
We would like to thank the reviewers for their feedback. We will add the suggested references, clarifications from our1

answers below, and further qualitative experiments in the camera-ready revision.2

[R1] Which parts of the model in §4 constitute the baseline? The AST-based decoder described in §4.1 constitutes3

our baseline. Its architecture largely follows Yin and Neubig [3]. PATOIS adds two novel contributions on top of it,4

described in §4.2: (a) the new objective in Eq. (4) that allows the model to emit idiom rules instead of original CFG5

rules, and (b) the new training regime that teacher-forces idiom bodies when an idiom rule is chosen. We will specify6

this more clearly in the camera-ready revision.7

[R1] How does PATOIS compare against methods based on sketch generation? Coarse2Fine and Bayou both8

require a manually-defined formulation of program sketches unlike PATOIS which learns idioms from data. There only9

exists one sketch per program, unlike idioms which can occur at multiple places within the program. Fig. 1 shows10

that when run on the Hearthstone test set, PATOIS invokes 4–15 idioms in the course of decoding. Moreover, larger11

programs use more idioms, showing that the decoder of PATOIS learns to switch between high-level and low-level12

reasoning repeatedly, rather than learning only high-level sketches.13

[R1] What are the possible failure modes of idiom mining? The most important failure mode of idiom mining14

is proposing idioms in Ĩ that end up unused by the synthesis model despite being common. For instance, our best15

Hearthstone model never used 29 out of K = 80 idioms on the test set despite them matching in some ASTs. Another16

possible failure is overfitting idioms to the training set. We tackle it by filtering out idioms that do not occur in the17

validation set, and empirically demonstrate that the remaining ones generalize to the test set. In general, we evaluate18

Ĩ as a hyperparameter, choosing the vocabulary that optimizes validation performance (as in Tables 2-3). We have19

ongoing work on an end-to-end extension of PATOIS, but this extension is beyond the scope of this work.20

[R2] What is the runtime complexity? PATOIS has two phases: (1) idiom mining and (2) training the synthesis model.21

We outline the complexity analysis for them below, and will add a complete one to the camera-ready revision.22

Phase 1 implements MCMC sampling, run for M = 10 iterations. At each iteration, PATOIS traverses each AST T ∈ D23

once to sample the random variables that partition it into the idiom fragments (see §3). Thus, the complexity of mining24

is O(M ·
∑

T∈D |T |). In practice, for the 10,181 ASTs in Spider it took < 30 min on a 32-core 2.4 GHz Intel Xeon®.25

Phase 2 has essentially the same complexity as the baseline training thanks to our objective in Eq. (4). For a training26

instance 〈X,T 〉 computing the loss takes O(|T |) time. Each step computes cross-entropy between the predicted27

distribution over production rules and the one-hot distribution with the ground truth rule. In Eq. (4), the cross-entropy28

now allows > 1 ground truth rules: the original CFG rule and any matching idioms. The asymptotic complexity of29

cross-entropy is the same, so the overall per-instance complexity remains atO(|T |); however, there are more production30

rules involved, which increases the cost of computing the predicted distribution itself.31

[R1, R3] Is the method applicable to state-of-the-art models? What would be the improvement? At the time of32

writing, the state of the art on Hearthstone and Spider is achieved by GrammarCNN [2] and IRNet [1], respectively.33

Notably, both of them (like many other contemporary models) use structural AST-based decoders, trained using the34

cross-entropy objective over the AST production rules. As we describe in §4, the PATOIS framework is applicable to35

any decoder that follows such architecture. We only compared against our baseline for fairness, but may be able to also36

implement PATOIS on top of the open-sourced GrammarCNN for the camera-ready revision.37

The improvement of PATOIS should benefit any such structural decoder because idioms fundamentally can help to avoid38

mistakes in modeling the generation of idiom bodies (which account for a sizable fraction of the AST). The effect will be39

40 60 80 100 120 140 160 180
Number of AST nodes

4

6

8

10

12

14

Nu
m

be
r o

f i
di

om
s u

se
d

Figure 1: Hearthstone idiom usage on
the test set. Number of idioms used and
AST nodes are from synthesized trees, not
ground truth.

less prominent for IRNet where the Coarse2Fine sketching mechanism par-40

tially accomplishes the same goal, and more prominent for GrammarCNN.41

[R2, R3] Please provide more qualitative experiments. How often are42

the idioms used? We agree that §5 needs more qualitative experiments,43

and will add them to the camera-ready revision. We conducted some during44

the author response period to supplement our answers. For instance, Fig. 145

shows a distribution of idiom usage on the Hearthstone test set.46

[1] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu, and D. Zhang. Towards47

complex text-to-SQL in cross-domain database with intermediate representation.48

In ACL, July 2019.49

[2] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang. A grammar-based50

structural CNN decoder for code generation. In AAAI, 2019.51

[3] P. Yin and G. Neubig. A syntactic neural model for general-purpose code52

generation. In ACL, July 2017.53


