
Supplementary Material for
"Polynomial Cost of Adaptation for X -Armed Bandits"

A Omitted proofs

A.1 Proposition 2: Regret bound for non-adaptive CAB1.1

This proof is a straightforward application of the Hölder bound and of the bound of MOSS, together
with the approximation/cost of learning decomposition of the regret. Some extra care is needed to
handle the boundary cases.

Proof of Proposition 2. Choose f 2 H(L, ↵). Let us denote by i? an integer such that there exists
an optimal arm x? in the interval

⇥
(i? � 1)/K?, i?/K?

⇤
. By the Hölder assumption

1

K?

Z i?/K?

(i?�1)/K?

�
f(x?

) � f(x)

�
dx 6 L

✓
1

K?

◆↵

,

and this upper bounds the approximation error of the discretization. Moreover, since T > K?, the
cost of learning is smaller than 18

p
K?T . Thus by (9)

RT 6 TL

✓
1

K?

◆↵

+ 18

p
K?T .

K? was chosen to minimize this quantity. We distinguish cases depending on the value of K?.

If 1 < K? < T , then L2/(2↵+1)T 1/(2↵+1) 6 K? 6 2L2/(2↵+1)T 1/(2↵+1) (the bound dxe 6 2x,
which is valid when x > 1, is more practical to handle the multiplicative constants), we deduce the
upper bound:

�
1 + 18

p
2

�
L1/(2↵+1)T (↵+1)/(2↵+1) .

Since we assumed that L > 1/
p

T , we have always K? > 1. Therefore the last case to consider
is if K?

= T . Then L2/(2↵+1)T 1/(2↵+1) > T/2 and thus L > 2

�(2↵+1)/2 T↵ . In this case
L1/(2↵+1)T (↵+1)/(2↵+1) > (

p
2/2)T and the claimed bound is met since in that case, we have by a

trivial bound RT 6 T 6
p

2 L1/(2↵+1)T (↵+1)/(2↵+1).

A.2 Proposition 1: Lower bound on the adaptive rates

Proof of Proposition 1. Choose ↵, � such that ↵ 6 �, and " > 0. Set L > 0. There exist constants
c
1

and c
2

(depending on L, ↵, � and ") such that for T large enough,

sup

f2H(L,↵)

RT 6 c
1

T ✓(↵)+" and sup

f2H(L,�)

RT 6 c
2

T ✓(�)+" .

Moreover, for T large enough, the assumptions for lower bound (6) hold. Hence applying the lower
bound with B = c

2

T ✓(�)+", for some constant c
3

:

c
1

T ✓(↵)+" > 0.0001 T
�
c
2

T ✓(�)+"
��↵/(↵+1) > c

3

T 1�✓(�)↵/(↵+1)�"↵/(↵+1)

Since the above inequality holds for any T sufficiently large, this implies that for all " > 0

✓(↵) + " > 1 � ✓(�)

↵

↵ + 1

� "
↵

↵ + 1

,

which yields the desired result as " ! 0.

11



A.3 Theorem 1: Admissible rate functions

We prove here that all the admissible rate functions belong to the family (✓m), by relying on
Proposition 1. The proof is done through a careful inspection of the functional inequation defining
the lower bound.

Proof of Theorem 1. First of all, by Corollary 2, the appropriately tuned MeDZO may achieve all the
✓0ms. Thus we are left to prove the lower bound side, i.e., that all the admissible rate functions belong
to the family ✓m.

The best way to see this is to first notice that for ✓ nonincreasing and positive, the inequation in
Proposition 1 is equivalent to

8 ↵ > 0 , ✓(↵) > 1 � ✓(1)

↵

↵ + 1

. (21)

Notice that taking � = +1 is always valid in what follows, as ✓ is assumed to be nonincreasing
and lower bounded by 1/2. Now if ✓ satisfies (8), then it satisfies (21) by taking � = +1. For the
converse, consider ↵ 6 �, then ✓(�) > ✓(1), thus 1 � ✓(1)↵/(↵ + 1) > 1 � ✓(�)↵/(↵ + 1).

Now consider an admissible ✓. Since ✓ is achieved by some algorithm, by Proposition 1 and the
remark above, it satisfies Eq. (21). As ✓ is nonincreasing, and by Eq. (21), we have ✓(↵) > ✓(1)

and ✓(↵) > 1 � ✓(1)↵/(↵ + 1). In other words, ✓ > ✓m✓ , where m✓ = ✓(1) 2 [1/2, 1]. By the
admissibility of ✓, this implies that ✓ = ✓m✓ .

A.4 Calculations in the proof of Theorem 2

Details on (18), in the proof of Theorem 2. By definition of i
0

, and since we assumed that i
0

< p

B 6 L
�Ti0+1

K↵
i0+1

,

i.e., using Ki0 �Ti0 = 2

2p+2,

B 6 2

1+↵L
�Ti0

K↵
i0

= 2

1+↵L (�Ti0)
1+↵

2

�(2p+2)↵ .

From this we deduce, using 2

p > B for the second inequality,
�
�Ti0

�
(1+↵) > 2

�1�↵BL�1

2

(2p+2)↵ > 2

�1+↵L�1B2↵+1 .

Hence, using 2

(↵�1)/(↵+1) > 1/2, we obtain �Ti0 > (1/2)L�1/(↵+1)B(2↵+1)/(↵+1), thus
B/�Ti0 6 2 L1/(↵+1)B�↵/(↵+1) .

B Anytime-MeDZO and proof

The doubling trick is the most standard way of converting non-anytime algorithms into anytime
algorithms, when the regret bound is polynomial. It consists in taking fresh starts of the algorithm
over a grid of dyadic times. The implementation of the trick is straightforward in our case.

Algorithm 3 Doubling trick MeDZO

1: Input: parameter m 2 [1/2, 1];
2: for i = 0, . . . do
3: Run MeDZO (Alg. 2) with input B = 2

im for 2

i rounds
4: end for

Corollary (Doubling trick version). Choose m 2 [1/2, 1]. The doubling-trick version of MeDZO,
run with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
↵ > 0 and L > 0 and for T > 1

sup

f2H(L,↵)

RT 6 4000(log

2

Tm
)

3/2
max

�
Tm, TL1/(↵+1)

(Tm
)

�↵/(↵+1)

�
=O

�
(log T )

3/2 T ✓m(↵)
�
.
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As the regret bound is not exactly of the form cT ✓, we work with the polynomial version of the bound
on the regret of MeDZO, equation (20), for the doubling trick to be effective. Obviously the value of
the constant in the bound is not our main focus, but we still write it explicitly as it shows that there is
no hidden dependence on the various parameters.

Proof. By (20), with pi =

⌃
log

2

2

im
⌥

6 1 + log

2

2

im, in the i-th doubling trick regime, the
cumulative regret is bounded by

2(1 + 72

p
1 + log

2

2

im
)2

iL1/(↵+1)

(2

im
)

�↵/(↵+1)

+ (1 + log

2

2

im
)

�
1 + 72

p
1 + log

2

2

im
�
2

im

Now since

dlog2 TeX

i=0

2

i
= 2

dlog2 Te+1 � 1 > 2T � 1 > T ,

there are always less than dlog

2

T e full regimes. Therefore, using log

2

2

im 6 log

2

Tm, and summing
over the regimes, the first part of this sum is bounded by

2(1 + 72

p
2 log

2

Tm
)L1/(↵+1)

dlog2 TeX

i=0

2

i(1�m↵/(↵+1))

6 2(1 + 72

p
2 log

2

Tm
)L1/(↵+1)

2

(dlog2 Te+1)(1�m↵/(↵+1))

2

1�m↵/(↵+1) � 1

6 2(1 + 72

p
2)

p
log

2

TmL1/(↵+1)

2

2(1�m↵/(↵+1))

p
2 � 1

T (Tm
)

�↵/(↵+1)

6 2(1 + 72

p
2)

p
log

2

TmL1/(↵+1)

4p
2 � 1

T (Tm
)

�↵/(↵+1)

where we used 2

dlog2 Te 6 2T ; we also used the fact that since m > 1/2, we always have the
inequality 1 � m↵/(↵ + 1) > 1/2 to bound the denominator. Similarly, the second part is bounded
by

2(1 + 72

p
2)(log

2

Tm
)

3/2

dlog2 TeX

i=0

2

im 6 2(1 + 72

p
2)(log

2

Tm
)

3/2 4p
2 � 1

Tm .

All in all, we obtain the same minimax guarantees as if we had known the time horizon in advance,
but with an extra multiplicative factor of 4/(

p
2 � 1) ⇡ 9, 66.

C Illustration

In this section we provide a figure to illustrate the behavior of MeDZO in a schematic example.

MeDZO starts by playing on a fine discretization with a size of order
p

T , but for a short length
of time, of order

p
T . At the end of the first epoch, it memorizes the empirical distribution of the

arms played; then it runs a new instance of CAB1.1 with both the coarser discretization, and the
memorized action. This process is repeated until the time horizon is reached.

The payoffs of the memorized actions increase until the size of the discretization reaches a critical
value; after that they fluctuate. Therefore MeDZO manages to maintain a regret of order the
approximation error at this critical discretization, multiplied by T .
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Distribution of plays
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Figure 2: Behavior of MeDZO on a schematic drawing. The expected payoffs of the memorized actions are
displayed in red; those from the usual discretization are in blue.

D Numerical experiments

This section contains some numerical experiments comparing the regrets of algorithms that require
the knowledge of the smoothness, against MeDZO.

We examine bandit problems defined by their mean-payoff functions and gaussian N (0; 1/4) noise.
The functions considered are f : x 7! (1/2) sin(13x) sin(27x) + 0.5 taken from Bubeck et al. [7],
g : x 7! max

�
3.6 x(1 � x), 1 � 1/0.05 |x � 0.05|

�
adapted from Coquelin and Munos [11] and

the Garland function x 7! x(1 � x)(4 �
p

|sin(60x)|, which we took from Valko et al. [24]. The
functions are plotted in Figure 3.

(a) f (b) g (c) The Garland function

Figure 3: Problems considered

The algorithms we compare are SR from Locatelli and Carpentier [21], and CAB1 from Kleinberg
[16] with MOSS as the discrete algorithm. SR takes directly the smoothness ↵ as an input, and
assumes L = 1. For CAB1, we compute the optimal discretization size for L = 1 and varying ↵.
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(a) f (b) g (c) The Garland function

Figure 4: Regrets of MeDZO, and of SR and CAB1 run with different values of the smoothness parameter.

In Figure 4 we plot the cumulative regret of the algorithms after a time horizon T = 300000, for
varying values of the assumed smoothness. For each problem, MeDZO was run only once, as it does
not need to know the smoothness. The regret was averaged over N = 75 runs, and the dotted curves
represent +/- one standard deviation.

We recall that minimax guarantees are worst-case guarantees, therefore comparing algorithms on a
single problem can only serve as an empirical illustration.

As expected, the regrets of both SR and CAB1 depend on some careful tuning of the input parameter,
determined by the smoothness. The optimal tuning is unclear, and seems to vary on the algorithm.
MeDZO, on the other hand, obtains reasonable regret with no tuning. Surprisingly, CAB1 with
overestimated smoothness seems to behave quite well, although the large variance sometimes makes
it difficult to distinguish the results. Recall that MeDZO is the only algorithm with theoretical
guarantees for high values of ↵.

E About simple regret

In this section, we consider the case of simple regret, which complements the discussion about
adaptation to smoothness in sequential optimization procedures. We write out how to achieve
adaptation at usual rates for simple regret under Hölder smoothness assumptions. We do not claim
novelty here, as adaptive strategies have already been used for simple regret under more sophisticated
regularity conditions (see, e.g., Grill et al. [14], Shang et al. [23] and a sketched out procedure in
Locatelli and Carpentier [21]); however, we feel the details deserve to be written out in this simpler
setting.

Let us recall the definition of simple regret. In some cases, we may only require that the algorithm
outputs a recommendation ˜XT at the end of the T rounds, with the aim of minimizing the simple
regret, defined as

rT = M(f) � E
⇥
f
�

˜XT

� ⇤
.

This setting is known under various names, e.g., pure exploration, global optimization or black-box
optimization. As noted in Bubeck et al. [6], minimizing the simple regret is easier than minimizing
the cumulative regret in the sense that if the decision-maker chooses a recommendation uniformly
among the arms played X

1

, . . . , XT , then

rT = M(f) � 1

T

TX

t=1

E
⇥
f
�
Xt

�⇤
=

RT

T
. (22)

The minimax rates of simple regret over Hölder classes H(L, ↵) are lower bounded by
⌦(L1/(2↵+1)T�↵/(2↵+1)

), which are exactly the rates for cumulative regret divided by T (see
Locatelli and Carpentier [21] for a proof of the lower bound). Consequently, at known regularity, any
minimax optimal algorithm for cumulative regret automatically yields a minimax recommendation
for simple regret via (22).

When the smoothness is unknown, the situation turns out to be quite different. Adapting to the Hölder
parameters can be done at only a (poly-)logarithmic cost for simple regret, contrasting with the
polynomial cost of adaptation of cumulative regret. This can be achieved thanks to a very general and
simple cross-validation scheme defined in Shang et al. [23], named General Parallel Optimization.
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Algorithm 4 GPO (General Parallel Optimization) for Hölder minimax adaptation
1: Input: time horizon T > 8

2: Set: p = dlog

2

T e and define Ki = 2

i for i = 1, . . . , p
3: for i = 1, . . . , p do // Exploration
4: For bT/(2p)c rounds, run algorithm CAB1.1 with the discretization in Ki pieces; use MOSS

as the discrete algorithm
5: Define output recommendation ˜X(i), uniformly chosen among the bT/(2p)c arms played
6: end for
7: for i = 1, . . . , p do // Cross-validation
8: Play bT/(2p)c times each recommendation ˜X(i) and compute the average reward µ̂(i)

9: end for
10: return A recommendation ˜XT =

˜X(bı) withbı 2 arg max µ̂(i)

The next result shows that the player obtains the same simple regret bounds as when the smoothness
is known (up to logarithmic factors).
Theorem 3. GPO with CAB1.1 as a sub-algorithm (Alg. 4) achieves, given T > 8 and without the
knowledge of ↵ and L, for all ↵ > 0 and L > 2

↵+1/2
p

dlog

2

T e /T the bound

sup

f2H(L,↵)

rT 6
�
54 +

p
⇡

2

log

2

T
�
L1/(2↵+1)

✓
dlog

2

T e
T

◆↵/(2↵+1)

=

˜O
⇣
L1/(2↵+1)T�↵/(2↵+1)

⌘
.

The ˜O notation hides the log T factors, and the assumption that T > 8 is needed to ensure that
T/(2p) = T/(2 dlog

2

T e) > 1: otherwise the algorithm itself is ill-defined.

Proof. Let f 2 H(L, ↵) denote a mean-payoff function. Once again we decompose the error of the
algorithm into two sources. The simple regret is the sum of the regret of the best recommendation
among the p received, rmin, and of a cross-validation error, rCV,

M(f) � E[f(

˜XT )] = min

i=1,...,p

✓
M(f) � E

h
f
�

˜X(i)
�i◆

| {z }
rmin

+ max

i=1,...,p

✓
E
h
f
�

˜X(i)
�i

� E
h
f
�

˜XT

�i◆

| {z }
rCV

.

(23)
We now show that rCV 6 p3/2

p
⇡/(4T ) , by detailing an argument that is sketched in the proof of

Thm. 3 in Shang et al. [23]. Denote by µ̂(i) the empirical reward associated to recommendation i,
andbı = arg max µ̂(i), so that ˜XT =

˜X(bı). Then for any fixed i, by the tower rule,

E
⇥
µ̂(i)
⇤

= E
h
E
h
µ̂(i)

��� ˜X(i)
ii

= E
h
f
�

˜X(i)
�i

. (24)

Therefore, by the above remarks, and since µ̂(i) 6 µ̂(bı),

E
h
f
�

˜X(i)
�i

� E
h
f
�

˜XT

�i
= E

h
µ̂(i) � f

�
˜X(bı)�

i
6 E

h
µ̂(bı) � f

�
˜X(bı)�

i
.

We have to be careful here, asbı is a random index that depends on the random variables µ̂(i)’s: we
cannot apply directly the tower rule as in (24). To deal with this, let us use an integrated union bound.
Denote by ( · )+ the positive part function, then

E
h
µ̂(bı) � f

�
˜X(bı)�

i
6 E

⇣
µ̂(bı) � f

�
˜X(bı)�

⌘
+

�
6

pX

j=1

E
⇣

µ̂(j) � f
�

˜X(j)
�⌘+�

,

and we are back to handling empirical means of i.i.d. random variables. For each j, the reward given
˜X(j) is (1/4)-subgaussian. Therefore, as µ̂(i) is the empirical mean of n = bT/(2p)c plays of the

same arm ˜X(j), this mean µ̂(i) is (1/(4n))-subgaussian conditionally on ˜X(j) and thus for all " > 0

P
h
µ̂(j) � f

�
˜X(j)

�
> "
i
6 e�2n"2 .
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Hence by integrating over " 2 [0, +1), using Fubini’s theorem, a change of variable x =

p
4n"

(and using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1):

E
⇣

µ̂(j) � f
�

˜X(j)
�⌘+�

=

Z
+1

0

P
h
µ̂(j) � f

�
˜X(j)

�
> "
i
d"

6
Z

+1

0

e�2n"2 d" =

1p
4n

Z
+1

0

e�x2/2 dx

=

r
⇡

8n
=

r
⇡

8 bT/2pc 6
r

⇡p

4 T

Putting back the pieces together, we have shown that for any i,

E
h
f
�

˜X(i)
�i

� E
h
f
�

˜XT

�i
6

pX

j=1

r
⇡p

4 T
= p3/2

r
⇡

4 T
.

We deduce the same bound for rCV by taking the maximum over i.

Let us now bound rmin. By Eq. (9), using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1, for all i

M(f) � E
h
f
�

˜X(i)
�i

6 L

K↵
i

+ 18

r
4pKi

T
.

We summarize a few calculations in the next lemma. These calculations come from the minimization
over the Ki’s of the previous bound, with a case disjunction arising from the boundary cases.

Lemma 2. At least one of the three following inequalities holds :

L < 2

↵+1/2

r
p

T
or L > T↵ p

p

or

min

i=1,...,p

 
L

K↵
i

+ 36

r
pKi

T

!
6 53L1/(2↵+1)

⇣ p

T

⌘↵/(2↵+1)

.

Let us consider these three cases separately. The first one is forbidden by the assumption that
L > 2

↵+1/2
p

p/T . In the second case, the function is so irregular that the claimed bound becomes
worse than rT 6 56 p1/2+↵/(2↵+1), which is weaker than the trivial bound rT 6 1.

Finally, in the third case, we may assume that L > 2

↵+1/2
p

p/T >
p

p/T . Then we have

L1/(2↵+1) >
⇣ p

T

⌘
1/(2(2↵+1))

=

⇣ p

T

⌘
1/2 ⇣ p

T

⌘�↵/(2↵+1)

,

and thus
p

p/T 6 L1/(2↵+1)

(p/T )

↵/(2↵+1). By injecting the bound of Lemma 2 and the bound on
rCV into (23):

rT 6 53L1/(2↵+1)

⇣ p

T

⌘↵/(2↵+1)

+ p

r
⇡

4

r
p

T
6 (53 + p

p
⇡/4)L1/(2↵+1)

⇣ p

T

⌘↵/(2↵+1)

and the stated bound holds, since 53+p
p

⇡/4 6 53+(log

2

T +1)

p
⇡/4 6 54+

p
⇡/4 log

2

T .

Proof of Lemma 2. We upper bound the minimum by comparing the two quantities

L

K↵
i

v.s.

r
pKi

T
.

As the first term is decreasing with i, and the second term is increasing with i, two extreme cases
have te be dealt with. If the first term is always smaller than the second, i.e., even for i = 1, then:

L

2

↵
<

r
p 2

T
.
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This is the first case in the statement of the lemma. Otherwise, the first term might always be greater
than the second one, i.e., even for i = p and

L

2

↵p
>
r

p2

p

T

which is equivalent to

L2 > p
2

p(2↵+1)

T
,

hence, since 2

p > T ,
L2 > pT 2↵

which is exactly the second inequality of our statement.

Otherwise, define i? to be an index such that

L

K↵
i?�1

>
r

pKi?�1

T
and

L

K↵
i?

6
r

pKi?

T
(25)

By the preceding discussion, i? is well defined and 1 < i? 6 p. Then by definition of i? (the first
equation in (25))

2

↵+1/2 L

K↵
i?

>
r

pKi?

T
.

Hence, by squaring and regrouping the terms

K2↵+1

i? 6 2

2↵+1L2

T

p

thus

Ki? 6 2L2/(↵+1)

✓
T

p

◆
1/(2↵+1)

and r
pKi?

T
6

p
2L1/(2↵+1)

⇣ p

T

⌘↵/(2↵+1)

and finally, recalling the second equation in (25)

L

K↵
i?

+ 36

r
pKi?

T
6 37

r
pKi?

T
6 37

p
2L1/(2↵+1)

✓
p

T

◆↵/(2↵+1)

.

F Proof of our version of the lower bound of adaptation

Here we provide the full proof of our version of the lower bound of adaptation stated in Section 2.2.

Our statement differs from that of Locatelli and Carpentier [21] on some aspects. First, and most
importantly, we include the dependence on the Lipschitz constants, and we do not consider margin
regularity. We also remove a superfluous requirement on B, that B 6 c T (↵+1)/(2↵+1), which
was just an artifact of the original proof. Furthermore we believe that the additional condition that
L 6 O(T↵/2

) in our version was implicitely used in this original proof. Finally, the value of the
constant differs, partly because of the analysis, and partly because we consider (1/4)-subgaussian
noise instead of 1-subgaussian noise.

We managed to obtain these improvements thanks to a different proof technique. In the original proof,
the authors compare the empirical likelihoods of different outcomes and use the Bretagnolle-Huber
inequality. We choose to build the lower bound in a slightly different way (see Garivier et al. [13]):
we handle the changes of measure implicitly thanks to Pinsker’s inequality (Lemma 3). Following
Lattimore and Szepesvári [19], we also chose to be very precise in the definition of the bandit model,
in order to make rigorous a few arguments that are often used implicitly in the literature on continuous
bandits.
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The main argument of the proof, that is, the sets of functions considered, are already present in
Locatelli and Carpentier [21].

Before we start with the proof, let us state a technical tool. Denote by KL the Kullback-Leibler
divergence. The next lemma is a generalized version of Pinsker’s inequality, tailored to our needs.
Lemma 3. Let P and Q be two probability measures. For any random variable Z 2 [0, 1],

|EP[Z] � EQ[Z]| 6
r

KL(P,Q)

2

Proof. For z 2 [0, 1], by the classical version of Pinsker’s inequality applied to the event {Z > z}:

|P[Z > z] � Q[Z > z]| 6
r

KL(P,Q)

2

.

Therefore, by Fubini’s theorem and the triangle inequality, and by integrating the preceding inequality:

|EP[Z] � EQ[Z]|=
����
Z

1

0

�
P[Z > z] � Q[Z > z]

�
dz

���� 6
Z

1

0

|P[Z > z] � Q[Z > z]|dz 6
r

KL(P,Q)

2

Proof of the lower bound. For the sake of completeness, we recall in detail the construction of
Locatelli and Carpentier [21], with some minor simplifications that fit our setting. Fix regularity
parameters `, L, ↵ and � satisfying ` 6 L and � > ↵, so that H(`, �) ⇢ H(L, ↵) (remember the
functions are defined on X = [0, 1]).

Fix M 2 [1/2, 1]. Let K 2 N \ {0} and � 2 R
+

be some parameters of the construction whose
values will be determined by the analysis. We define furthermore a partition of [0, 1] into K + 1 sets,
H

0

= [1/2, 1] and Hi = [(i � 1)/(2K), i/(2K)] for 1 6 i 6 K, along with their middle points
xi 2 Hi. Finally, define the set of hypotheses �i for i = 0, . . . , K as follows

�i(x) =

8
><

>:

max

�
M � �, M � �/2 � ` |x � x

0

|�
�

if x 2 H
0

,

max

�
M � �, M � L |x � xi|↵

�
if x 2 Hi and s 6= 0 ,

M � � otherwise.
(26)

Figure 5: Mean-payoff functions for the lower bound

Figure 5 illustrates how the �i’s are defined : for 1 6 i 6 K, the function �i displays a peak
of size � and of low regularity (L, ↵), localized in Hi, and another peak of size �/2, of higher
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regularity (`, �) in H
0

. The function �
0

only has the peak of size �/2 and regularity (`, �). We need
to add requirements on the values of the parameters, to make sure the indeed functions belong to the
appropriate regularity classes. These requirements are written in the following lemma, which we
prove later.

Lemma 4. If (�/L)

1/↵ 6 1/(4K) then �
0

2 H(`, �), and if (�/(2`))1/� 6 1/4 then �i 2
H(L, ↵) for i > 1.

Fix a given algorithm. The idea of the proof of the lower bound is to use the fact that if the player has
low regret, that is, less than B, when the mean-payoff function is �

0

2 H(L, ↵), then she has to play
in H

0

often. This in turn constrains the amount of exploration she can afford, and limits her ability to
find the maximum when the mean-payoff functions is �i for i > 0.

Canonical bandit model In this paragraph, we build the necessary setting for a rigorous develop-
ment. The continous action space gives rise to measurability issues, and one should be particularly
careful when handling changes of measure as we do here. Following Lattimore and Szepesvári [19,
Chap. 4.7, 14 (Ex.11) and 15 (Ex.8) ], we build the canonical bandit model in order to apply the chain
rule for Kullback-Leibler divergences rigorously. To our knowledge, this is seldom done carefully,
the two notable exceptions being the above reference and Garivier et al. [13]. We also use the notion
of probability kernels in this paragraph; see Kallenberg [15, Chap. 1 and 5] for a definition and
properties.

Define a sequence of measurable spaces ⌦t =

Qt
s=1

X ⇥ R, together with their Borel �-algebra
(with the usual topology on X = [0, 1] and on R). We call ht = (x

1

, y
1

, . . . , xt, yt) 2 ⌦t a history
up to time t. By an abuse of notation, we consider that ⌦t ⇢ ⌦t0 when t 6 t0.

An algorithm is a sequence (Kt)16t6T of (regular) probability kernels, with Kt from ⌦t�1

to X ,
modelling the choice of the arm at time t. By an abuse of notation, the first kernel K

1

is an arbitrary
measure on X , the law of the first arm picked. Define for each i another probability kernel modelling
the reward obtained: Li,t from ⌦t ⇥ X to R. We write it explicitly as :

Li,t

�
(x

1

, y
1

, . . . , xt), B
�

=

r
2

⇡

Z

B

e�2

�
x��i(xt)

�2
dx

These kernels define probability laws Pi,t = Li,t(KtPi,t�1

) over ⌦t. Doing so, we ensured
that under Pi,t the coordinate random variables Xt : ⌦t ! X and Yt : ⌦t ! R), defined as
Xt(x1

, . . . , xt, yt) = xt and Yt(x1

, . . . , xt, yt) = yt are such that given Xt, the reward Yt is dis-
tributed according to N

�
�i(Xt), 1/4

�
. Denote by Ei the expectation taken according to Pi,t. We

also index recall the pseudo-regret: RT,i = TM(�i) � Ei

hPT
t=1

�i(Xt)

i
.

A rewriting of the chain rule for Kullback-Leibler divergence with our notation would be (see
Lattimore and Szepesvári [19, Exercise 11 Chap. 14] for a proof)

Proposition (Chain rule). Let ⌦ and ⌦

0 be measurable subsets of Rd equipped with their natural �-
algebra. Let P and Q be probability distributions defined over ⌦, and K and L be regular probability
kernels from ⌦ to ⌦

0 then

KL

�
KP, LQ

�
= KL(P,Q) +

Z

⌦

KL

�
K(!, · ), L(!, · )

�
dP(!)

The key assumptions are that ⌦ and ⌦

0 are subspaces of Rd, and that K and L satisfy measurability
conditions, as they are regular kernels; these assumptions justify the heavy setting we introduced.
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Under this setting, we may call to the chain rule twice to see that for any t:

KL

�
Pt
0

,Pt
i

�
= KL

�
L
0,t(KtPt�1

0

), Li,t(KtPt�1

i )

�

= KL

�
KtPt�1

0

, KtPt�1

i

�
+

Z

⌦t�1⇥X
KL

�
L
0,t(ht�1

, xt, · ), Li,t(ht�1

, xt, · )
�

dKtPt�1

0

(ht�1

, xt)

= KL

�
Pt�1

0

,Pt�1

i

�
+

Z

⌦t�1⇥X
KL

�
L
0,t(ht�1

, xt, · ), Li,t(ht�1

, xt, · )
�

dKtPt�1

0

(ht�1

, xt)

= KL

�
Pt�1

0

,Pt�1

i

�
+

Z

X
KL

�
N (�

0

(xt), 1/4), N (�i(xt), 1/4)

�
dPt�1

0

(xt)

= KL

�
Pt�1

0

,Pt�1

i

�
+ E

0

⇥
KL

�
N (�

0

(Xt), 1/4), N (�i(Xt), 1/4)

�⇤

where the penultimate equality comes from the fact that the density of the kernel Li,t�1

depends only
on the last coordinate xt, and is exactly that of a gaussian variable.

We obtain the KL decomposition by iterating T times,

KL

�
PT
0

,PT
i

�
= E

0

"
TX

t=1

KL

�
N (�

0

(Xt), 1/4), N (�i(Xt), 1/4)

�
#

Continuation of the proof Let us also define NHi(T ) =

PT
t=1

1{Xt2Hi} the number of times the
algorithm selects an arm in Hi. The hypotheses �i were defined for the three following inequalities
to hold. For all i > 1:

RT,i >
�

2

�
T � Ei

⇥
NHi(T )

⇤�
=

T�

2

 
1 �

Ei

⇥
NHi(T )

⇤

T

!
, (27)

RT,0 > �

2

KX

i=1

E
0

⇥
NHi(T )

⇤
, (28)

and

KL(PT
0

,PT
i ) = E

0

"
TX

t=1

KL

�
N (�

0

(Xt), 1/4), N (�i(Xt), 1/4)

�
#

= E
0

"
TX

t=1

2

�
�
0

(Xt) � �i(Xt)
�
2

#
6 2E

0

⇥
NHi(T )

⇤
�

2 .

(29)

The first two inequalities come from the fact that, under Pi, the player incurs an instantaneous regret
of less than �/2 whenever she picks an arm outside the optimal cell Hi. For the third inequality, first
apply the chain rule to compute the Kullback-Leibler divergence, then the inequality is a consequence
of the fact that �i and �

0

differ only in Hi, and their difference is less than �.

We may now proceed with the calculations. By Lemma 3 applied to the random variable NHi(T )/T :

Ei

⇥
NHi(T )

⇤

T
6 E

0

⇥
NHi(T )

⇤

T
+

r
KL(PT

0

,PT
i )

2

. (30)

We will now show that

1

K

KX

i=1

RT,i >
T�

2

0

@
1 � 1

K
�

s
� RT,0

K

1

A . (31)

21



Indeed by (in order) averaging (27) over i = 1, . . . , K, using (30), the concavity of
p· and (29)

1

K

KX

i=1

RT,i >
T�

2

 
1 � 1

K

KX

i=1

Ei

⇥
NHi(T )

⇤

T

!

> T�

2

 
1 � 1

K

KX

i=1

E
0

⇥
NHi(T )

⇤

T
� 1

K

KX

i=1

r
KL(PT

0

,PT
i )

2

!

> T�

2

0

@
1 � 1

K
�

vuut 1

2K

KX

i=1

KL(PT
0

,PT
i )

1

A

> T�

2

0

@
1 � 1

K
�

vuut�

2

K

KX

i=1

E
0

⇥
NHi(T )

⇤
1

A .

This yields the claimed inequality (31) thanks to (28).

Let us assume for now that K > 2 and �
0

2 H(`, �). Then by the assumption on the algorithm,
RT,0 6 B, and therefore

1

K

KX

i=1

RT,i >
T�

2

 
1

2

�
r

�B

K

!
. (32)

To optimize this bound, we take � as large as possible, while still ensuring that
p

�B/K is small
enough, e.g., less than 1/4. Furthermore, we impose that the �i’s belong to H(L, ↵), i.e., by Lemma 4,
that (�/L)

1/↵ 6 1/(4K). This leads to the choice

� = c L1/(↵+1)B�↵/(↵+1) and K =

$
1

4

✓
�

L

◆�1/↵
%

=

�
c�1/↵

4

(LB)

1/(↵+1)

⌫
,

with c = 1/128.

Conclusion, assuming that K > 2 and �
0

2 H(`, �) With this choice of parameters, we have by
definition of �,

�B = c (LB)

1/(↵+1) ,

and by definition of K, since K > (c�1/↵/8)(LB)

1/(↵+1),

�B

K
6 8c1+1/↵

hence, using c1/(2↵) 6 1

r
�B

K
6 2

p
2c1/2+1/(2↵) 6 2

p
2 · 2

�7/2
=

1

4

.

With this in hand, we may now go back to inequality (32) to see that

1

K

KX

i=1

RT,i >
T�

2

✓
1

2

� 1

4

◆
> T�

8

=

c

8

TL1/(↵+1)B�↵/(↵+1) .

By the defintion of K, it is always true that (�/L)

1/↵ 6 1/(4K), and therefore, by Lemma 4, all the
�i’s automatically belong to H(L, ↵). Therefore, for all i, we have supf2H(L,↵) RT > RT,i. Hence,
recalling that c = 1/128,

sup

f2H(L,↵)

RT > 1

K

KX

i=1

RT,i > 2

�10 TL1/(↵+1)B�↵/(↵+1) .
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Regularity conditions on the mean-payoff functions �i We now check that K > 2, and that
�
0

2 H(`, �). Let us first focus on �
0

. By Lemma 4, it is enough to impose that (�/(2`))1/� 6 1/4,
i.e., that

c L1/(↵+1)B�↵/(↵+1)/(2`) 6 (1/4)

�

that is,
L1/(↵+1)B�↵/(↵+1) 6 2`(1/4)

�/c = ` 2

1�2�c�1 ,

i.e., when
LB�↵ 6 `1+↵

2

(1�2�)(1+↵)c�(1+↵)

hence, replacing c by its value c = 2

�7, the next condition is sufficient to ensure the regularity of the
hypothesis:

L 6 `1+↵ B↵ c�(1+↵)
2

(1+↵)(1�2�)
= `1+↵ B↵

2

(1+↵)(8�2�) ,

which is one of the two conditions in the statement of the theorem. For the bound to be valid, we
must also make sure that K > 2:

�✓
c�1/↵

4

(LB)

1/(↵+1)

◆⌫
> 2 .

This condition is weaker than
c�1/↵

4

(LB)

1/(↵+1) > 3

which is equivalent to

L > c(↵+1)/↵
12

↵+1B�1

= 2

�7 · 12 · 2

�6/↵
12

↵B�1 .

To ensure this, we require the stronger (but more readable) condition that L > 2

�3

12

↵B�1.

Proof of Lemma 4. A good look at Figure 6 should convince the reader of the statement. We wish to
make sure that the functions �i’s satisfy (4), a Hölder condition around their maximum (and only
around this maximum). Given the definition of the functions �i, we simply have to check that there
is no discontinuity at the boundary of the cell Hi. We write out the details for i > 0 to remove any
doubt; the same analysis can be carried to check that �

0

2 H(`, �).

(a) (�/L)1/↵ 6 1/(4K) hence �i 2 H(L,↵) (b) (�/L)1/↵ > 1/(4K) hence �i /2 H(L,↵)

Figure 6: �i is in H(L,↵) if it is everywhere above the green dotted curve x 7! M � L |x� xi|↵, that is, if
the cell Hi has enough room to contain the whole peak of size �

For i > 0, the function �i reaches its maximum at xi = (i�1/2)/2K, and the value of the maximum
is M . Then for x 2 Hi, by definition of �i:

�i(x) = max

�
M � �, M � L |xi � x|↵

�
> M � L |x � xi|↵

thus
�i(xi) � �i(x) = M � �i(x) 6 L |xi � x|↵ ,
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Now consider x /2 Hi. Assume, as in the statement of the lemma, that 1/(4K) > (�/L)

1/↵. If x is
outside of Hi, then since Hi is of half-width 1/4K,

|xi � x| > 1

4K
>
✓

�

L

◆
1/↵

(33)

and, by definition of �i, for all x (even for x 2 H
0

), �i(x) > M � � . Therefore, by (33),

�i(xi) � �i(x) 6 � 6 L |xi � x|↵ .

For all values of x, the Hölder condition is satisfied and �i 2 H(L, ↵).

For �
0

, the same calculations show that there is no jump at the boundary of [1/2, 1], of half-width
1/4, when the peak is of height �/2 and regularity (`, �) if

�
(�/2)/`)

�
1/� 6 1/4.
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