
This is the supplementary material for the paper: “Towards closing the gap between the theory and
practice of SVRG” authored by O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach and R. M. Gower
(NeurIPS 2019).

In Section A we present general properties that are used in our proofs. In Section B, we present the
proofs for the convergence and the complexities of our algorithms. In Section D, we define several
samplings. In Section E, we present the expected smoothness constant for the samplings we consider.
In Section F, we present the expected residual constant for the same samplings.

A General properties

Lemma A.1. For all a, b ∈ Rd, ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22.
Lemma A.2. For any random vector X ∈ Rd,

E
[
‖X − E [X] ‖22

]
= E

[
‖X‖22

]
− ‖E [X] ‖22 ≤ E

[
‖X‖22

]
.

Lemma A.3. For any convex function f , we have

f(y) ≥ f(x) +∇f(x)>(y − x), ∀x, y ∈ Rd.

Lemma A.4 (Logarithm inequality). For all x > 0,

log(x) ≤ x− 1 . (25)

Lemma A.5 (Complexity bounds). Consider the sequence (αk)k ∈ R+ of positive scalars that
converges to 0 according to

αk ≤ ρkα0,

where ρ ∈ [0, 1). For a given ε ∈ (0, 1), we have that

k ≥ 1

1− ρ
log

(
1

ε

)
=⇒ αk ≤ εα0. (26)

Lemma A.6. Consider convex and Li–smooth functions fi, where Li ≥ 0 for all i ∈ [n], and define
Lmax = maxi∈[n] Li. Let

f(x) =
1

n

n∑
i=1

fi(x)

for any x ∈ Rd. Suppose that f is L–smooth, where L ≥ 0. Then,

nL ≥ Lmax. (27)

Proof. Let x, y ∈ Rd. Since f is L–smooth, we have

f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖22 .

Hence, multiplying by n on both sides,
n∑
i=1

fi(x) ≤
n∑
i=1

fi(y) +

n∑
i=1

∇fi(y)>(x− y) +
nL

2
‖x− y‖22 .

Rearranging this inequality,
n∑
i=1

(
fi(x)− fi(y)−∇fi(y)>(x− y)

)
≤ nL

2
‖x− y‖22 . (28)

Since the functions fi are convex, we have for all i ∈ [n],

fi(x)− fi(y)−∇fi(y)>(x− y) ≥ 0.

Then, as a consequence of (28), we have that for all i ∈ [n],

fi(x)− fi(y)−∇fi(y)>(x− y) ≤ nL

2
‖x− y‖22 .

12



Rearranging this inequality,

fi(x) ≤ fi(y) +∇fi(y)>(x− y) +
nL

2
‖x− y‖22 .

But since for all i ∈ [n], Li is the smallest positive constant that verifies

fi(x) ≤ fi(y) +∇fi(y)>(x− y) +
Li
2
‖x− y‖22 ,

we have for all i ∈ [n], Li ≤ nL. Hence Lmax ≤ nL.

B Proofs of the results of the main paper

In this section, we will use the abbreviations Et [X]
def
= E

[
X|xt, . . . , x0

]
for any random variable

X ∈ Rd and iterates (xt)t≥0.

B.1 Proof of Lemma 4.4

Proof.

ED
[
‖g(x,w)‖22

]
= ED

[
‖∇fv(x)−∇fv(x∗) +∇fv(x∗)−∇fv(w) +∇f(w)‖22

]
Lem. A.1
≤ 2ED

[
‖∇fv(x)−∇fv(x∗)‖22

]
+2ED

[
‖∇fv(w)−∇fv(x∗)−∇f(w)‖22

]
(11)+(12)
≤ 4L(f(x)− f(x∗)) + 4ρ(f(w)− f(x∗)).

B.2 Proof of Theorem 4.1

Proof. To clarify the notations, we recall that gts
def
= g(xts, ws−1). Then, we get

Et
[
‖xt+1

s − x∗‖22
]

= Et
[
‖xts − x∗ − αgts‖22

]
= ‖xts − x∗‖22 − 2αEt

[
gts
]>

(xts − x∗) + α2Et
[
‖gts‖22

]
(8)+(15)
≤ ‖xts − x∗‖22 − 2α∇f(xts)

>(xts − x∗)
+2α2

[
2L(f(xts)− f(x∗)) + 2ρ(f(ws−1)− f(x∗))

]
(6)
≤ (1− αµ) ‖xts − x∗‖22 − 2α(1− 2αL)

(
f(xts)− f(x∗)

)
+4α2ρ(f(ws−1)− f(x∗)). (29)

Note that since α ≤ 1
2(L+2ρ) and ρ ≥ 0, we have that

α
Lemma E.3
≤ 1

2µ
,

13



and consequently (1 − αµ) > 0. Thus by iterating (29) over t = 0, . . . ,m − 1 and taking the
expectation, since x0s = xms−1, we obtain

E
[
‖xms − x∗‖22

]
≤ (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
−2α(1− 2αL)

m−1∑
t=0

(1− αµ)
m−1−t E

[
f(xts)− f(x∗)

]
+4α2ρE [f(ws−1)− f(x∗)]

m−1∑
t=0

(1− αµ)
m−1−t

(10)
= (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
− 2α(1− 2αL)Sm

m−1∑
t=0

ptE
[
f(xts)− f(x∗)

]
+4α2ρSmE [f(ws−1)− f(x∗)]

(16)
= (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
− 2α(1− 2αL)Sm

m−1∑
t=0

ptE
[
f(xts)− f(x∗)

]
+

1

2
E [ψs−1] . (30)

Weights pt are defined in (10). We note that (1−αµ) > 0 implies that pt > 0 for all t = 0, . . . ,m−1,
and by construction we get

∑m−1
t=0 pt = 1. Since f is convex, we have by Jensen’s inequality that

f(ws)− f(x∗) = f

(
m−1∑
t=0

ptx
t
s

)
− f(x∗)

≤
m−1∑
t=0

pt(f(xts)− f(x∗)). (31)

Consequently,

E [ψs]
(16)+(31)
≤ 8α2ρSm

m−1∑
t=0

ptE
[
(f(xts)− f(x∗))

]
. (32)

As a result,

E [φs] = E
[
‖xms − x∗‖

2
2

]
+ E [ψs]

(30)+(32)
≤ (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
+

1

2
E [ψs−1]

−2α(1− 2α(L+ 2ρ))Sm

m−1∑
t=0

ptE
[
(f(xts)− f(x∗))

]
.

Since α ≤ 1
2(L+2ρ) , the above implies

E [φs] ≤ (1− αµ)
m E

[
‖xms−1 − x∗‖22

]
+

1

2
E [ψs−1]

≤ βE [φs−1] ,

where β = max{(1− αµ)m, 12}.

Moreover, if we set ws = xts with probability pt, for t = 0, . . . ,m− 1, the result would still hold.
Indeed (31) would hold with equality and the rest of the proof would follow verbatim.

B.3 Proof of Corollary 4.1

Proof. Noting β = max
{(

1− µ
2(L(b)+2ρ(b))

)m
, 12

}
, we need to chose s so that βs ≤ ε, that is

s ≥ log(1/ε)
log(1/β) . Since in each inner iteration we evaluate 2b gradients of the fi functions, and in each

14



outer iteration we evaluate all n gradients, this means that the total complexity will be given by

C
def
= (n+ 2bm)

log(1/ε)

log(1/β)

= (n+ 2bm) max

{
− 1

m log(1− µ
2(L(b)+2ρ(b)) )

,
1

log 2

}
log

(
1

ε

)
(25)
≤ (n+ 2bm) max

{
1

m

2(L(b) + 2ρ(b))

µ
, 2

}
log

(
1

ε

)
.

B.4 Proof of Corollary 4.3

Proof. Recall that from (18), using the fact that L(1) = ρ(1) = Lmax, we have

Cm(1) = 2
( n
m

+ 2
)

max

{
3Lmax

µ
,m

}
log

(
1

ε

)
.

When n ≥ Lmax

µ , then, m ∈
[
Lmax

µ , n
]
. We can rewrite Cm(1) as

Cm(1) = 2(n+ 2m) max

{
1

m

3Lmax

µ
, 1

}
log

(
1

ε

)
.

We have 1
m

3Lmax

µ ≤ 3 and n+ 2m ≤ 3n. Hence,

Cm(1) ≤ 18n log

(
1

ε

)
= O

((
n+

Lmax

µ

)
log

(
1

ε

))
.

When n ≤ Lmax

µ , then, m ∈
[
n, Lmax

µ

]
. We have n

m ≤ 1 and m ≤ 3Lmax

µ . Hence,

Cm(1) ≤ 18Lmax

µ
log

(
1

ε

)
= O

((
n+

Lmax

µ

)
log

(
1

ε

))
.

B.5 Proof of Theorem 5.1

Before analysing Algorithm 2, we present a lemma that allows to compute the expectations E [αk]
and E

[
α2
k

]
, that will be used in the analysis.

Lemma B.1. Consider the step sizes defined by Algorithm 2. We have

E [αk] =
(1− p) 3k+2

2 (1−
√

1− p) + p

1− (1− p) 3
2

α. (33)

E
[
α2
k

]
=

1 + (1− p)2k+1

2− p
α2. (34)

Proof. Taking expectation with respect to the filtration induced by the sequence of step sizes
{α1, . . . , αk}

Ep [αk+1] = (1− p)
√

1− p αk + pα. (35)

Then taking total expectation

E [αk+1] = (1− p)
√

1− pE [αk] + pα. (36)

Hence the sequence (E [αk])k≥1 is uniquely defined by

E [αk] =
(1− p) 3k+2

2 (1−
√

1− p) + p

1− (1− p) 3
2

α. (37)

15



Indeed, applying (36) recursively gives

E [αk] = (1− p) 3k
2 α+ pα

k−1∑
i=0

(1− p) 3i
2 .

Adding up the geometric series gives

E [αk] = α(1− p) 3k
2 + pα

1− (1− p) 3k
2

1− (1− p) 3
2

=
(1− p) 3k

2 (1− (1− p) 3
2 )− (1− p) 3k

2 p+ p

1− (1− p) 3
2

α .

Which leads to (37) by factorizing. The same arguments are used to compute E
[
α2
k

]
.

We now present a proof of Theorem 5.1.

Proof. We recall that gk def
= ∇f(xk). First, we get

Ek
[
‖xk+1 − x∗‖22

]
= Ek

[
‖xk − x∗ − αkgk‖22

]
= ‖xk − x∗‖22 − 2αkEk

[
gk
]>

(xk − x∗) + α2
kEk

[
‖gk‖22

]
(8)+(15)+Rem. E.1

≤ ‖xk − x∗‖22 − 2αk∇f(xk)>(xk − x∗)
+2α2

k

[
2L(f(xk)− f(x∗)) + 2L(f(wk)− f(x∗))

]
(6)
≤ (1− αkµ) ‖xk − x∗‖22 − 2αk(1− 2αkL)

(
f(xk)− f(x∗)

)
+4α2

kL(f(wk)− f(x∗))
(19)
= (1− αkµ) ‖xk − x∗‖22 − 2αk(1− 2αkL)

(
f(xk)− f(x∗)

)
+p

(
3

2
− p
)
ψk.

Hence we have, taking total expectation and noticing that the variables αk and xk are independent,

E
[∥∥xk+1 − x∗

∥∥2
2

]
≤ (1− E [αk]µ) E

[∥∥xk − x∗∥∥2
2

]
− 2E [αk(1− 2αkL)] E

[
f(xk)− f(x∗)

]
+p

(
3

2
− p
)

E
[
ψk
]
. (38)

We have also have

Ek
[
ψk+1

]
= (1− p)8(1− p)α2

kL
p(3− 2p)

(
f(wk)− f(x∗)

)
+ p

8α2L
p(3− 2p)

(
f(xk)− f(x∗)

)
= (1− p)2ψk +

8α2L
3− 2p

(
f(xk)− f(x∗)

)
.

Hence, taking total expectation gives

E
[
ψk+1

]
= (1− p)2E

[
ψk
]

+
8α2L
3− 2p

E
[
f(xk)− f(x∗)

]
(39)

16



Consequently,

E
[
φk+1

] (19)+(38)+(39)
≤ (1− E [αk]µ) E

[∥∥xk − x∗∥∥2
2

]
−2

(
E [αk(1− 2αkL)]− 4

α2L
3− 2p

)
E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]

= (1− E [αk]µ) E
[∥∥xk − x∗∥∥2

2

]
−2

(
E [αk]− 2

(
E
[
α2
k

]
+

2

3− 2p
α2

)
L
)

E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]
. (40)

From Lemma B.1, we have E [αk] = (1−p)
3k+2

2 (1−
√
1−p)+p

1−(1−p)
3
2

α, and we can show that for all k

E [αk] ≥ 2

3
α, (41)

Letting q = 1− p we have that

(1− p) 3k+2
2 (1−

√
1− p) + p

1− (1− p) 3
2

=
q

3k+2
2 (1−√q) + 1− q

1− q 3
2

= q
3k+2

2
1−√q
1− q3/2

+
1− q

1− q3/2

≥ 1− q
1− q3/2

≥ 2

3
, ∀q ∈ [0, 1] .

Consequently,

E
[
φk+1

] (38)+(39)+(41)
≤

(
1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
−2

(
E [αk]− 2

(
E
[
α2
k

]
+

2

3− 2p
α2

)
L
)

E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]
. (42)

To declutter the notations, Let us define

ak
def
=

(1− p) 3k+2
2 (1−

√
1− p) + p

1− (1− p) 3
2

(43)

bk
def
=

1 + (1− p)2k+1

2− p
(44)

so that E [αk] = akα and E
[
α2
k

]
= bkα

2. Then (42) becomes

E
[
φk+1

]
≤

(
1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
−2α

(
ak − 2α

(
bk +

2

3− 2p

)
L
)

E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]
. (45)

Next we would like to drop the second term in (45). For this we need to guarantee that

ak − 2αL
(
bk +

2

3− 2p

)
≥ 0 (46)

17



Let q def
= 1− p so that the above becomes

q
3k+2

2 (1−√q) + 1− q
1− q 3

2

− 2αL
(

1 + q2k+1

1 + q
+

2

1 + 2q

)
≥ 0.

In other words, after dividing through by
(

1+q2k+1

1+q + 2
1+2q

)
and re-arranging, we require that

2αL ≤

q
3k+2

2 (1−√q)+1−q

1−q
3
2

1+q2k+1

1+q + 2
1+2q

=

q
3k+2

2 (1−√q)+1−q

1−q
3
2

(1+q2k+1)(1+2q)+2(1+q)
(1+q)(1+2q)

=
q

3k+2
2 (1−√q) + 1− q

q2k+1(1 + 2q) + 3 + 4q

(1 + q)(1 + 2q)

1− q 3
2

. (47)

We are now going to show that

q
3k+2

2 (1−√q) + 1− q
q2k+1(1 + 2q) + 3 + 4q

≥ 1− q
3 + 4q

. (48)

Indeed, multiplying out the denominators of the above gives

F (q)
def
= (3 + 4q)

(
q

3k+2
2 (1−√q) + 1− q

)
− (1− q)

(
q2k+1(1 + 2q) + 3 + 4q

)
= q

3k+2
2 (1−√q)(3 + 4q)− q2k+1(1 + 2q)(1− q)

= q
3k+2

2 (1−√q)
(

3 + 4q − q k
2 (1 + 2q)(1 +

√
q)
)
.

And since q
k
2 ≤ 1, we have

F (q) ≥ q
3k+2

2 (1−√q) (3 + 4q − (1 + 2q)(1 +
√
q))

= 2q
3k+2

2 (1−√q)(1− q√q)
≥ 0.

As a result (48) holds. And thus if

2αL ≤ 1− q
3 + 4q

(1 + q)(1 + 2q)

1− q 3
2

holds, then (47) is verified for all k. This is why we impose the upper bound on the step size given
in (20), which ensures that (46) is satisfied. Finally, this condition being verified, we get that

E
[
φk+1

] (45)+(46)
≤

(
1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
+
(

1− p

2

)
E
[
ψk
]

≤ βE
[
φk
]
, (49)

where β = max
{

1− 2
3αµ, 1−

p
2

}
.

B.6 Proof of Corollary 5.1

Proof. We have that
E
[
φk
]
≤ βkφ0,

where β = max
{

1− 1
3ζp

µ
L(b) , 1−

p
2

}
. Hence using Lemma A.5, we have that the iteration com-

plexity for an ε > 0 approximate solution that verifies E
[
φk
]
≤ εφ0 is

2 max

{
3ζp
2

L(b)

µ
,

1

p

}
log

(
1

ε

)
.

For the total complexity, one can notice that in expectation, we compute 2b+ pn stochastic gradients
at each iteration.

18



B.7 Proof of Proposition 6.1

Proof. Dropping the log(1/ε) for brevity, we distinguish two cases, m ≥ 2(L(b)+2ρ(b))
µ and

m ≤ 2(L(b)+2ρ(b))
µ .

1. m ≥ 2(L(b)+2ρ(b))
µ : Then Cm(b) = 2(n+ 2bm), and hence we should use the smallest m

possible, that is, m = 2(L(b)+2ρ(b))
µ .

2. m ≤ 2(L(b)+2ρ(b))
µ : Then Cm(b) = 2(n+2bm)

m
2(L(b)+2ρ(b))

µ = 2
(
n
m + 2b

) 2(L(b)+2ρ(b))
µ .

Hence Cm(b) is decreasing in m and we should then use the highest possible value for m,
that is m = 2(L(b)+2ρ(b))

µ .

The result now follows by substituting m = 2(L(b)+2ρ(b))
µ into (18).

B.8 Proof of Proposition 6.2

Proof. Recall that have from Lemma 4.3:

L(b) =
1

b

n− b
n− 1

Lmax +
n

b

b− 1

n− 1
L, (50)

ρ(b) =
1

b

n− b
n− 1

Lmax. (51)

For brevity, we temporarily drop the term log
(
1
ε

)
in Cm(b) defined in Equation (18). Hence, we

want to find, for different values of m:

b∗ = arg min
b∈[n]

Cm(b) := 2
( n
m

+ 2b
)

max{κ(b),m}, (52)

where κ(b)
def
= L(b)+2ρ(b)

µ .

When m = n. In this case we have

Cn(b)
(18)
= 2(2b+ 1) max{κ(b), n}, (53)

Writing κ(b) explicitly:

κ(b) =
1

µ(n− 1)

(
(3Lmax − L)

n

b
+ nL− 3Lmax

)
.

Since 3Lmax > L, κ(b) is a decreasing function of b. In the light of this observation, we will
determine the optimal mini-batch size. The upcoming analysis is summarized in Table 1.

We distinguish three cases:

• If n ≤ L
µ : then κ(n) = L

µ ≥ n. Since κ(b) is decreasing, this means that for all b ∈
[n], κ(b) ≥ n. Consequently, Cn(b) = 2(2b+ 1)κ(b). Differentiating twice:

C
′′

n (b) =
4

µ(n− 1)

(3Lmax − L)n

b3
> 0.

Hence Cn(b) is a convex function. Now examining its first derivative:

C
′

n(b) =
2

µ(n− 1)

(
− (3Lmax − L)n

b2
+ 2(nL− 3Lmax)

)
,

we can see that:

– If n ≤ 3Lmax

L , Cn(b) is a decreasing function, hence

b∗ = n.

19



– If n > 3Lmax

L ,Cn(b) admits a minimizer, which we can find by setting its first derivative
to zero. The solution is

b̂
def
=

√
n

2

3Lmax − L
nL− 3Lmax

.

Hence,
b∗ =

⌊
b̂
⌋

• If n ≥ 3Lmax

µ , then κ(1) = 3Lmax

µ . Since κ(b) is decreasing, this means that for all
b ∈ [n], κ(b) ≤ n. Hence, Cn(b) = 2(2b + 1)n. Cn(b) is an increasing function of b.
Therefore,

b∗ = 1.

• If L
µ < n < 3Lmax

µ , we have κ(1) > n and κ(n) < n. Hence there exists b̃ ∈ [1, n] such
that κ(b) = n, and it is given by

b̃
def
=

(3Lmax − L)n

n(n− 1)µ− nL+ 3Lmax
. (54)

Define G(b) :
def
= (2b+ 1)κ(b). Then,

arg min
b∈[1, n]

G(b) =

{
n if n ≤ 3Lmax

L ,

b̂ if n > 3Lmax

L .
(55)

As a result, we have that

– if n ≤ 3Lmax

L , G(b) is decreasing on [1, n], hence Cn(b) is decreasing on [1, b̃] and
increasing on [b̃, n]. Then,

b∗ =
⌊
b̃
⌋
.

– if n > 3Lmax

L , G(b) is decreasing on [1, b̂] and increasing on [b̂, n]. Hence Cn(b) is
decreasing on [1,min{b̂, b̃}] and increasing on [min{b̂, b̃}, 1]. Then,

b∗ =
⌊
min{b̂, b̃}

⌋
.

To summarize, we have for m = n,

b∗ =



1 if n ≥ 3Lmax

µ⌊
min(b̃, b̂)

⌋
if max{Lµ ,

3Lmax

L } < n < 3Lmax

µ⌊
b̂
⌋

if 3Lmax

L < n < L
µ⌊

b̃
⌋

if Lµ < n ≤ 3Lmax

L

n otherwise, if n ≤ min{Lµ ,
3Lmax

L }

(56)

When m = n/b. In this case we have

Cm(b)
(18)
= 6 max{bκ(b), n},

with
bκ(b) =

1

µ(n− 1)
((3Lmax − L)n+ (nL− 3Lmax)b) ,

and thus κ(1) = 3Lmax

µ and nκ(n) = nL
µ ≥ n. We distinguish two cases:

• if n ≤ 3Lmax

L , then bκ(b) is decreasing in b. Since nκ(n) ≥ n, Cm(b) = 6bκ(b), thus
Cm(b) is decreasing in b, hence

b∗ = n

20



• if n > 3Lmax

L , bκ(b) is increasing in b. Thus,

– if n ≤ 3Lmax

µ = κ(1), then Cm(b) = 6bκ(b). Hence b∗ = 1.

– if n > 3Lmax

µ , using the definition of b̃ in Equation (54), we have that

Cm(b) =

{
6n for b ∈ [1, b̄]
6bκ(b) for b ∈ [b̄, n]

,

where

b̄ =
n(n− 1)µ− (3Lmax − L)n

nL− 3Lmax

is the batch size b ∈ [n] which verifies bκ(b) = n. Hence b∗ can be any point in
{1, . . . ,

⌊
b̄
⌋
}. In light of shared memory parallelism, b∗ =

⌊
b̄
⌋

would be the most
practical choice.

C Optimal mini-batch size for Algorithm 2

By using a similar proof as in Section B.8, we derive the following result.

Proposition C.1. Note b∗
def
= arg min

b∈[n]
Cp(b), where Cp(b) is defined in (22). For the widely used

choice p = 1
n , we have that

b∗ =


1 if n ≥ 3ζ1/n

2
Lmax

µ⌊
min(b̃, b̂)

⌋
if 3ζ1/n

2
L
µ < n <

3ζ1/n
2

Lmax

µ⌊
b̂
⌋

otherwise, if n ≤ 3ζ1/n
2

L
µ

, (57)

where ζp is defined in (20) for p ∈ (0, 1] and:

b̂ =

√
n

2

Lmax − L
nL− Lmax

, b̃ =
3ζp
2 n(Lmax − L)

µn(n− 1)− 3ζp
2 (nL− Lmax)

.

Because ζp depends on p, optimizing the total complexity with respect to b for the case p = b
n is

extremely cumbersome. Thus, we restrain our study for the optimal mini-batch sizes for Algorithm 2
to the case where p = 1

n .

Proof. For brevity, we temporarily drop the term log
(
1
ε

)
in Cp(b) defined in Equation (22). Hence,

we want to find, for different values of m:

b∗ = arg min
b∈[n]

C1/n(b) := 2 (2b+ 1) max{π(b),m}, (58)

where π(b)
def
=

3ζp
2
L(b)
µ . We have

π(b) =
3ζp
2

1

µ(n− 1)

(
n(Lmax − L)

b
+ nL− Lmax

)
. (59)

Since Lmax ≥ L, π(b) is a decreasing function on [1, n]. We distinguish three cases:

• if n > π(1) =
3ζp
2
Lmax

µ , then for all b ∈ [1, n], n > π(b). Hence,

Cn(b) = 2(2b+ 1)n.

C1/n(b) is an increasing function of b. Hence

b∗ = 1.

21



• if n < π(n) =
3ζp
2
L
µ , then for all b ∈ [1, n], n < π(b). Hence,

C1/n(b) = 2(2b+ 1)π(b).

Now, consider the function

G(b)
def
= (2b+ 1)π(b)

=
3ζp
2

1

µ(n− 1)

(
2(nL− Lmax)b+

n(Lmax − L)

b

)
+ Ω,

where Ω replaces constants which don’t depend on b. The first derivative of G(b) is

G′(b) =
3ζp
2

1

µ(n− 1)

(
−n(Lmax − L)

b2
+ 2(nL− Lmax)

)
,

and its second derivative is

G′′(b) =
3ζpn(Lmax − L)

µ(n− 1)b3
≥ 0.

G(b) is a convex function, and we can find its minimizer by setting its first derivative to zero.
This minimizer is

b̂
def
=

√
n

2

Lmax − L
nL− Lmax

.

Indeed, recall that from Lemma A.6, we have nL ≥ Lmax.

Thus, in this case, C1/n(b) is a convex function and its minimizer os

b∗ =
⌊
b̂
⌋
.

• if 3ζp
2
L
µ = π(n) ≤ n ≤ π(1) =

3ζp
2
Lmax

µ . Then there exists b ∈ [1, n] such that π(b) = n

and its expression is given by

b̃ =
3ζp
2 n(Lmax − L)

µn(n− 1)− 3ζp
2 (nL− Lmax)

.

Consequently, the function Cn(b) is decreasing on
[
1,min

{
b̃, b̂
}]

and increasing on[
min

{
b̃, b̂
}
, n
]
. Hence,

b∗ =
⌊
min

{
b̃, b̂
}⌋

.

D Samplings

In Definition 3.3, we defined b–nice sampling. For completeness, we present here some other
interesting possible samplings.
Definition D.1 (single-element sampling). Given a set of probabilities (pi)i∈[n], S is a single-element
sampling if P(|S| = 1) = 1 and

P(S = {i}) = pi ∀i ∈ [n].

Definition D.2 (partition sampling). Given a partition B of [n], S is a partition sampling if

pB
def
= P(S = B) > 0 ∀B ∈ B, and

∑
B∈B

pB = 1.

Definition D.3 (independent sampling). S is an independent sampling if it includes every i indepen-
dently with probability pi > 0.

In Section E, we will determine for each of these samplings their corresponding expected smoothness
constant.

22



E Expected Smoothness

First, we present two general properties about the expected smoothness constant presented in Lemma
4.1: we establish its existence, and we prove that it is always greater than the strong convexity
constant. Then, we determine the expected smoothness constant for particular samplings.

E.1 General properties of the expected smoothness constant

The following lemma is an adaptation of Theorem 3.6 in [8]. It establishes the existence of the
expected smoothness constant as a result of the smoothness and convexity of the functions fi, i ∈ [n].
Lemma E.1 (Theorem 3.6 in [8]). Let v be a sampling vector as defined in Definition 3.1 with vi ≥ 0
with probability one . Suppose that fv(w) = 1

n

∑n
i=1 fi(w)vi is Lv–smooth and convex. It follows

that the expected smoothness constant (4.1) is given by

L = max
i∈[n]

E [Lvvi] .

Proof. Since the fi’s are convex, each realization of fv is convex, and it follows from equation 2.1.7
in [19] that

‖∇fv(x)−∇fv(y)‖22 ≤ 2Lv (fv(x)− fv(y)− 〈∇fv(y), x− y〉) . (60)

Taking expectation over the sampling gives

E
[
‖∇fv(x)−∇fv(x∗)‖22

] (60)
≤ 2E [Lv (fv(x)− fv(x∗)− 〈∇fv(x∗), x− x∗〉)]

(7)
=

2

n
E

[
n∑
i=1

Lvvi (fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉)

]

=
2

n

n∑
i=1

E [Lvvi] (fi(x)− fi(y)− 〈∇fi(x∗), x− x∗〉)

(1)
≤ 2 max

i=1,...,n
E [Lvvi] (f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉)

= 2 max
i=1,...,n

E [Lvvi] (f(x)− f(x∗)) .

By comparing the above with (11) we have that L = max
i=1,...,n

E [Lvvi] .

Lemma E.2 (PL inequality). If f is µ–strongly convex, then for all x, y ∈ Rd

1

2µ
‖∇f(x)‖22 ≥ f(x)− f(x∗), ∀x ∈ Rd. (61)

Proof. Since f is µ–strongly convex, we have from, rearranging (6), that for all x, y ∈ Rd

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖22 .

Minimizing both sides of this inequality in y proves (61).

The following lemma shows that the expected smoothness constant is always greater than the strong
convexity constant.
Lemma E.3. If the expected smoothness inequality (11) holds with constant L and f is µ–strongly
convex, then L ≥ µ.

Proof. We have, since E [∇fv(x)−∇fv(x∗)] = ∇f(x)

E
[
‖∇fv(x)−∇fv(x∗)−∇f(x)‖22

]
Lem. A.2

= E
[
‖∇fv(x)−∇fv(x∗)‖22

]
− ‖∇f(x)‖22

(11)+(61)
≤ 2(L − µ)(f(x)− f(x∗)). (62)

Hence 2(L − µ)(f(x)− f(x∗)) ≥ 0, which means L ≥ µ.

23



Remark E.1. Consider the expected residual constant ρ defined in 4.2. This constant verifies for all
x ∈ Rd,

E [‖∇fv(x)−∇fv(x∗)−∇f(x)‖] ≤ 2ρ(f(x)− f(x∗)).

From Equation (62), we can see that we can use ρ = L as the expected residual constant.

E.2 Expected smoothness constant for particular samplings

The results on the expected smoothness constants related to the samplings we present here are all
derived in [8] and thus are given without proof. The expected smoothness constant for b-nice sampling
is given in Lemma 4.3. Here, we present this constant for single-element sampling, partition sampling
and independent sampling.

Lemma E.4 (L for single-element sampling. Proposition 3.7 in [8]). Consider S a single-element
sampling from Definition D.1. If for all i ∈ [n], fi is Li–smooth, then

L =
1

n
max
i∈[n]

Li
pi

where pi = P(S = {i}).

Remark E.2. Consider S a single-element sampling from Definition D.1. Then, the probabilities
that maximize L are

pi =
Li∑

j∈[n] Lj
.

Consequently,

L = L̄
def
=

1

n

n∑
i=1

Li.

In contrast, for uniform single-element sampling, i.e., when pi = 1
n for all i, we have L = Lmax,

which can be significantly larger than L̄. Since the step sizes of all our algorithms are a decreasing
function of L, importance sampling can lead to much faster algorithms.

Lemma E.5 (L for partition sampling. Proposition 3.7 in [8]). Given a partition B of [n], consider

S a partition sampling from Definition D.3. For all B ∈ B, suppose that fB(x)
def
= 1

b

∑
i∈B fi(x) is

LB–smooth. Then, with pB = P(S = B)

L =
1

n
max
B∈B

LB
pB

Lemma E.6 (L for independent sampling. Proposition 3.8 in [8]). Consider S a single-element
sampling from Definition D.3. Note pi = P(i ∈ S). If for all i ∈ [n], fi is Li–smooth and f is
L–smooth, then

L = L+ max
i∈[n]

1− pi
pi

Li
n

where pi = P(S = {i}).

F Expected residual

In this section, we compute bounds on the expected residual ρ from Lemma 4.2.

Lemma F.1. Let v = [v1, . . . , vn] ∈ Rn be an unbiased sampling vector with vi ≥ 0 with probability
one. It follows that the expected residual constant exists with

ρ =
λmax(Var [v])

n
Lmax, (63)

where Var [v] = E
[
(v − 1)(v − 1)>

]
.

24



Before the proof, let us introduce the following lemma (inspired from https://www.cs.ubc.ca/

~nickhar/W12/NotesMatrices.pdf).
Lemma F.2 (Trace inequality). Let A and B be symmetric n× n such that A < 0. Then,

Tr (AB) ≤ λmax(B)Tr (A)

Proof. Let A =
∑n
i=1 λi(A)UiU

>
i , where λ1(A) ≥ . . . ≥ λn(A) ≥ 0 denote the ordered

eigenvalues of matrix A. Setting Vi
def
=
√
λi(A)Ui for all i ∈ [n], we can write A =

∑n
i=1 ViV

>
i .

Then,

Tr (AB) = Tr

(
n∑
i=1

ViV
>
i B

)
=

n∑
i=1

Tr
(
ViV

>
i B

)
=

n∑
i=1

Tr
(
V >i BVi

)
=

n∑
i=1

V >i BVi

≤ λmax(B)

n∑
i=1

V >i Vi = λmax(B)Tr (A) ,

where we use in the inequality that B 4 λmax(B)In.

We now turn to the proof of the theorem.

Proof. Let v = [v1, . . . , vn] ∈ Rn be an unbiased sampling vector with vi ≥ 0 with probability one.
We will show that there exists ρ ∈ R+ such that:

E
[
‖∇fv(w)−∇fv(x∗)− (∇f(w)−∇f(x∗))‖22

]
≤ 2ρ (f(w)− f(x∗)) . (64)

Let us expand the squared norm first. DefineDF (w) as the Jacobian of F (w)
def
= [f1(w), . . . , fn(w)]

We denote R def
= (DF (w)−DF (x∗))

C
def
= ‖∇fv(w)−∇fv(x∗)− (∇f(w)−∇f(x∗))‖22

=
1

n2
‖(DF (w)−DF (x∗)) (v − 1)‖22

=
1

n2
〈R(v − 1), R(v − 1)〉Rd

=
1

n2
Tr
(
(v − 1)>R>R(v − 1)

)
=

1

n2
Tr
(
R>R(v − 1)(v − 1)>

)
.

Taking expectation,

E [C] =
1

n2
Tr
(
R>RVar [v]

)
≤ 1

n2
Tr
(
R>R

)
λmax(Var [v]). (65)

Moreover, since the fi’s are convex and Li-smooth, it follows from equation 2.1.7 in [19] that

Tr
(
R>R

)
=

n∑
i=1

‖∇fi(w)−∇fi(x∗)‖22

≤ 2

n∑
i=1

Li(fi(w)− fi(x∗)− 〈∇fi(x∗), w − x∗〉)

≤ 2nLmax(f(w)− f(x∗)). (66)

25

https://www.cs.ubc.ca/~nickhar/W12/NotesMatrices.pdf
https://www.cs.ubc.ca/~nickhar/W12/NotesMatrices.pdf


Therefore,

E [C]
(65)+(66)
≤ 2

λmax(Var [v])

n
Lmax(f(w)− f(x∗)). (67)

Which means

ρ =
λmax(Var [v])

n
Lmax (68)

Hence depending on the sampling S, we need to study the eigenvalues of the matrix Var [v], whose
general term is given by

(Var [v])ij =

{
1
pi
− 1 if i = j

Pij

pipj
− 1 otherwise,

(69)

with

pi
def
= P(i ∈ S) and Pij

def
= P(i ∈ S, j ∈ S) for i, j ∈ [n] (70)

To specialize our results to particular samplings, we introduce some notations:

• B designates all the possible sets for the sampling S,
• b = |B|, where B ∈ B, when the sizes of all the elements of B are equal.

F.1 Expected residual for uniform b-nice sampling

Lemma F.3 (ρ for b-nice sampling). Consider b-nice sampling from Definition 3.3. If each fi is
Lmax-smooth, then

ρ =
n− b

(n− 1)b
Lmax. (71)

Proof. For uniform b-nice sampling, we have using notations from (70)

∀i ∈ [n], pi =
c1
|B|

,

∀i, j ∈ [n], Pij =
c2
|B|

,

with c1 =
(
n−1
b−1
)
, c2 =

(
n−2
b−2
)

and |B| =
(
n
b

)
. Hence,

Var [v]
(69)
=



|B|
c1
− 1 |B|c2

c21
− 1 . . . |B|c2

c21
− 1 |B|c2

c21
− 1

|B|c2
c21
− 1 |B|

c1
− 1 . . . |B|c2

c21
− 1 |B|c2

c21
− 1

...
. . .

...
|B|c2
c21
− 1 . . . . . . |B|

c1
− 1 |B|c2

c21
− 1

|B|c2
c21
− 1 . . . . . . |B|c2

c21
− 1 |B|

c1
− 1


.

As noted in Appendix C of [9], Var [v] is then a circulant matrix with associated vector(
|B|
c1
− 1,

|B|c2
c21
− 1, . . . ,

|B|c2
c21
− 1

)
,

and, as such, it has two eigenvalues

λ1
def
=
|B|
c1

(
1 + (n− 1)

c2
c1

)
− n = 0,

λ2
def
=
|B|
c1

(
1− c2

c1

)
=
n(n− b)
b(n− 1)

. (72)

26



Hence, the expected residual can be computed explicitly as

ρ
(68)
=

n− b
(n− 1)b

Lmax. (73)

We can see that the residual constant is a decreasing function of b and in particular: ρ(1) = Lmax

and ρ(n) = 0.

F.2 Expected residual for uniform partition sampling

Lemma F.4 (ρ for uniform partition sampling). Suppose that b divises n and consider partition
sampling from Definition D.2. Given a partition B of [n] of size b

n , if each fi is Lmax-smooth, then,

ρ =

(
1− b

n

)
Lmax. (74)

Proof. Recall that for partition sampling, we choose a priori a partition B = B1 t · · · tBn
b

of [n].
Then, for k ∈ [nb ],

∀i ∈ [n], pi =

{
pBk

= b
n if i ∈ Bk

0 otherwise, (75)

∀i, j ∈ [n], Pij =

{
pBk

= b
n if i, j ∈ Bk

0 otherwise. (76)

Let k ∈ [nb ]. If i, j ∈ Bk, then 1
pi
− 1 =

Pij

pipj
− 1 = n

b − 1.

As a result, up to a reordering of the observations, Var [v] is a block diagonal matrix, whose diagonal
matrices, which are all equal, are given by, for k ∈ [nb ],

Vk = (
n

b
− 1)1b1

>
b =


n
b − 1 n

b − 1 . . . n
b − 1 n

b − 1
n
b − 1 n

b − 1 . . . n
b − 1 n

b − 1
...

. . .
...

n
b − 1 . . . . . . n

b − 1 n
b − 1

n
b − 1 . . . . . . n

b − 1 n
b − 1

 ∈ Rb×b.

Since all the matrices on the diagonal are equal, the eigenvalues of Var [v] are simply those of one of
these matrices. Any matrix Vk = (nb − 1)1b1>b we consider has two eigenvalues: 0 and n− b. Then,

ρ
(68)
=

(
1− b

n

)
Lmax. (77)

If b = n, SVRG with uniform partition sampling boils down to gradient descent as we recover ρ = 0.
For b = 1, we have ρ =

(
1− 1

n

)
Lmax.

F.3 Expected residual for independent sampling

Lemma F.5 (ρ for independent sampling). Consider independent sampling from Definition D.2. Let
pi = P(i ∈ S). If each fi is Lmax-smooth, then

ρ =

 1

min
i∈[n]

pi
− 1

 Lmax

n
. (78)

27



Proof. Using the notations from (70), we have

∀i ∈ [n], pi = pi,

∀i, j ∈ [n], Pij = pipj when i 6= j.

Thus, according to (69):

Var [v] = Diag

(
1

p1
− 1,

1

p2
− 1, . . . ,

1

pn
− 1

)
.

whose largest eigenvalue is

λmax(Var [v]) = max
i∈[n]

1

pi
− 1 =

1

min
i∈[n]

pi
− 1.

Consequently,

ρ
(68)
=

 1

min
i∈[n]

pi
− 1

 Lmax

n
. (79)

If pi = 1
n for all i ∈ [n], which corresponds in expectation to uniform single-element sampling

SVRG since E [|S|] = 1, we have ρ = n−1
n Lmax. While if pi = 1 for all i ∈ [n], this leads to

gradient descent and we recover ρ = 0.

The following remark gives a condition to construct an independent sampling with E|S| = b.
Remark F.1. One can add the following condition on the probabilities:

∑n
i=1 pi = b, such that

E [|S|] = b. Such a sampling is called b-independent sampling. This condition is obviously met if
pi = b

n for all i ∈ [n].
Lemma F.6. Let S be a independent sampling from [n] and let pi = P [i ∈ S] for all i ∈ [n]. If∑n
i=1 pi = b, then E [|S|] = b.

Proof. Let us model our sampling by a tossing of n independent rigged coins. Let X1, . . . , Xn be
n Bernoulli random variables representing these tossed coin, i.e., Xi ∼ B(pi), with pi ∈ [0, 1] for
i ∈ [n]. If Xi = 1, then the point i is selected in the sampling S. Thus the number of selected points
in the mini-batch |S| can be denoted as the following random variable

∑n
i=1Xi, and its expectation

equals

E [|S|] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] =

n∑
i=1

pi = b .

Remark F.2. Note that one does not need the independence of the (Xi)i=1,...,n.

F.4 Expected residual for single-element sampling

From Remark E.1, we can take L as the expected residual constant. Thus, we simply use the expected
smoothness constant from Lemma E.4.
Lemma F.7 (ρ for single-element sampling). Consider single-element sampling from Definition D.1.
If for all i ∈ [n], fi is Li-smooth, then

ρ =
1

n
max
i∈[n]

Li
pi
.

G Additional experiments

G.1 Comparison of theoretical variants of SVRG

In this series of experiments, we compare the performance of the SVRG algorithm with the settings
of [13] against Free-SVRG and L-SVRG-D with the settings given by our theory.

28



G.1.1 Experiment 1.a: comparison without mini-batching (b = 1)

A widely used choice for the size of the inner loop is m = n. Since our algorithms allow for a free
choice of the size of the inner loop, we set m = n for Free-SVRG and p = 1/n for L-SVRG-D, and
use a mini-batch size b = 1. For vanilla SVRG, we set m to its theoretical value 20Lmax/µ as in [4].
See Figures 4, 5, 6 and 7. We can see that Free-SVRG and L-SVRG-D often outperform the SVRG
algorithm [13]. It is worth noting that, in Figure 4a, 6a and 7 the classic version of SVRG can lead to
increase of the suboptimality when entering the outer loop. This is due to the fact that the reference
point is set to a weighted average of the iterates of the inner loop, instead of the last iterate.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 4: Comparison of theoretical variants of SVRG without mini-batching (b = 1) on the
YearPredictionMSD data set.

29



SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)

0 25 50 75 100
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴ 2.5×10⁴
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 25 50 75 100
epochs

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴
time

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 5: Comparison of theoretical variants of SVRG without mini-batching (b = 1) on the slice
data set.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)

0 2 4 6 8
epochs

10−6

10−4

10−2

100

re
sid

ua
l

0 50 100 150 200
time

10−6

10−4

10−2

100

re
sid

ua
l

(a) λ = 10−1

0 5 10 15 20
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 500 1000 1500 2000 2500
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 6: Comparison of theoretical variants of SVRG without mini-batching (b = 1) on the ijcnn1
data set.

30



SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)

0 2 4 6
epochs

10−6

10−4

10−2

100

re
sid

ua
l

0 100 200 300
time

10−6

10−4

10−2

100

re
sid

ua
l

(a) λ = 10−1

0 2 4 6
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 100 200 300 400
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 7: Comparison of theoretical variants of SVRG without mini-batching (b = 1) on the real-sim
data set.

31



G.1.2 Experiment 1.b: optimal mini-batching

Here we use the optimal mini-batch sizes we derived for Free-SVRG in Table 1 and L-SVRG-D in (57).
Since the original SVRG theory has no analysis for mini-batching, and the current existing theory
shows that its total complexity increases with b, we use b = 1 for SVRG. Like in Section G.1.1, the
inner loop length is set to m = n. We confirm in these experiments that setting the mini-batch size to
our predicted optimal value b∗ doesn’t hurt our algorithms’ performance. See Figures 8, 9, 10 and 11.
Note that in Section G.2.2, we further confirm that b∗ outperforms multiple other choices of the
mini-batch size. In most cases, Free-SVRG and L-SVRG-D outperform the vanilla SVRG algorithm
both on the epoch and time plots, except for the regularized logistic regression on the real-sim data
set (see Figure 11), which is a very easy problem since it is well conditioned. Comparing Figures 5
and 9 clearly underlines the speed improvement due to optimal mini-batching, both in epoch and time
plots.

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 3644285, b= 1,α * = 3.45e− 06)
Free-SVRG (m= n= 515345, b * (n) = 1,α * (b * ) = 5.76e− 06)
L-SVRG-D (p= 1/n= 1.94e− 06, b * (n) = 1,α * (b * ) = 9.87e− 06)

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 3644285, b= 1,α * = 3.45e− 06)
Free-SVRG (m= n= 515345, b * (n) = 1,α * (b * ) = 5.76e− 06)
L-SVRG-D (p= 1/n= 1.94e− 06, b * (n) = 1,α * (b * ) = 9.87e− 06)

(a) λ = 10−1

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 9671048, b= 1,α * = 3.45e− 06)
Free-SVRG (m= n= 515345, b * (n) = 2,α * (b * ) = 1.15e− 05)
L-SVRG-D (p= 1/n= 1.94e− 06, b * (n) = 2,α * (b * ) = 1.97e− 05)

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 9671048, b= 1,α * = 3.45e− 06)
Free-SVRG (m= n= 515345, b * (n) = 2,α * (b * ) = 1.15e− 05)
L-SVRG-D (p= 1/n= 1.94e− 06, b * (n) = 2,α * (b * ) = 1.97e− 05)

(b) λ = 10−3

Figure 8: Comparison of theoretical variants of SVRG with optimal mini-batch size b∗ when
theoretically available on the YearPredictionMSD data set.

32



0 25 50 75 100
epochs

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 10995527, b= 1,α * = 1.82e− 06)
Free-SVRG (m= n= 53500, b * (n) = 31,α * (b * ) = 9.31e− 05)
L-SVRG-D (p= 1/n= 1.87e− 05, b * (n) = 22,α * (b * ) = 1.12e− 04)

0 1×10⁴ 2×10⁴ 3×10⁴
time

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 10995527, b= 1,α * = 1.82e− 06)
Free-SVRG (m= n= 53500, b * (n) = 31,α * (b * ) = 9.31e− 05)
L-SVRG-D (p= 1/n= 1.87e− 05, b * (n) = 22,α * (b * ) = 1.12e− 04)

(a) λ = 10−1

0 25 50 75 100
epochs

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 1099550709, b= 1,α * = 1.82e− 06)
Free-SVRG (m= n= 53500, b * (n) = 40,α * (b * ) = 1.20e− 04)
L-SVRG-D (p= 1/n= 1.87e− 05, b * (n) = 22,α * (b * ) = 1.12e− 04)

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
time

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 1099550709, b= 1,α * = 1.82e− 06)
Free-SVRG (m= n= 53500, b * (n) = 40,α * (b * ) = 1.20e− 04)
L-SVRG-D (p= 1/n= 1.87e− 05, b * (n) = 22,α * (b * ) = 1.12e− 04)

(b) λ = 10−3

Figure 9: Comparison of theoretical variants of SVRG with optimal mini-batch size b∗ when
theoretically available on the slice data set.

0 2 4 6
epochs

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 10320, b= 1,α * = 1.94e− 03)
Free-SVRG (m= n= 141691, b * (n) = 1,α * (b * ) = 3.23e− 03)
L-SVRG-D (p= 1/n= 7.06e− 06, b * (n) = 1,α * (b * ) = 5.54e− 03)

0 50 100 150 200 250
time

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 10320, b= 1,α * = 1.94e− 03)
Free-SVRG (m= n= 141691, b * (n) = 1,α * (b * ) = 3.23e− 03)
L-SVRG-D (p= 1/n= 7.06e− 06, b * (n) = 1,α * (b * ) = 5.54e− 03)

(a) λ = 10−1

0 5 10 15 20
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 1029974, b= 1,α * = 1.94e− 03)
Free-SVRG (m= n= 141691, b * (n) = 1,α * (b * ) = 3.24e− 03)
L-SVRG-D (p= 1/n= 7.06e− 06, b * (n) = 1,α * (b * ) = 5.55e− 03)

0 500 1000 1500 2000
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 1029974, b= 1,α * = 1.94e− 03)
Free-SVRG (m= n= 141691, b * (n) = 1,α * (b * ) = 3.24e− 03)
L-SVRG-D (p= 1/n= 7.06e− 06, b * (n) = 1,α * (b * ) = 5.55e− 03)

(b) λ = 10−3

Figure 10: Comparison of theoretical variants of SVRG with optimal mini-batch size b∗ when
theoretically available on the ijcnn1 data set.

33



0 2 4 6
epochs

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 70, b= 1,α * = 2.86e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 4.76e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 8.16e− 01)

0 50 100 150 200 250
time

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 70, b= 1,α * = 2.86e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 4.76e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 8.16e− 01)

(a) λ = 10−1

0 2 4 6
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 5020, b= 1,α * = 3.98e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 6.64e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 1.14e+ 00)

0 100 200 300
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m= 20Lmax/μ= 5020, b= 1,α * = 3.98e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 6.64e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 1.14e+ 00)

(b) λ = 10−3

Figure 11: Comparison of theoretical variants of SVRG with optimal mini-batch size b∗ when
theoretically available on the real-sim data set.

G.1.3 Experiment 1.c: theoretical inner loop size or update probability without
mini-batching

Here, using b = 1, we set the inner loop size for Free-SVRG to its optimal value m∗ = 3Lmax/µ that
we derived in Proposition 6.1. We set p = 1/m∗ for L-SVRG-D. The inner loop length is set like in
Section G.1.1. See Figures 12, 13, 14 and 15. By setting the size of the inner loop to its optimal value
m∗, the results are similar to the one in experiments 1.a and 1.b. Yet, when comparing Figure 5 and
Figure 13, we observe that it leads to a clear speed up of Free-SVRG and L-SVRG-D.

34



SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= 3Lmax/μ) L-SVRG-D (b= 1, p= μ/3Lmax)

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴ 6×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 12: Comparison of theoretical variants of SVRG with optimal inner loop size m∗ when
theoretically available (b = 1) on the YearPredictionMSD data set.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= 3Lmax/μ) L-SVRG-D (b= 1, p= μ/3Lmax)

0 25 50 75 100
epochs

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴
time

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 25 50 75 100
epochs

10−3

10−2

10−1

100

re
sid

ua
l

0 1×10⁴ 2×10⁴ 3×10⁴
time

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 13: Comparison of theoretical variants of SVRG with optimal inner loop size m∗ when
theoretically available (b = 1) on the slice data set.

35



SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= 3Lmax/μ) L-SVRG-D (b= 1, p= μ/3Lmax)

0 2 4 6
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 2 4 6 8 10 12
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 5 10 15 20
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 1000 2000 3000 4000 5000 6000
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 14: Comparison of theoretical variants of SVRG with optimal inner loop size m∗ when
theoretically available (b = 1) on the ijcnn1 data set.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= 3Lmax/μ) L-SVRG-D (b= 1, p= μ/3Lmax)

0 2 4 6 8 10 12
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 20 40 60
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(a) λ = 10−1

0 2 4 6 8 10 12
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

0 30 60 90 120
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

(b) λ = 10−3

Figure 15: Comparison of theoretical variants of SVRG with optimal inner loop size m∗ when
theoretically available (b = 1) on the real-sim data set.

36



G.2 Optimality of our theoretical parameters

In this series of experiments, we only consider Free-SVRG for which we evaluate the efficiency of
our theoretical optimal parameters, namely the mini-batch size b∗ and the inner loop length m∗.

G.2.1 Experiment 2.a: comparing different choices for the mini-batch size

Here we consider Free-SVRG and compare its performance for different batch sizes: the optimal
one b∗, 1, 100,

√
n and n. In Figure 16, 17, 18 and 19, we show that the optimal mini-batch size we

predict using Table 1 always leads to the fastest convergence in epoch plot (or at least near the fastest
in Figure 16b).

0 300 600 900 1200
epochs

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 5.76e− 06
b= 100,α * (b) = 5.69e− 04
b= √n = 718,α * (b) = 3.81e− 03
b= n= 515345,α * (b) = 4.78e− 02

0 2000 4000 6000 8000
time

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 5.76e− 06
b= 100,α * (b) = 5.69e− 04
b= √n = 718,α * (b) = 3.81e− 03
b= n= 515345,α * (b) = 4.78e− 02

(a) λ = 10−1

0 300 600 900 1200
epochs

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= 1,α * (b) = 5.76e− 06
b= 100,α * (b) = 5.69e− 04
b= √n = 718,α * (b) = 3.81e− 03
b= n= 515345,α * (b) = 4.83e− 02
b= b * (n) = 2,α * (b) = 1.15e− 05

0 2.0×10³ 4.0×10³ 6.0×10³ 8.0×10³ 1.0×10⁴ 1.2×10⁴
time

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= 1,α * (b) = 5.76e− 06
b= 100,α * (b) = 5.69e− 04
b= √n = 718,α * (b) = 3.81e− 03
b= n= 515345,α * (b) = 4.83e− 02
b= b * (n) = 2,α * (b) = 1.15e− 05

(b) λ = 10−3

Figure 16: Optimality of our mini-batch size b∗ given in Table 1 for Free-SVRG on the
YearPredictionMSD data set.

37



0 25 50 75 100
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Mini-batch size b
b= 1,α * (b) = 3.03e− 06
b= 100,α * (b) = 2.94e− 04
b= √n = 231,α * (b) = 6.54e− 04
b= n= 53500,α * (b) = 9.39e− 03
b= b * (n) = 31,α * (b) = 9.31e− 05

0 2500 5000 7500 10000
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Mini-batch size b
b= 1,α * (b) = 3.03e− 06
b= 100,α * (b) = 2.94e− 04
b= √n = 231,α * (b) = 6.54e− 04
b= n= 53500,α * (b) = 9.39e− 03
b= b * (n) = 31,α * (b) = 9.31e− 05

(a) λ = 10−1

0 25 50 75 100
epochs

10−3

10−2

10−1

100

re
sid

ua
l Mini-batch size b

b= 1,α * (b) = 3.03e− 06
b= 100,α * (b) = 2.94e− 04
b= √n = 231,α * (b) = 6.55e− 04
b= n= 53500,α * (b) = 9.40e− 03
b= b * (n) = 40,α * (b) = 1.20e− 04

0 5.0×10³ 1.0×10⁴ 1.5×10⁴
time

10−3

10−2

10−1

100

re
sid

ua
l

Mini-batch size b
b= 1,α * (b) = 3.03e− 06
b= 100,α * (b) = 2.94e− 04
b= √n = 231,α * (b) = 6.55e− 04
b= n= 53500,α * (b) = 9.40e− 03
b= b * (n) = 40,α * (b) = 1.20e− 04

(b) λ = 10−3

Figure 17: Optimality of our mini-batch size b∗ given in Table 1 for Free-SVRG on the slice data set.

0 200 400 600
epochs

10−8

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 3.23e− 03
b= 100,α * (b) = 2.20e− 01
b= √n = 376,α * (b) = 4.37e− 01
b= n= 141691,α * (b) = 6.81e− 01

0 100 200 300 400 500 600
time

10−8

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 3.23e− 03
b= 100,α * (b) = 2.20e− 01
b= √n = 376,α * (b) = 4.37e− 01
b= n= 141691,α * (b) = 6.81e− 01

(a) λ = 10−1

0 500 1000 1500 2000
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 3.24e− 03
b= 100,α * (b) = 2.30e− 01
b= √n = 376,α * (b) = 4.79e− 01
b= n= 141691,α * (b) = 7.86e− 01

0 500 1000 1500 2000
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 3.24e− 03
b= 100,α * (b) = 2.30e− 01
b= √n = 376,α * (b) = 4.79e− 01
b= n= 141691,α * (b) = 7.86e− 01

(b) λ = 10−3

Figure 18: Optimality of our mini-batch size b∗ given in Table 1 for Free-SVRG on the ijcnn1 data
set.

38



0 100 200 300 400 500
epochs

10−10.0

10−7.5

10−5.0

10−2.5

100.0

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 4.76e− 01
b= 100,α * (b) = 4.44e+ 00
b= √n = 269,α * (b) = 4.69e+ 00
b= n= 72309,α * (b) = 4.85e+ 00

0 1000 2000 3000 4000
time

10−10.0

10−7.5

10−5.0

10−2.5

100.0

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 4.76e− 01
b= 100,α * (b) = 4.44e+ 00
b= √n = 269,α * (b) = 4.69e+ 00
b= n= 72309,α * (b) = 4.85e+ 00

(a) λ = 10−1

0 250 500 750 1000
epochs

10−8

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 6.64e− 01
b= 100,α * (b) = 4.29e+ 01
b= √n = 269,α * (b) = 7.19e+ 01
b= n= 72309,α * (b) = 1.20e+ 02

0 2000 4000 6000 8000
time

10−8

10−6

10−4

10−2

100

re
sid

ua
l

Mini-batch size b
b= b * (n) = 1,α * (b) = 6.64e− 01
b= 100,α * (b) = 4.29e+ 01
b= √n = 269,α * (b) = 7.19e+ 01
b= n= 72309,α * (b) = 1.20e+ 02

(b) λ = 10−3

Figure 19: Optimality of our mini-batch size b∗ given in Table 1 for Free-SVRG on the real-sim data
set.

G.2.2 Experiment 2.b: comparing different choices for the inner loop size

We set b = 1 and compare different values for the inner loop size: the optimal one m∗, Lmax/µ,
3Lmax/µ and 2n in order to validate our theory in Proposition 6.1, that is, that the overall performance
of Free-SVRG is not sensitive to the range of values of m, so long as m is close to n, Lmax/µ or
anything in between. And indeed, this is what we confirmed in Figures 20, 21, 22 and 23. The choice
m = 2n is the one suggested by [13] in their practical SVRG (Option II). We notice that our optimal
inner loop size m∗ underperforms compared to n or 2n only in Figure 23a, which is a very rare kind
of problem since it is very well conditioned (Lmax/µ ≈ 4).

39



Inner loop size
m= n m= 2n m≈ Lmax/μ m≈ 3L μ3Lmax/μ=m *

0.0 2.5 5.0 7.5 10.0
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 515345
2n= 1030690
Lmax/μ= 182214
3Lmax/μ=m * = 546643

0 5.0×10³ 1.0×10⁴ 1.5×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 515345
2n= 1030690
Lmax/μ= 182214
3Lmax/μ=m * = 546643

(a) λ = 10−1

0 5 10 15
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 515345
2n= 1030690
Lmax/μ= 483552
3Lmax/μ=m * = 1450657

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 515345
2n= 1030690
Lmax/μ= 483552
3Lmax/μ=m * = 1450657

(b) λ = 10−3

Figure 20: Optimality of our inner loop size m∗ = 3Lmax/µ for Free-SVRG on the
YearPredictionMSD data set.

Inner loop size
m= n m= 2n m≈ Lmax/μ m≈ 3L μ3Lmax/μ=m *

0 25 50 75 100
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 53500
2n= 107000
Lmax/μ= 549776
3Lmax/μ=m * = 1649329

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 53500
2n= 107000
Lmax/μ= 549776
3Lmax/μ=m * = 1649329

(a) λ = 10−1

0 25 50 75 100
epochs

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 53500
2n= 107000
Lmax/μ= 54977535
3Lmax/μ=m * = 164932606

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
time

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 53500
2n= 107000
Lmax/μ= 54977535
3Lmax/μ=m * = 164932606

(b) λ = 10−3

Figure 21: Optimality of our inner loop size m∗ = 3Lmax/µ for Free-SVRG on the slice data set.

40



Inner loop size
m= n m= 2n m≈ Lmax/μ m≈ 3L μ3Lmax/μ=m *

0 5 10 15 20
epochs

10−6

10−4

10−2

100

re
sid

ua
l

Inner loop size m
n= 141691
2n= 283382
Lmax/μ= 516
3Lmax/μ=m * = 1548

0 500 1000 1500
time

10−6

10−4

10−2

100

re
sid

ua
l

Inner loop size m
n= 141691
2n= 283382
Lmax/μ= 516
3Lmax/μ=m * = 1548

(a) λ = 10−1

0.0 2.5 5.0 7.5 10.0
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 141691
2n= 283382
Lmax/μ= 51499
3Lmax/μ=m * = 154496

0 500 1000 1500
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 141691
2n= 283382
Lmax/μ= 51499
3Lmax/μ=m * = 154496

(b) λ = 10−3

Figure 22: Optimality of our inner loop size m∗ = 3Lmax/µ for Free-SVRG on the ijcnn1 data set.

Inner loop size
m= n m= 2n m≈ Lmax/μ m≈ 3L μ3Lmax/μ=m *

0 10 20 30
epochs

10−6

10−4

10−2

100

re
sid

ua
l

Inner loop size m
n= 72309
2n= 144618
Lmax/μ= 4
3Lmax/μ=m * = 11

0 100 200 300 400 500
time

10−6

10−4

10−2

100

re
sid

ua
l

Inner loop size m
n= 72309
2n= 144618
Lmax/μ= 4
3Lmax/μ=m * = 11

(a) λ = 10−1

0 10 20 30
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 72309
2n= 144618
Lmax/μ= 251
3Lmax/μ=m * = 753

0 500 1000 1500
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

Inner loop size m
n= 72309
2n= 144618
Lmax/μ= 251
3Lmax/μ=m * = 753

(b) λ = 10−3

Figure 23: Optimality of our inner loop size m∗ = 3Lmax/µ for Free-SVRG on the real-sim data set.

41


	General properties
	Proofs of the results of the main paper
	Proof of Lemma 4.4
	Proof of Theorem 4.1
	Proof of Corollary 4.1
	Proof of Corollary 4.3
	Proof of Theorem 5.1
	Proof of Corollary 5.1
	Proof of Proposition 6.1 
	Proof of Proposition 6.2

	Optimal mini-batch size for Algorithm 2
	Samplings
	Expected Smoothness
	General properties of the expected smoothness constant
	Expected smoothness constant for particular samplings

	Expected residual
	Expected residual for uniform b-nice sampling
	Expected residual for uniform partition sampling
	Expected residual for independent sampling
	Expected residual for single-element sampling

	Additional experiments
	Comparison of theoretical variants of SVRG
	Experiment 1.a: comparison without mini-batching (b=1)
	Experiment 1.b: optimal mini-batching
	Experiment 1.c: theoretical inner loop size or update probability without mini-batching

	Optimality of our theoretical parameters
	Experiment 2.a: comparing different choices for the mini-batch size
	Experiment 2.b: comparing different choices for the inner loop size



