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Abstract

When translating natural language questions into SQL queries to answer questions1

from a database, we would like our methods to generalize to domains and database2

schemas outside of the training set. To handle complex questions and database3

schemas with a neural encoder-decoder paradigm, it is critical to properly encode4

the schema as part of the input with the question. In this paper, we use relation-5

aware self-attention within the encoder so that it can reason about how the tables6

and columns in the provided schema relate to each other and use this information7

in interpreting the question. We achieve significant gains on the recently-released8

Spider dataset with 42.94% exact match accuracy, compared to the 18.96% reported9

in published work.10

1 Introduction11

The ability to effectively query databases with natural language has the potential to unlock the power12

of large datasets to the vast majority of users who are not proficient in the use of languages such as13

SQL. As such, a large body of existing work has focused on the task of translating natural language14

questions into queries that existing database software can execute.15

The release of large annotated datasets containing questions and the corresponding database queries16

has catalyzed significant progress in the field, by enabling the training of supervised learning models17

for the task [24, 4]. This progress has arrived not only in the form of improved accuracy on the test18

sets provided with the datasets, but also through an evolution of the problem formulation towards19

greater complexity more closely resembling real-world applications.20

The recently-released Spider dataset [22] exemplifies greater realism in the task specification: the21

queries are written using SQL syntax, the dataset contains a large number of domains and schemas22

with no overlap between the train and test sets, and each schema contains multiple tables with many23

complicated questions being expressed in the queries. Due to the extra difficulty caused by these24

factors, the best publicly-reported result on this dataset as of this writing achieves about 19% exact25

matching accuracy on the development set [14], which is significantly worse compared to > 80%26

exact matching accuracy reported for past datasets such as ATIS, GeoQuery, and WikiSQL [22, 1].27

We posit that a central challenge of the multi-schema problem setting is generalization to new database28

schemas different from what was seen during training. when the model needs to generate queries for29

arbitrary new schemas, it needs to take the relevant schema as an input and process it together with30

the question in order to generate the correct query.31

Previous methods on the WikiSQL dataset [24] have also contended with the challenge of generalizing32

to arbitrary new schemas. However, all schemas in this dataset are quite simple, as they only contain33

one table. The model has no need to reason about the relationships between multiple tables in order34

to generate the correct query. As such, models developed for this dataset have largely focused on35
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Figure 1: Overview of text-to-SQL task. This paper proposes and evaluates the use of relation-aware
self-attention to encode the question and schema, including elements such as the “foreign key”
relationship shown.

innovations to the decoder for generating the query, rather than the encoder for the question and the36

schema. In contrast, most real databases (including those in Spider) contain multiple tables with37

features such as foreign keys that link rows in one table to another. We hypothesize that to generate38

correct queries for such databases, a model needs the ability to reason about how the tables and39

columns in the provided schema relate to each other and use this information in interpreting the40

question.41

In this paper, we develop a method to test this hypothesis. First, we construct a directed graph (with42

labels on nodes and edges) over all of the elements of the schema. This graph contains a node for43

each column or table, and an edge exists from one node to another if the two have an interesting44

relationship (e.g., the two nodes are columns which belong to the same table) with a label encoding45

that relationship. Each node has an initial vector representation based on the words in the column46

or table’s name. We also obtain a vector representation for each word in the question. For a fixed47

number of times, we then update each node and word representation based on all other node and48

word representations, taking the labels of edges between nodes into account. We use these updated49

representations with a SQL decoder, which uses attention over them at each decoding step, and also50

points to the column and table representations when it needs to output a column or table reference in51

the query.52

We empirically evaluate our method on the Spider dataset [22], using a decoder based on Yin and53

Neubig [19]. We achieve 42.94% exact set match accuracy on the development set, significantly54

higher than the published result of 18.9% [14, 21]. We further verify the utility of directly encoding55

the relationships within the schema with an ablation study.56

2 Problem Formulation57

Provided with a natural language question and a schema for a relational database, our goal is58

to generate the SQL query corresponding to the question. The schema contains the following59

information, as depicted in Figure 1:60

• A list of tables in the database, each with a meaningful name (e.g., AIRLINES, AIRPORTS,61

and FLIGHTS for an aviation database).62

• For each table, a list of columns. Each column represents an attribute of the entities stored63

in the table. Each column has a type such as number or text.64

• Each table can designate some of its columns as primary keys, which uniquely identify each65

row in the table.66

• A column can have another column in a different table as its foreign key, which is used to67

link together rows across multiple tables.68

As mentioned in the introduction, we would like our method to generalize to not only new questions,69

but also new schemas it has never seen during training time.70
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3 Motivation for Our Approach71

Using natural language to query databases has been a long-standing problem studied for many decades72

in the research community [2, 11]. We identify several limitations of past work and problem settings:73

(a) Some datasets only concern themselves with one domain (e.g., US geography [23]).74

(b) Most datasets about one domain also contain only one database schema for the domain, so75

the system only needs to know how to generate queries for that single schema.76

(c) While WikiSQL [24] contains a large number of domains and schemas, each schema only77

contains one table in it.78

(d) Datasets containing only one domain and database necessarily have them overlap across the79

train and test sets. Furthermore, as discussed by Finegan-Dollak et al. [4], many existing80

datasets exhibit overlap in queries between the train and test sets, which limits their ability81

to test how models generalize to generating new queries.82

The neural methods common in recent work follow an encoder-decoder paradigm, and past work83

has largely focused on improvements to the decoder part. As such, the question of how best to84

encode the question and the schema has remained relatively under-studied. Models developed using85

datasets which contain only one domain and schema ((a) and (b) above) typically internalize the86

schema within the learned parameters. The popular WikiSQL dataset necessitates generalizing to new87

schemas at test time, so models developed for it also encode the schema together with the question;88

however, as all these schemas only contain one table, the demands placed on the schema encoder are89

relatively light.90

It is most useful if we can train a single model that can generalize to new domains and new database91

schemas, where both the queries and the schemas have complicated structure that better reflect92

potential real-world applications. The Spider dataset [22] provides an environment for evaluating this93

problem setting. In this work, we study how to better encode the question and schema under these94

more demanding conditions.95

4 Existing Encoding Schemes96

In this section, we review how some existing works (mostly for the WikiSQL dataset) addressed the97

challenge of encoding the input question and schema.98

Encoding each element independently In SQLNet [17] (for the WikiSQL dataset), the name of99

each column, and the question, are separately processed using a bidirectional LSTM. The LSTM100

outputs for the question tokens are utilized in the decoder using attention, and the final LSTM states101

of the columns with a pointer network. Note that the encoding of each column is uninfluenced by102

which other column are present; furthermore, the question is encoded entirely separately from the103

schema.104

In SyntaxSQLNet [21] (for the Spider dataset), the question is encoded identically as SQLNet, using105

a bidirectional LSTM. Each column is encoded similarly, by using a bidirectional LSTM over the106

concatenation of the words in the column name, words in the table name, and column type (e.g.,107

number, string).108

Encoding the columns jointly TypeSQL [20] computes the encoding of each column by an109

elementwise averaging of the embeddings of the words in the name, and using a bidirectional LSTM110

over these averages; therefore, the encoding for each column depends on which other columns are111

present (and also their order, although that can be arbitrary).112

Using the schema while encoding the question Using the information in the schema while encod-113

ing the question can help the decoder generate the correct query. In TypeSQL, the word embeddings114

for each question token are concatenated with a type embedding; in particular, question tokens115

appearing in a column name are specially marked.116

Coarse2Fine [3] goes further by using attention to gather information from the schema while encoding117

the question. First, the input question is encoded using a bidirectional LSTM, then an attention118
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Type of x Type of y Edge label Description

Column Column
SAME-TABLE x and y belong to the same table.
FOREIGN-KEY-COL-F x is a foreign key for y.
FOREIGN-KEY-COL-R y is a foreign key for x.

Column Table PRIMARY-KEY-F x is the primary key of y.
BELONGS-TO-F x is a column of y (but not the primary key).

Table Column PRIMARY-KEY-R y is the primary key of x.
BELONGS-TO-R y is a column of x (but not the primary key).

Table Table
FOREIGN-KEY-TAB-F Table x has a foreign key column in y.
FOREIGN-KEY-TAB-R Same as above, but x and y are reversed.
FOREIGN-KEY-TAB-B x and y have foreign keys in both directions.

Table 1: Description of edge types present in the directed graph created to represent the schema. An
edge exists from node x to node y if the pair fulfills one of the descriptions listed in the table, with
the corresponding label. Otherwise, no edge exists from x to y.

mechanism retrieves a weighted sum of the column embeddings for the LSTM state of each token.119

These two are concatenated together and processed together in another bidirectional LSTM, to obtain120

the final embeddings for each question token.121

IncSQL [13] uses “cross-serial attention”, also updating the column embeddings using the question122

token embeddings, in addition to the other direction used in Coarse2Fine.123

5 Our Approach124

In the previous section, we reviewed how previous neural methods developed for the text-to-SQL125

problem encode the input (the question and the database schema) for use in the decoder. Several of126

these methods encode the question and the columns entirely independently (e.g., the embedding of a127

column is uninfluenced by other columns in the schema).128

In contrast, we specifically seek interactions between schema elements within our encoder, as129

explained in Sections 1 and 3. In this section, we describe how we encode the schema as a directed130

graph and use relation-aware self-attention to interpret it. We will use the following notation:131

• ci for each column in the schema. Each column contains words ci,1, · · · , ci,|ci|.132

• ti for each table in the schema. Each table contains words ti,1, · · · , ti,|ti|.133

• q for the input question. The question contains words q1, · · · , q|q|.134

5.1 Encoding the Schema as a Graph135

To support reasoning about relationships between schema elements in the encoder, we begin by136

representing the database schema using a directed graph G, where each node and edge has a label.137

We represent each table and column in the schema as a node in this graph, labeled with the words in138

the name; for columns, we prepend the type of the column to the label. For each pair of nodes x and139

y in the graph, Table 1 describes when there exists an edge from x to y and the label it should have.140

5.2 Initial Encoding of the Input141

We now obtain an initial representation for each of the nodes in the graph, as well as for the words142

in the input question. For the graph nodes, we use a bidirectional LSTM over the words contained143

in the label. We concatenate the output of the initial and final time steps of this LSTM to form144

the embedding for the node. For the question, we also use a bidirectional LSTM over the words.145

Formally, we perform the following:146

(cfwd
i,0 , c

rev
i,0), · · · , (cfwd

i,|ci|, c
rev
i,|ci|) = BiLSTMColumn(c

type
i , ci,1, · · · , ci,|ci|); cinit

i = Concat(cfwd
i,|ci|, c

rev
i,0)

(tfwd
i,1 , t

rev
i,1), · · · , (tfwd

i,|ti|, t
rev
i,|ti|) = BiLSTMTable(ti,1, · · · , ti,|ti|); tinit

i = Concat(tfwd
i,|ci|, t

rev
i,1)
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(qfwd
1 ,qrev

1 ), · · · , (qfwd
|q| ,q

rev
|q|) = BiLSTMQuestion(q1, · · · , q|q|); qinit

i = Concat(qfwd
i ,qrev

i )

where each of the BiLSTM functions first lookup word embeddings for each of the input tokens. The147

LSTMs do not share any parameters with each other.148

5.3 Relation-Aware Self-Attention149

At this point, we have representations cinit
i , tinit

i , and qinit
i . Similar to encoders used in some previous150

papers, these initial representations are independent of each other (uninfluenced by which other151

columns or tables are present). Now, we would like to imbue these representations with the informa-152

tion in the schema graph. We use a form of self-attention [16] that is relation-aware [12] to achieve153

this goal.154

In one step of relation-aware self-attention, we begin with an input x of n elements (where xi ∈ Rdx )155

and transform each xi into yi ∈ Rdz . We follow the formulation described in Shaw et al. [12]:156

e
(h)
ij =

xiW
(h)
Q (xjW

(h)
K + rKij )

T√
dz/H

; α
(h)
ij =

exp(e
(h)
ij )∑n

l=1 exp(e
(h)
il )

z
(h)
i =

n∑
j=1

α
(h)
ij (xjW

(h)
V + rVij ); zi = Concat(z(0)i , · · · , z(H)

i )

ỹi = LayerNorm(xi + zi); yi = LayerNorm(ỹi + FC(ReLU(FC(ỹi)))

The rij terms encode the relationship between the two elements xi and xj in the input. We explain157

how we obtain rij in the next part.158

Application Within Our Encoder At the start, we construct the input x of |c|+ |t|+ |q| elements159

using cinit
i , tinit

i , and qinit
i :160

x = (cinit
1 , · · · , cinit

|c| , t
init
1 , · · · , tinit

|t| ,q
init
1 , · · · ,qinit

|q| ).

We then apply a stack of N relation-aware self-attention layers, where N is a hyperparameter. We set161

dz = dx to facilitate this stacking. The weights of the encoder layers are not tied; each layer has its162

own set of weights.163

We define a discrete set of possible relation types, and map each type to an embedding to obtain rVij164

and rKij . We need a value of rij for every pair of elements in x. If xi and xj both correspond to nodes165

in G (i.e. each is either a column or table) with an edge from xi to xj , then we use the label on that166

edge (possibilities listed in Table 1).167

However, this is not sufficient to obtain rij for every pair of i and j. In the graph we created for the168

schema, we have no nodes corresponding to the question words; not every pair of nodes in the graph169

has an edge between them (the graph is not complete); and we have no self-edges (for when i = j).170

As such, we add more types beyond what is defined in Table 1:171

• If i = j, then COLUMN-IDENTITY or TABLE-IDENTITY.172

• xi ∈ question, xj ∈ question:173

QUESTION-DIST-d, where d = clip(j − i,D). clip(a,D) = max(−D,min(D, a)). We174

use D = 2.175

• xi ∈ question, xj ∈ column ∪ table; or xi ∈ column ∪ table, xj ∈ question:176

QUESTION-COLUMN, QUESTION-TABLE, COLUMN-QUESTION or TABLE-QUESTION177

depending on the type of xi and xj .178

• Otherwise, one of COLUMN-COLUMN, COLUMN-TABLE, TABLE-COLUMN, or TABLE-179

TABLE.180

In the end, we add 2 + 5 + 4 + 4 types beyond the 10 in Table 1, for a total of 25 types.181

After processing through the stack of N encoder layers, we obtain182

(cfinal
1 , · · · , cfinal

|c| , t
final
1 , · · · , tfinal

|t| ,q
final
1 , · · · ,qfinal

|q| ) = y.

We use cfinal
i , tfinal

i , and qfinal
i in our decoder.183
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Comparison to Past Work We use the same formulation of relation-aware self-attention as Shaw184

et al. [12]. However, that work only applied it to sequences of words in the context of machine185

translation, and as such, their rij only encoded the relative distance between two words. We go186

beyond by also showing that relation-aware self-attention can be effectively used for encoding more187

complex relationships that exist within an unordered sets of elements (in this case, columns and tables188

within a database schema).189

Compared to the encoders used in past work such as Coarse2Fine [3] and IncSQL [13], our novel use190

of relation-aware self-attention frees our encoder from spurious consideration of the order in which191

the columns and tables are presented in the schema (as the relations we have defined are not impacted192

by this order).193

In their implementation, Shaw et al. [12] shares rKij across the H heads and the b examples in a batch,194

which meant they could use n parallel multiplications of bH × (dZ/H) and (dz/H)× n matrices.195

This is possible as rKij does not change across the batch when only encoding the relative distances196

between words. However, due to the more varied relations between xi in our work, we instead use bn197

parallel multiplications of H × (dz/H) and (dz/H)× n matrices, exploiting the fact that we share198

rKij across the H heads.199

5.4 Decoder200

Once we have obtained an encoding of the input, we used the decoder from Yin and Neubig [19] to201

generate the SQL query. The decoder generates the SQL query as an abstract syntax tree in depth-first202

traversal order, by outputting a sequence of production rules that expand the last generated node in203

the tree. However, following SyntaxSQLNet [21], the decoder does not generate the FROM clause;204

rather, it is recovered afterwards with hand-written rules using the columns referred to in the query.205

The decoder is restricted to choosing only syntactically valid production rules, and therefore it always206

produces syntactically valid outputs. To save space, we refer readers to Yin and Neubig [19], although207

we made the following modifications:208

• When the decoder needs to output a column or table, we use a pointer network based on209

scaled dot-product attention [16] which points to cfinal
i and tfinal

i . For choosing a table, we210

allow the decoder to point to either the correct tfinal
i , or any of the cfinal

i for the columns211

which make up that table.212

• At each step, the decoder accesses the encoder outputs cfinal
i , tfinal

i , and qfinal
i using multi-head213

attention. The original decoder in Yin and Neubig [19] uses a simpler form of attention.214

6 Experiments215

In this section, we describe the experiments we conducted to empirically validate our schema encoding216

approach.217

6.1 Experimental Setup218

We implemented our model using PyTorch [9]. Within the encoder, we use GloVe word embeddings219

and hold them fixed during training. All word embeddings have dimension 300. The bidirectional220

LSTMs have hidden size 128 per direction, and use the recurrent dropout method of Gal and221

Ghahramani [5] with rate 0.2. Within the relation-aware self-attention layers, we set dx = dz = 256,222

H = 8, and use dropout with rate 0.1. The position-wise feed-forward network has inner layer223

dimension 1024. Inside the decoder, we use rule embeddings of size 128, node type embeddings of224

size 64, and a hidden size of 256 inside the LSTM with dropout rate 0.2 .225

We used the Adam optimizer [7] with β1 = 0.9, β2 = 0.999, and ε = 10−9, which are defaults226

in PyTorch. During the first warmup_steps = max_steps/20 steps of training, we linearly227

increase the learning rate from 0 to 10−3. Afterwards, the learning rate is annealed to 0, with formula228

10−3(1− step−warmup_steps
max_steps−warmup_steps )

−0.5. For all parameters, we used the default initialization method229

in PyTorch. We use a batch size of 50 and train for up to 40,000 steps.230
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Table 2: Exact match accuracy of different models on the development set of Spider. The first row is
the SyntaxSQLNet [21] baseline; the second row is our method; the remainder are ablations on our
method.

Model Easy Medium Hard Extra Hard All

SyntaxSQLNet 38.40% 15.00% 16.09% 3.53% 18.96%

Our method 57.20% 44.55% 39.66% 21.18% 42.94%

No self-attention layers 42.40% 24.77% 22.41% 5.88% 25.53%
2 self-attention layers 53.60% 42.50% 40.80% 17.65% 40.81%

Fewer relation types 44.80% 30.45% 25.86% 7.65% 29.40%
Minimal relation types 42.40% 28.86% 28.74% 7.65% 28.63%

No pretrained word embeddings 40.80% 29.09% 27.01% 5.88% 27.76%

6.2 Dataset and Metrics231

We use the Spider dataset [22] for all our experiments. As described by Yu et al. [22], the training232

data contains questions, queries, and schemas from the Restaurants [10, 15], GeoQuery [23], Scholar233

[6], Academic [8], Yelp and IMDB [18] datasets. We do not use the data augmentation scheme of Yu234

et al. [21].235

As Yu et al. [22] have kept the test set secret, we perform all evaluations using the publicly available236

development set. We report results using the same metrics as Yu et al. [21]: exact match accuracy on237

all development set examples, as well as after division into four levels of difficulty. We also measure238

component matching scores, as defined in Yu et al. [22]. As in previous work, these metrics do not239

measure the model’s performance on generating values within the queries. We report results from the240

snapshot that obtained the best exact match accuracy across 3 repetitions of each configuration.241

6.3 Variants Tested242

Our main result uses the encoder and decoder described previously, with the number N of relation-243

aware self-attention layers in the encoder set to 4. To further study the utility of our scheme, we also244

tried the following variations.245

Reduce number of self-attention layers. Set N = 0 and N = 2. With N = 0, there are no246

relation-aware self-attention layers; we set cfinal
i = cinit

i , tfinal
i = tinit

i , and qfinal
i = qinit

i . As such, the247

question words, the words in each column’s name, and the words in each table’s name are encoded248

separately using bidirectional LSTMs.249

Remove relation information from the encoder. We would like to measure the impact of provid-250

ing to the encoder the 25 relation types we defined earlier. In particular, we want to see whether251

the self-attention mechanism is sufficient within the encoder to obtain a representation for each252

schema element that is aware of all of the other schema elements, even if we don’t explicitly provide253

information about how the elements are related.254

For “fewer relation types”, we exclude all of the types in Table 1, resulting in 15 rather than 25255

possible types. For “minimal relation types”, we further merge all of {QUESTION,COLUMN,TABLE}-256

{QUESTION,COLUMN,TABLE} relations into one, as well as {COLUMN,TABLE}-IDENTITY with257

QUESTION-DIST-0, and so we only have 5 types.258

Not using pretrained word embeddings. The Spider dataset only contains 8,659 training exam-259

ples, which is significantly smaller than many other datasets used in natural language processing.260

However, there is also reduced overlap in the vocabulary between the training and validation/test sets,261

as they contain different database schemas and domains. Therefore, we measure the impact of using262

word embeddings learned from only this dataset.263
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7 Results and Discussion264

Table 2 presents our exact match accuracy results on the development set of Spider, and Table ?? the265

component-matching F1 scores. For the SyntaxSQLNet row, we obtained the results by running the266

pretrained model without data augmentation from https://github.com/taoyds/syntaxSQL. As267

expected, our method exceeds the performance of all other configurations tried. In particular, we can268

see that our method strongly outperforms SyntaxSQLNet [21], the best published baseline, achieving269

42.94% exact match accuracy over the 18.96% of the previous work.270

Reducing the number of self-attention layers. We can see that the process of relation-aware271

self-attention is critical for the performance of this encoder, as the accuracy drops precipitiously272

when the self-attention layers are removed. We observe fairly marginal gains by using 4 such layers273

(in “Our method”) as opposed to 2 (“2 self-attention layers”).274

Removing relation information from the encoder. Comparing against the rows of “No self-275

attention layers” and “Our method”, we see that while having self-attention layers helps increase276

performance, it is the relation information provided to the encoder that is responsible for most of the277

gains.278

Not using pretrained word embeddings. Given the small size of the training data, using pretrained279

word embeddings helps significantly with our result; in fact, our encoder used without pretrained280

word embeddings performs only slightly better than when we remove all of the self-attention layers281

but keep the GloVe word embeddings. However, when we evaluate the model without pretrained282

word embeddings on the subset of the development set where all question words have a learned283

embedding (i.e. no UNKs in the question; 239 out of 1034 examples), then the exact match accuracy284

recovers to 40.17%, indicating that UNKs can seriously hurt the performance of the method.285

8 Conclusion286

This paper proposes the use of relation-aware self-attention [12] when encoding a database schema287

and a natural language question for the purposes of synthesizing a SQL query. We achieve significantly288

better results on the Spider dataset than the best published result of Yu et al. [21]. Our ablation study289

confirms the importance of encoding relations directly in the self-attention mechanism.290
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