differentiable, and the
following quantity must exist and be finite:

Lγ := sup
x∈[−γ,γ]

|σ′(x)|
σ(x)(1− σ(x))

. (6)

We prove the following more general theorem.

Theorem 2. Under Assumptions A1–A3, suppose that we run algorithm 1BITMC with user-specified
parameters satisfying τ ≥ θ and γ ≥ α to obtain the estimate P̂ of propensity score matrix P . Let
Ŝ ∈ Rm×n be any matrix satisfying ‖Ŝ‖max ≤ ψ for some ψ ≥ φ. Let δ ∈ (0, 1). Then there exists a
universal constant C > 0 such that provided that m+ n ≥ C, with probability at least 1− C

m+n − δ
over randomness in which entries are revealed in X , we simultaneously have

1

mn

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2 ≤ 4eLγτ
( 1√

m
+

1√
n

)
, (7)

|LIPS-MSE(Ŝ|P̂ )− Lfull MSE(Ŝ)| ≤
8ψ2

√
eLγτ

σ(−γ)σ(−α)

( 1

m1/4
+

1

n1/4

)
+

4ψ2

σ(−α)

√
1

2mn
log

2

δ
. (8)

We recover Theorem 1 by noting that for σ chosen to be the standard logistic function, we have
Lγ = 1 for all γ > 0.

Proof of Theorem 2

Under Assumption A1 and since τ ≥ θ, note that A ∈ Fτ,γ . By optimality of Â for optimization
problem (3), we have LM (Â) ≥ LM (A), which can written as

0 ≤ LM (Â)− LM (A)

= LM (Â)− LM (A)

= (LM (Â)− EM [LM (Â)])− (LM (A)− EM [LM (A)]) + EM [LM (Â)− LM (A)].

Since matrices Â and A are both in the set Fτ,γ , the first two terms on the right-hand side can each be
upper-bounded by supΓ∈Fτ,γ |LM (Γ)− EM [LM (Γ)]|. Meanwhile, the third term on the right-hand
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side can be rewritten as

EM [LM (Â)− LM (A)] =

m∑
u=1

n∑
i=1

EMu,i

[
Mu,i log

σ(Âu,i)

σ(Au,i)
+ (1−Mu,i) log

1− σ(Âu,i)

1− σ(Au,i)

]
=

m∑
u=1

n∑
i=1

[
Pu,i log

σ(Âu,i)

σ(Au,i)
+ (1− Pu,i) log

1− σ(Âu,i)

1− σ(Au,i)

]
=

m∑
u=1

n∑
i=1

[
Pu,i log

P̂u,i
Pu,i

+ (1− Pu,i) log
1− P̂u,i
1− Pu,i

]
= −

m∑
u=1

n∑
i=1

[
Pu,i log

Pu,i

P̂u,i
+ (1− Pu,i) log

1− Pu,i
1− P̂u,i

]
= −

m∑
u=1

n∑
i=1

D
(
Ber(Pu,i)‖Ber(P̂u,i)

)
.

Putting together the pieces, we have

0 ≤ (LM (Â)− EM [LM (Â)])− (LM (A)− EM [LM (A)]) + EM [LM (Â)− LM (A)]

≤ 2 sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|+ EM [LM (Â)− LM (A)]

= 2 sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]| −
m∑
u=1

n∑
i=1

D
(
Ber(Pu,i)‖Ber(P̂u,i)

)
. (9)

By Pinsker’s inequality,

D
(
Ber(Pu,i)‖Ber(P̂u,i)

)
≥ 2‖Ber(Pu,i)− Ber(P̂u,i)‖2TV

= 2
[1

2
(|Pu,i − P̂u,i|+ |(1− Pu,i)− (1− P̂u,i)|)

]2
= 2(P̂u,i − Pu,i)2.

Therefore,
m∑
u=1

n∑
i=1

D
(
Ber(Pu,i)‖Ber(P̂u,i)

)
≥ 2

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2. (10)

Combining inequalities (9) and (10), we get

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2 ≤ sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|.

The next lemma upper-bounds supΓ∈Fτ,γ |LM (Γ)− EM [LM (Γ)]|.
Lemma 3. For the above setup, if m+n ≥ 3, then there exists a universal constant C > 0 such that

P
(

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]| ≥ 4eLγτ
√
mn(
√
m+

√
n)
)
≤ C

m+ n
. (11)

Once this lemma is established, the theorem’s first main inequality (7) readily follows since with
probability at least 1− C

m+n (for which we clearly want m+ n ≥ C),

1

mn

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2 ≤ 1

mn
[4eLγτ

√
mn(
√
m+

√
n)] = 4eLγτ

( 1√
m

+
1√
n

)
,

which establishes inequality (4). Note that Lemma 3 asks that m+ n ≥ 3. Since C = 8 · 21/4 · e2 =
70.2969 . . ., asking that m+ n ≥ C implies that m+ n ≥ 3.
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We now derive the theorem’s second main inequality (8), which is a consequence of the first main
inequality (7). By the triangle inequality,

|LIPS-MSE(Ŝ|P̂ )− Lfull MSE(Ŝ)|
≤ |LIPS-MSE(Ŝ|P̂ )− LIPS-MSE(Ŝ|P )|+ |LIPS-MSE(Ŝ|P )− Lfull MSE(Ŝ)|. (12)

We can readily bound the first RHS term as follows:

|LIPS-MSE(Ŝ|P̂ )− LIPS-MSE(Ŝ|P )| =
∣∣∣∣ 1

mn

∑
(u,i)∈Ω

[ (Ŝu,i −Xu,i)
2

P̂u,i
− (Ŝu,i −Xu,i)

2

Pu,i

]∣∣∣∣
=

∣∣∣∣ 1

mn

∑
(u,i)∈Ω

Pu,i − P̂u,i
P̂u,iPu,i

(Ŝu,i −Xu,i)
2

∣∣∣∣
worst case error |Ŝu,i −Xu,i| ≤ 2ψ ≤ 4ψ2

mn

∑
(u,i)∈Ω

|Pu,i − P̂u,i|
P̂u,iPu,i

note that P̂u,i ≥ σ(−γ) and Pu,i ≥ σ(−α) ≤ 4ψ2

σ(−γ)σ(−α)mn

∑
(u,i)∈Ω

|Pu,i − P̂u,i|

basic inequality relating `1 and `2 norms ≤ 4ψ2

σ(−γ)σ(−α)mn

√
|Ω|
√ ∑

(u,i)∈Ω

(P̂u,i − Pu,i)2

=
4ψ2

σ(−γ)σ(−α)

√
|Ω|
mn

√√√√ 1

mn

∑
(u,i)∈Ω

(P̂u,i − Pu,i)2

the theorem’s main inequality (7) ≤ 4ψ2

σ(−γ)σ(−α)

√
|Ω|
mn

√
4eLγτ

( 1√
m

+
1√
n

)
fraction of observed entries |Ω|mn is at most 1 ≤ 4ψ2

σ(−γ)σ(−α)

√
4eLγτ

( 1√
m

+
1√
n

)
=

8ψ2
√
eLγτ

σ(−γ)σ(−α)

√
1√
m

+
1√
n

≤
8ψ2

√
eLγτ

σ(−γ)σ(−α)

( 1

m1/4
+

1

n1/4

)
,

where the last step uses the fact that (a+ b)p ≤ ap + bp for all p ∈ [0, 1] and a, b ∈ R+.

The second RHS term in inequality (12) can be bounded with Hoeffding’s inequality. First, recall that

LIPS-MSE(Ŝ|P ) =
1

mn

m∑
u=1

n∑
i=1

1{(u, i) ∈ Ω}
(Ŝu,i −X∗u,i)2

Pu,i
,

which is an average of mn random variables (here, the only randomness we are considering is in
which entries are revealed Ω). One can check that EΩ[LIPS-MSE(Ŝ|P )] = Lfull MSE(Ŝ). Note that
(Ŝu,i−X∗u,i)

2

Pu,i
≤ (2ψ)2

σ(−α) = 4ψ2

σ(−α) . Thus, each of the terms in the double summation above is bounded

in the interval [0, 4ψ2

σ(−α) ], so by Hoeffding’s inequality,

P
(
|LIPS-MSE(Ŝ|P )− Lfull MSE(Ŝ)| ≥ 4ψ2

σ(−α)

√
1

2mn
log

2

δ

)
≤ δ. (13)

When this bad event does not happen, then the second RHS term of triangle inequality (12) is at most
4ψ2

σ(−α)

√
1

2mn log 2
δ , so putting together the pieces, we get the theorem’s second main inequality (8).

By a union bound, the bad events corresponding to bounds (11) and (13) both don’t happen with
probability at least 1− C

m+n − δ.
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Proof of Lemma 3. By Markov’s inequality, for any h > 0 and z > 0, we have

P
(

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]| ≥ z
)

= P
(

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|h ≥ zh
)

≤
EM
[

supΓ∈Fτ,γ |LM (Γ)− EM [LM (Γ)]|h
]

zh
. (14)

We will be setting h = log(m+ n) (which is greater than 1 under the assumption that m+ n ≥ 3)
and z = 4eLγτ

√
mn(
√
m+

√
n).

We next upper-bound the numerator term EM
[

supΓ∈Fτ,γ |LM (Γ)− EM [LM (Γ)]|h
]
. To do this, we

apply a standard symmetrization argument. Let matrix M ′ ∈ Rm×n be independently sampled such
that M ′ and M have the same distribution. Then using Jensen’s inequality,

EM
[

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|h
]

= EM
[

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|h
]

= EM
[

sup
Γ∈Fτ,γ

|LM (Γ)− EM ′ [LM ′(Γ)]|h
]

= EM
[

sup
Γ∈Fτ,γ

|EM ′ [LM (Γ)− LM ′(Γ)]|h
]

≤ EM
[
EM ′

[
sup

Γ∈Fτ,γ
|LM (Γ)− LM ′(Γ)|h

]]
= EM,M ′

[
sup

Γ∈Fτ,γ
|LM (Γ)− LM ′(Γ)|h

]
. (15)

In applying Jensen’s inequality, we are using the fact that as a function of M ′, the function
supΓ∈Fτ,γ |LM (Γ)− LM ′(Γ)|h (for h ≥ 1) is the pointwise supremum of convex functions, so it is
still convex.

Next, we examine the random variable LM (Γ)− LM ′(Γ). We shall be introducing independently
sampled Rademacher random variables ξu,i ∈ {±1} for u ∈ [m] and i ∈ [n]. Note that

LM (Γ)− LM ′(Γ) =

m∑
u=1

n∑
i=1

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]
−

m∑
u=1

n∑
i=1

[
M ′u,i log

σ(Γu,i)

σ(0)
+ (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]
=

m∑
u=1

n∑
i=1

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

−M ′u,i log
σ(Γu,i)

σ(0)
− (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]

has the same distribution as the random variable

LM (Γ)− LM ′(Γ) =

m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

−M ′u,i log
σ(Γu,i)

σ(0)
− (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]
.
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Then, using the fact that |a+ b|p ≤ 2p−1(|a|p + |b|p) for p ≥ 1 and a, b ∈ R,

EM,M ′

[
sup

Γ∈Fτ,γ
|LM (Γ)− LM ′(Γ)|h

]
= EM,M ′

[
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

−M ′u,i log
σ(Γu,i)

σ(0)
− (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h
]

≤ 2h−1EM,M ′

[
sup

Γ∈Fτ,γ

(∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h
+

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
M ′u,i log

σ(Γu,i)

σ(0)
+ (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h)
]

≤ 2h−1

(
EM,M ′

[
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h]

+ EM,M ′

[
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
M ′u,i log

σ(Γu,i)

σ(0)
+ (1−M ′u,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h]
)

= 2hEM
[

sup
Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h]. (16)

At this point, we use a contraction argument. As a reminder,

Lγ := sup
x∈[−γ,γ]

|σ′(x)|
σ(x)(1− σ(x))

.

Thus, for any x ∈ [−γ, γ],∣∣∣ d
dx

log
σ(x)

σ(0)

∣∣∣ =
∣∣∣ d
dx

log σ(x)
∣∣∣ =

∣∣∣ 1

σ(x)
σ′(x)

∣∣∣ ≤ ∣∣∣ σ′(x)

σ(x)(1− σ(x))

∣∣∣ ≤ Lγ ,
i.e., x 7→ log σ(x)

σ(0) is Lγ-Lipschitz. A similar argument can be used to justify that x 7→ log 1−σ(x)
1−σ(0) is

Lγ-Lipschitz over [−γ, γ]. Hence, x 7→ 1
Lγ

log σ(x)
σ(0) and x 7→ 1

Lγ
log 1−σ(x)

1−σ(0) are both contractions
(i.e., 1-Lipschitz). Applying the second inequality of Theorem 11.6 by Boucheron et al. [2013] (with
Ψ(x) := xh) and defining Mu,i = 2Mu,i − 1 ∈ {±1},

EM
[

sup
Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h]

= EM
[
Ψ

(
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣)]

= (2Lγ)hEM
[
Ψ

(
1

2Lγ
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣)]

≤ (2Lγ)hEM
[
Ψ

(
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,iΓu,i − (1−Mu,i)Γu,i

]∣∣∣∣)]

= (2Lγ)hEM
[
Ψ

(
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,iMu,iΓu,i

∣∣∣∣)]

= (2Lγ)hEM
[

sup
Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,iMu,iΓu,i

∣∣∣∣h]
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= (2Lγ)hEM
[

sup
Γ∈Fτ,γ

|〈Ξ ◦M,Γ〉|h
]
, (17)

where Ξ ∈ {±1}m×n has its (u, i)-th entry given by ξu,i, “◦” denotes the Hadamard product, and
〈·, ·〉 denotes the trace inner product.

Next, we use the result that |〈A,B〉| ≤ ‖A‖2‖B‖∗, so

EM
[

sup
Γ∈Fτ,γ

|〈Ξ ◦M,Γ〉|h
]
≤ EM

[
sup

Γ∈Fτ,γ
‖Ξ ◦M‖h2‖Γ‖h∗

]
≤ EM

[
sup

Γ∈Fτ,γ
‖Ξ ◦M‖h2 (α

√
rmn)h

]
= (τ
√
mn)hEM [‖Ξ ◦M‖h2 ]. (18)

Finally, applying Theorem 1.1 of Seginer [2000], there exists a universal constant C > 0 such that

EM [‖Ξ ◦M‖h2 ] ≤ C(mh/2 + nh/2). (19)

In fact, C = 8 · 21/4 · e2 = 70.2969 . . .

At this point, stringing together inequalities (15), (16), (17), (18), and (19), we get

EM
[

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|h
]

≤ EM,M ′

[
sup

Γ∈Fτ,γ
|LM (Γ)− LM ′(Γ)|h

]
≤ 2hEM

[
sup

Γ∈Fτ,γ

∣∣∣∣ m∑
u=1

n∑
i=1

ξu,i

[
Mu,i log

σ(Γu,i)

σ(0)
+ (1−Mu,i) log

1− σ(Γu,i)

1− σ(0)

]∣∣∣∣h]
≤ 2h(2Lγ)hEM

[
sup

Γ∈Fτ,γ
|〈Ξ ◦M,Γ〉|h

]
≤ 2h(2Lγ)h(τ

√
mn)hEM [‖Ξ ◦M‖h2 ]

≤ 2h(2Lγ)h(τ
√
mn)hC(mh/2 + nh/2)

= C(4Lγτ
√
mn)h(mh/2 + nh/2).

Lastly, using the fact that (a+ b)p ≤ ap + bp for p ∈ [0, 1] and a, b ∈ R+(
EM
[

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]|h
])1/h

≤ [C(4Lγτ
√
mn)h(mh/2 + nh/2)]1/h

≤ C1/h4Lγτ
√
mn(
√
m+

√
n).

Finally, by choosing h = log(m+ n) and z = 4eLγτ
√
mn(
√
m+

√
n) in inequality (14),

P
(

sup
Γ∈Fτ,γ

|LM (Γ)− EM [LM (Γ)]| ≥ z
)
≤

EM
[

supΓ∈Fτ,γ |LM (Γ)− EM [LM (Γ)]|h
]

zh
.

≤ [C1/ log(m+n)4Lγτ
√
mn(
√
m+

√
n)]log(m+n)

[4eLγτ
√
mn(
√
m+

√
n)]log(m+n)

=
C

m+ n
.

C Modifying 1BITMC to Allow for Propensity Scores of 1

We now discuss how to modify 1BITMC along with its theoretical analysis to allow for entries in the
propensity score matrix P to be 1. It suffices to make a single change to the algorithm: we replace
the feasible set Fτ,γ in optimization problem (3) by

Fτ,γ,ϕ :=
{

Γ ∈ Rm×n : ‖Γ‖∗ ≤ τ
√
mn,

Γu,i ≥ −γ for all u, i,

Γu,i ≤ ϕ for all u, i s.t. Mu,i = 0
}
, (20)
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where we have introduced a new user-specified parameter ϕ ∈ (−γ, γ). The resulting modified
optimization problem is still convex if the original optimization program was convex (which depends
on the choice of σ). The key idea for the modification is that we allow Γu,i to be as large as possible
for entries where Mu,i = 1 (to allow for σ(Γu,i) = 1, assuming that σ monotonically increases to
1). However, when Mu,i = 0, we enforce that Γu,i cannot be too large. For example, if the j-th
column is always observed (Mu,j = 1 for all u), then there would be no upper bound constraint on
any element in the j-th column of Γ.

For completeness, we present this modified version of 1BITMC in Algorithm 1, which we call
1BITMC-MODIFIED; note that we now intentionally use Σ rather than σ to denote the link function to
avoid confusion as we will take σ to be the standard logistic function and Σ to a be different function
in our theoretical analysis.

Algorithm 1: 1BITMC-MODIFIED

Data: Binary matrix M ∈ {0, 1}m×n, nuclear norm constraint parameter τ > 0, lower bound
parameter γ > 0, upper bound parameter ϕ > −γ, function Σ : R→ [0, 1] (maps real
number to probability)

Result: Estimate P̂ of P
1 Solve optimization problem (3) with feasible set Fτ,γ replaced by Fτ,γ,ϕ as given in equation (20).
2 Set P̂u,i := σ(Âu,i) for all u ∈ [m], i ∈ [n].

Theoretical Analysis

How the theory changes is more involved. A key theoretical consequence of using feasible set Fτ,γ,ϕ
is that we will only be able to accurate estimate entries of P that are in the set [Σ(−γ),Σ(ϕ)] ∪ {1}.
We tolerate error in estimating entries of P that are in the “critical” interval (Σ(ϕ), 1) (with ϕ chosen
to be sufficiently large, this interval length could be made arbitrarily small). We denote the fraction
of entries in P that are in the critical interval as

fcritical(m,n) :=
1

mn

m∑
u=1

n∑
i=1

1{Pu,i ∈ (Σ(ϕ), 1)}.

We no longer assume that the true propensity score matrix P is linked to parameter matrix A via the
standard logistic function σ. Instead, we reparameterize P via Pu,i = Σ(Au,i), where

Σ(x) :=



σ(x) for x < −γ,

σ(x) +
1

2

(
1 +

x

γ

)
(1− σ(γ))︸ ︷︷ ︸

linear correction term that is
0 at x=−γ and 1−σ(γ) at x=γ

for x ∈ [−γ, γ],

1 for x > γ.

(21)

The above choice of Σ depends on algorithm parameter γ. Observe that Au,i ≥ γ implies that
Pu,i = 1 (previously when linking with the standard logistic function, we could not achieve Pu,i = 1
for a finite Au,i value). Our theoretical guarantee for 1BITMC-MODIFIED depends on the following
quantity that summarizes Lipschitz smoothness information involving log Σ and log(1− Σ):

Υγ,ϕ := max
{

1 +
1

2γ
,

1

1− Σ(ϕ)

(1

4
+

1

2γ

)}
.

Next, we replace Assumption A2 with the following much more general assumption:

A2′. There exists some pmin > 0 such that Pu,i ≥ pmin for all u ∈ [m] and i ∈ [n].

We are now ready to state our theoretical guarantee for 1BITMC-MODIFIED.

Theorem 4. Under Assumptions A1, A2′, and A3, suppose that we run algorithm 1BITMC-MODIFIED

with Σ as given in equation (21), τ ≥ θ, Σ(−γ) ≤ pmin, and ϕ ∈ (−γ, γ) to obtain the estimate P̂
of propensity score matrix P . Let Ŝ ∈ Rm×n be any matrix satisfying ‖Ŝ‖max ≤ ψ for some ψ ≥ φ.
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Let δ ∈ (0, 1). Then there exists a universal constant C > 0 such that provided that m + n ≥ C,
with probability at least 1 − C

m+n − δ over randomness in which entries are revealed in X , we
simultaneously have

1

mn

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2 ≤ 8eΥγ,ϕτ
( 1√

m
+

1√
n

)
+

(1− Σ(ϕ))2

2
fcritical(m,n), (22)

|LIPS-MSE(Ŝ|P̂ )− Lfull MSE(Ŝ)| ≤ 4ψ2

Σ(−γ)pmin

[√
8eΥγ,ϕτ

( 1

m1/4
+

1

n1/4

)
+ (1− Σ(ϕ))

√
fcritical(m,n)

2

]
+

4ψ2

pmin

√
1

2mn
log

2

δ
. (23)

Ignoring terms involving fcritical(m,n), the two bounds (22) and (23) are qualitatively similar to their
counterparts in Theorem 1 (our main result for 1BITMC). The fcritical(m,n) terms are approximation
errors in choosing algorithm parameter ϕ poorly. If there exists some constant pcritical ∈ (pmin, 1)
such that Pu,i ∈ [pmin, pcritical] ∪ {1} for all u ∈ [m], i ∈ [n], and ϕ ∈ (−γ, γ) is chosen so that
Σ(ϕ) ≥ pcritical, then observe that fcritical(m,n) = 0. In general, if fcritical(m,n) is nonzero, then we
can still have the two error bounds go to 0 provided as m,n→∞, we have fcritical(m,n)→ 0.

Proof of Theorem 4

The theorem is a consequence of the following lemma, which we sketch a proof for at the end of this
section.
Lemma 5. Under the same assumptions as in Theorem 4, further assume that there exists pcritical ∈
(pmin, 1) such that Pu,i ∈ [pmin, pcritical] ∪ {1} for all u ∈ [m], i ∈ [n], and ϕ ∈ (−γ, γ) is chosen so
that Σ(ϕ) ≥ pcritical. Then there exists a universal constant C > 0 such that provided thatm+n ≥ C,
with probability at least 1− C

m+n over randomness in which entries are revealed in X , we have

1

mn

m∑
u=1

n∑
i=1

(P̂u,i − Pu,i)2 ≤ 4eΥγ,ϕτ
( 1√

m
+

1√
n

)
. (24)

In general, P might not satisfy the additional assumption in Lemma 5. What we do is consider the
projection of P onto matrices that do satisfy the additional assumption. Namely, let the projection
P † ∈ [0, 1]m×n be defined as

P †u,i =


Pu,i if Pu,i ∈ [pmin,Σ(ϕ)] ∪ 1,

Σ(ϕ) if Pu,i ∈
(
Σ(ϕ), Σ(ϕ)+1

2

]
,

1 if Pu,i ∈
(Σ(ϕ)+1

2 , 1
]
.

Matrix P † is guaranteed to satisfy the conditions on the propensity score matrix in Lemma 5 with
pcritical = Σ(ϕ).

Next, we have

1

mn
‖P̂ − P‖2F ≤

1

mn
(‖P̂ − P †‖F + ‖P † − P‖F )2

≤ 2

mn
‖P̂ − P †‖2F +

2

mn
‖P † − P‖2F . (25)

We can bound the first RHS term using Lemma 5:

2

mn
‖P̂ − P †‖2F ≤ 8eΥγ,ϕτ

( 1√
m

+
1√
n

)
. (26)

The second RHS term in inequality (25) can be upper-bounded by noticing that the worst-case
absolute entry-wise error of 1−Σ(ϕ)

2 occurs only for u ∈ [m], i ∈ [n] such that Pu,i ∈ (Σ(ϕ), 1).
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Thus,

2

mn
‖P † − P‖2F ≤

2

mn

(1− Σ(ϕ)

2

)2 m∑
u=1

n∑
i=1

1{Pu,i ∈ (Σ(ϕ), 1)}

=
(1− Σ(ϕ))2

2
fcritical(m,n). (27)

Combining inequalities (25), (26), and (27) yields the theorem’s first main bound (22). The theorem’s
second main bound (23) can then be established using the same proof ideas as in establishing
bound (8) for Theorem 2.

Proof Sketch for Lemma 5

We highlight the main change to the proof of bound (7) in Theorem 2. Specifically, we do not assume
the condition given by equation (6) that defines the variable Lγ (in fact, as we explain shortly, we
replace Lγ with Υγ,ϕ). This affects the contraction argument made in inequality (17). At the start of
inequality (17) (for which we replace σ with Σ), each term of the summation has a factor

Mu,i log
Σ(Γu,i)

Σ(0)
+ (1−Mu,i) log

1− Σ(Γu,i)

1− Σ(0)
. (28)

Exactly one of the two terms can be nonzero since Mu,i ∈ {0, 1}. Previously, we showed that
x 7→ log σ(x)

σ(0) and x 7→ log 1−σ(x)
1−σ(0) were each Lγ-Lipschitz for x ∈ [−γ, γ] (i.e., x 7→ 1

Lγ
log σ(x)

σ(0)

and x 7→ 1
Lγ

log 1−σ(x)
1−σ(0) are contractions). Now we show the analogous result using Σ instead of σ

and with the new feasible set Fτ,γ,ϕ. There are two cases to consider:

Case 1 (Mu,i = 1). The only possibly nonzero term in expression (28) is log
Σ(Γu,i)

Σ(0) , where

Γu,i ∈ [−γ, γ]. We show that the function x 7→ 1
Υγ,ϕ

log Σ(x)
Σ(0) (for x ∈ [−γ, γ]) is a contraction by

showing that | ddx log Σ(x)
Σ(0) | ≤ Υγ,ϕ. Recall that the standard logistic function σ has |σ′(x)|

σ(x)(1−x) = 1.
Also, by construction, Σ(x) ≥ σ(x). We have, for x ∈ [−γ, γ],∣∣∣ d

dx
log

Σ(x)

Σ(0)

∣∣∣ =
∣∣∣ d
dx

log Σ(x)
∣∣∣

=
1

Σ(x)
·
[
σ′(x) +

1− σ(γ)

2γ

]
≤ 1

σ(x)
·
[
σ′(x) +

1− σ(γ)

2γ

]
≤ σ′(x)

σ(x)(1− σ(x))
+

1

σ(x)
· 1− σ(γ)

2γ

= 1 +
1

σ(x)
· 1− σ(γ)

2γ

≤ 1 +
1

σ(−γ)
· 1− σ(γ)

2γ

= 1 +
1

2γ

≤ Υγ,ϕ.

Case 2 (Mu,i = 0). The only possibly nonzero term in expression (28) is log
1−Σ(Γu,i)

1−Σ(0) , where

Γu,i ∈ [−γ, ϕ]. We show that the function x 7→ 1
Υγ,ϕ

log 1−Σ(x)
1−Σ(0) (for x ∈ [−γ, ϕ]) is a contraction

by showing that | ddx log 1−Σ(x)
1−Σ(0) | ≤ Υγ,ϕ. Note that σ′(x) ≤ 1/4 for all x ∈ R. We have, for

x ∈ [−γ, ϕ], ∣∣∣ d
dx

log
1− Σ(x)

1− Σ(0)

∣∣∣ =
∣∣∣ d
dx

log(1− Σ(x))
∣∣∣
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=
∣∣∣ 1

1− Σ(x)
· d
dx

(1− Σ(x))
∣∣∣

=
1

1− Σ(x)
·
[
σ′(x) +

1− σ(γ)

2γ

]
≤ 1

1− Σ(ϕ)
·
[
σ′(x) +

1− σ(γ)

2γ

]
≤ 1

1− Σ(ϕ)
·
[1

4
+

1

2γ

]
≤ Υγ,ϕ.

D More Details on Experiments

In this section, we explain why Assumptions A1–A3 hold for the two synthetic datasets (with high
probability in the case of UserItemData), and we also present MAE-based results for the numerical
experiments on both synthetic and real-world datasets.

D.1 Sythetic Data

We verify that Assumptions A1-A3 hold for the synthetic datasets. Assumption A3 holds as both
synthetic datasets have partially observed matrix X consist of ratings in a bounded interval. For
MovieLoverData, the propensity score matrix P is a block matrix, so it is low-rank, and moreover
it has three unique values that are all nonzero and less than 1; thus Assumptions A1 and A2 are both
met. For UserItemData, the propensity score is Pu,i = σ(Au,i) where Au,i = U2[u]w1 + V2[i]w2

where σ is the standard logistic function. Hence, parameter matrix A (in Assumptions A1 and A2)
has low rank, and in practice after we generate A we can find what its maximum absolute value
entry is to satisfy Assumption A2. Alternatively, to obtain a bound that holds with high probability,
standard concentration inequality results for the maxima of a finite collection of sub-Gaussian random
variables can be used to bound ‖A‖max. In summary, the synthetic datasets we consider satisfy the
assumptions of our theoretical analysis.

The MAE-based measures for different algorithms on MovieLoverData and UserItemData are
presented in Table 4.

D.2 Real-World Data

The MAE-based measures for different algorithms on Coat and MovieLens-100k are presented in
Table 5.
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Algorithm MovieLoverData UserItemData

MAE SNIPS-MAE MAE SNIPS-MAE

PMF 0.421 ± 0.013 0.421 ± 0.012 0.324 ± 0.001 0.323 ± 0.001
NB-PMF 0.490 ± 0.009 0.490 ± 0.008 0.308 ± 0.002 0.308 ± 0.002
LR-PMF N/A N/A 0.321 ± 0.002 0.325 ± 0.002
1BITMC-PMF 0.464 ± 0.010 0.464 ± 0.010 0.308 ± 0.002 0.309 ± 0.002

SVD 0.871 ± 0.008 0.871 ± 0.008 0.310 ± 0.001 0.310 ± 0.001
NB-SVD 0.722 ± 0.010 0.722 ± 0.010 0.313 ± 0.001 0.314 ± 0.002
LR-SVD N/A N/A 0.312 ± 0.001 0.316 ± 0.002
1BITMC-SVD 0.727 ± 0.009 0.727 ± 0.009 0.310 ± 0.001 0.310 ± 0.001

SVD++ 0.457 ± 0.011 0.457 ± 0.010 0.311 ± 0.001 0.311 ± 0.001
NB-SVD++ 0.784 ± 0.009 0.793 ± 0.009 0.318 ± 0.002 0.318 ± 0.002
LR-SVD++ N/A N/A 0.319 ± 0.001 0.323 ± 0.001
1BITMC-SVD++ 0.459 ± 0.011 0.459 ± 0.010 0.310 ± 0.001 0.310 ± 0.001

SOFTIMPUTE 0.455 ± 0.007 0.455 ± 0.007 0.550 ± 0.002 0.538 ± 0.002
NB-SOFTIMPUTE 0.528 ± 0.006 0.527 ± 0.006 0.569 ± 0.002 0.567 ± 0.003
LR-SOFTIMPUTE N/A N/A 0.571 ± 0.002 0.562 ± 0.002
1BITMC-SOFTIMPUTE 0.493 ± 0.007 0.493 ± 0.006 0.557 ± 0.002 0.545 ± 0.002

MAXNORM 0.571 ± 0.024 0.571 ± 0.024 0.508 ± 0.002 0.496 ± 0.002
NB-MAXNORM 0.415 ± 0.043 0.415 ± 0.042 0.517 ± 0.006 0.507 ± 0.007
LR-MAXNORM N/A N/A 0.520 ± 0.004 0.508 ± 0.005
1BITMC-MAXNORM 0.465 ± 0.042 0.465 ± 0.042 0.518 ± 0.003 0.507 ± 0.003

WTN 1.350 ± 0.005 1.349 ± 0.005 0.527 ± 0.002 0.516 ± 0.002
NB-WTN 1.306 ± 0.019 1.305 ± 0.018 0.532 ± 0.002 0.522 ± 0.002
LR-WTN N/A N/A 0.529 ± 0.002 0.519 ± 0.002
1BITMC-WTN 1.350 ± 0.005 1.349 ± 0.005 0.527 ± 0.002 0.516 ± 0.002

EXPOMF 0.547 ± 0.003 0.548 ± 0.004 0.864 ± 0.005 0.889 ± 0.005

Table 4: MAE-based metrics of matrix completion methods on synthetic datasets (average± standard
deviation across 10 experimental repeats).
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Algorithm Coat MovieLens-100k

MAE SNIPS-MAE MAE SNIPS-MAE

PMF 0.760 0.783 0.736 ± 0.005 0.741 ± 0.005
NB-PMF 0.740 0.797 N/A N/A
LR-PMF 0.743 0.798 N/A N/A
1BITMC-PMF 0.759 0.783 0.729 ± 0.005 0.733 ± 0.005

SVD 0.903 0.936 0.738 ± 0.006 0.742 ± 0.006
NB-SVD 0.879 0.947 N/A N/A
LR-SVD 0.881 0.945 N/A N/A
1BITMC-SVD 0.901 0.936 0.716 ± 0.005 0.720 ± 0.005
SVD++ 0.896 0.913 0.717 ± 0.006 0.721 ± 0.006
NB-SVD++ 0.927 0.999 N/A N/A
LR-SVD++ 0.916 0.984 N/A N/A
1BITMC-SVD++ 0.895 0.915 0.718 ± 0.004 0.722 ± 0.004

SOFTIMPUTE 0.759 0.821 0.756 ± 0.006 0.765 ± 0.006
NB-SOFTIMPUTE 0.751 0.811 N/A N/A
LR-SOFTIMPUTE 0.760 0.821 N/A N/A
1BITMC-SOFTIMPUTE 0.733 0.792 0.756 ± 0.005 0.764 ± 0.006

MAXNORM 0.819 0.886 0.749 ± 0.005 0.754 ± 0.005
NB-MAXNORM 0.780 0.843 N/A N/A
LR-MAXNORM 0.829 0.896 N/A N/A
1BITMC-MAXNORM 0.801 0.865 0.757 ± 0.007 0.764 ± 0.007

WTN 0.894 0.967 0.765 ± 0.005 0.770 ± 0.005
NB-WTN 0.900 0.972 N/A N/A
LR-WTN 0.891 0.963 N/A N/A
1BITMC-WTN 0.894 0.967 0.763 ± 0.005 0.768 ± 0.005

EXPOMF 1.071 1.158 1.195 ± 0.023 1.223 ± 0.023

Table 5: MAE-based metrics of matrix completion methods on Coat and MovieLens-100k (results
for MovieLens-100k are the averages ± standard deviations across 10 experimental repeats).
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