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Abstract

The ability to inferring latent psychological traits from human behavior is key to
developing personalized human-interacting machine learning systems. Approaches
to infer such traits range from surveys to manually-constructed experiments and
games. However, these traditional games are limited because they are typically
designed based on heuristics. In this paper, we formulate the task of designing
behavior diagnostic games that elicit distinguishable behavior as a mutual informa-
tion maximization problem, which can be solved by optimizing a variational lower
bound. Our framework is instantiated by using prospect theory to model varying
player traits, and Markov Decision Processes to parameterize the games. We vali-
date our approach empirically, showing that our designed games can successfully
distinguish among players with different traits, outperforming manually-designed
ones by a large margin.

1 Introduction

Human behavior can vary widely across individuals. For instance, due to varying risk preferences,
some people arrive extremely early at an airport, while others arrive the last minute. Being able to
infer these latent psychological traits, such as risk preferences or discount factors for future rewards,
is of broad multi-disciplinary interest, within psychology, behavioral economics, as well as machine
learning. As machine learning finds broader societal usage, understanding users’ latent preferences is
crucial to personalizing these data-driven systems to individual users.

In order to infer such psychological traits, which require cognitive rather than physiological assess-
ment (e.g. blood tests), we need an interactive environment to engage users and elicit their behavior.
Approaches to do so have ranged from questionnaires [7, 17, 9, 24] to games [2, 10, 21, 20] that
involve planning and decision making. It is this latter approach of game that we consider in this
paper. However, there has been some recent criticism of such manually-designed games [3, 5, 8]. In
particular, a game is said to be effective, or behavior diagnostic, if the differing latent traits of players
can be accurately inferred based on their game play behavior. However, manually-designed games
are typically specified using heuristics that may not always be reliable or efficient for distinguishing
human traits given game play behavior.

As a motivating example, consider a game environment where the player can choose to stay or
moveRight on a Path. Each state on the Path has a reward. The player accumulates the reward as
they move to a state. Suppose players have different preferences (e.g. some might magnify positive
reward and not care too much about negative reward, while others might be the opposite), but are
otherwise rational, so that they choose optimal strategies given their respective preferences. If we
want to use this game to tell apart such players, how should we assign reward to each state in the
Path? Heuristically, one might suggest there should be positive reward to lure gain-seeking players
and negative reward to discourage the loss-averse ones, as shown in Figure 1a. However, as shown
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in Figure 1b and 2a, the induced behavior (either policy or sampled trajectories) are similar for
players with different loss preferences, and consequently not helpful in distinguishing them based on
their game play behavior. In Figure 1c, an alternative reward design is shown, which elicits more
distinguishable behavior (see Figure 1d and 2b). This example illustrates that it is nontrivial to design
effective games based on intuitive heuristics, and a more systematic approach is needed.
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(c) Reward designed by optimization
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(d) Polices by different players (induced by reward in Figure 1c)

Figure 1: Comparing reward designed by heuristics and by optimization. The game is a 6-state
Markov Decision Process. Each state is represented as a square (see 1a or 1c) and player can choose
stay or moveRight. The goal is to design reward for each state such that different types of players
(Loss-Neutral, Gain-Seeking, Loss-Averse) have different behaviors. We show reward designed by
heuristics in 1a and by optimization in 1c. Using these rewards, the policies of different players are
shown on the right. For each player, its policy specifics the probability of taking an action (stay
or moveRight) at each state. For example, Loss-Neutral’s policy in 1d shows that it is more likely
to choose stay than moveRight at the first (i.e. left-most) state, while in the second to fifth states,
choosing moveRight has a higher probability.

Loss-Neutral Gain-Seeking Loss-Averse

(a) Sampled trajectories using policies in Figure 1b

Loss-Neutral Gain-Seeking Loss-Averse

(b) Sampled trajectories using policies in Figure 1d

Figure 2: Comparing sampled trajectories using policies induced by different rewards. To further
visualize how each type of players behave given different rewards, we sample trajectories using
their induced policies. Given reward designed by heuristics (Figure 1a), all players behave similarly
by traversing all the states (see 2a). However, given reward designed by optimization (Figure 1c),
Gain-Seeking and Loss-Averse players behave differently. In particular, Loss-Averse chooses stay
most of the time (see 2b), since the first state has a relatively large reward. Hence, reward designed
by optimization is more effective at eliciting distinctive behaviors.

In this work, we formalize this task of behavior diagnostic game design, introducing a general
framework consisting of a player space, game space, and interaction model. We use mutual informa-
tion to quantitatively capture game effectiveness, and present a practical algorithm that optimizes a
variational lower bound. We instantiate our framework by setting the player space using prospect
theory [15], and setting the game space and interaction model using Markov Decision Processes [13].
Empirically, our quantitative optimization-based approach designs games that are more effective
at inferring players’ latent traits, outperforming manually-designed games by a large margin. In
addition, we study how the assumptions in our instantiation affect the effectiveness of the designed
games, showing that they are robust to modest misspecification of the assumptions.
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2 Behavior Diagnostic Game Design

We consider the problem of designing interactive games that are informative in the sense that a
player’s type can be inferred from their play. A game-playing process contains three components: a
player z, a gameM and an interaction model Ψ. Here, we assume each player (which is represented
by its latent trait) lies in some player space Z . We also denote Z ∈ Z as the random variable
corresponding to a randomly selected player from Z with respect to some prior (e.g. uniform)
distribution pZ over Z . Further, we assume there is a family of parameterized games {Mθ : θ ∈ Θ}.
Given a player z ∼ pZ , a gameMθ, the interaction model Ψ describes how a behavioral observation
x from some observation space X is generated. Specifically, each round of game play generates
behavioral observations x ∈ X as x ∼ Ψ (z,Mθ), where the interaction model Ψ (z,Mθ) is some
distribution over the observation space X . In this work, we assume pZ and Ψ are fixed and known.
Our goal is to design a gameMθ such that the generated behavior observations x are most informative
for inferring the player z ∈ Z .

2.1 Maximizing Mutual Information

Our problem formulation introduces a probabilistic model over the players Z (as specified by
the prior distribution pZ) and the behavioral observations X (as specified by Ψ (Z,Mθ)), so that
pZ,X(z, x) = pZ(z) ·Ψ (z,Mθ) (x). Our goal can then be interpreted as maximizing the information
on Z contained in X , which can be captured by the mutual information between Z and X:

I(Z,X) =

∫ ∫
pZ,X(z, x) log

pZ,X(z, x)

pZ(z)pX(x)
dzdx (1)

=

∫ ∫
pZ(z) ·Ψ (z,Mθ) (x) log

pZ|X(z|x)

pZ(z)
dzdx, (2)

so that the mutual information is a function of the game parameters θ ∈ Θ.
Definition 2.1. (Behavior Diagnostic Game Design) Given a player space Z , a family of parameter-
ized gamesMθ, and an interaction model Ψ(z,Mθ), our goal is to find:

θ∗ = arg max
θ
I(Z;X). (3)

2.2 Variational Mutual Information Maximization

It is difficult to directly optimize the mutual information objective in Eq (2), as it requires access to
a posterior pZ|X(z|x) that does not have a closed analytical form. Following the derivations in [6]
and [1], we opt to maximize a variational lower bound of the mutual information objective. Letting
qZ|X(z|x) denote any variational distribution that approximates pZ|X(z|x), and H(Z) denote the
marginal entropy of Z, we can bound the mutual information as:

I(Z,X) =

∫ ∫
pZ(z) ·Ψ (z,Mθ) (x) log

pZ|X(z|x)

pZ(z)
dzdx (4)

= Ez∼pZ
[
Ex∼Ψ(z,Mθ)

[
log

pZ|X(z|x)

qZ|X(z|x)
+ log qZ|X(z|x)

]]
+H(Z) (5)

≥ Ez∼pZ ,x∼Ψ(z,Mθ)

[
log qZ|X(z|x)

]
+H(Z), (6)

so that the expression in Eq (6) forms a variational lower bound for the mutual information I(Z,X).

3 Instantiation: Prospect Theory based MDP Design

Our framework in Section 2 provides a systematic view of behavior diagnostic game design, and each
of its components can be chosen based on contexts and applications. We present one instantiation
by setting the player space Z , the gameM, and the interaction model Ψ. For the player space Z ,
we use prospect theory [15] to describe how players perceive or distort values. We model the game
M as a Markov Decision Process [13]. Finally, a (noisy) value iteration is used to model players’
planning and decision-making, which is part of the interaction model Ψ. In the next subsection, we
provide a brief background of these key ingredients.
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3.1 Background

Prospect Theory Prospect theory [15] describes the phenomenon that different people can perceive
the same numerical values differently. For example, people who are averse to loss, e.g. it is better
to not lose $5 than to win $5, magnify the negative reward or penalty. Following [23], we use the
following distortion function v to describe how people shrink or magnify numerical values,

v(r; ξpos, ξneg, ξref) =

{
(r − ξref)

ξpos r ≥ ξref

−(ξref − r)ξneg r < ξref
(7)

where ξref is the reference point that people compare numerical values against. ξpos and ξneg are the
amount of distortion applied to the positive and negative amount of the reward with respect to the
reference point.

We use this framework of prospect theory to specify our player space. Specifically, we represent
a player z by their personalized distortion parameters, so that z = (ξpos, ξneg, ξref). In this work,
unless we specify otherwise, we assume that ξref is set to zero. Given these distortion parameters, the
players perceive a distorted v(R; z) of any reward R in the game, as we detail in the discussion of
the interaction model Ψ subsequently.

Markov Decision Process A Markov Decision Process (MDP)M is defined by (S,A, T,R, γ),
where S is the state space and A is the action space. For each state-action pair (s, a), T (·|s, a) is a
probability distribution over the next state. R : S → R specifies a reward function. γ ∈ (0, 1) is a
discount factor. We assume that both states and actions are discrete and finite. For all s ∈ S , a policy
π(·|s) defines a distribution over actions to take at state s. A policy for an MDPM is denoted as
πM.

Value Iteration Given a Markov Decision Process (S,A, T,R, γ), value iteration is an algorithm
that can be written as a simple update operation, which combines one sweep of policy evaluation and
one sweep of policy improvement [25],

V (s)← maxa
∑
s′

T (s′|s, a)(R(s′) + γV (s′)) (8)

and computes a value function V : S → R for each state s ∈ S . A probabilistic policy can be defined
similar to maximum entropy policy [28, 18] based on the value function, i.e.,

π(a|s) = softmax
a

∑
s′

T (s′|s, a)(R(s′) + γV (s′)) (9)

Value iteration converges to an optimal policy for discounted finite MDPs [25].

3.2 Instantiation

In this instantiation, we consider the gameMθ := (S,A, Tθ, Rθ, γ), and design the reward function
and the transition probabilities of the game by learning the parameters θ. We assume that each player
z = (ξpos, ξneg) behaves according to a noisy near-optimal policy π defined by value iteration and
an MDP with distorted reward (S,A, Tθ, v(Rθ; z), γ). The game play has L steps in total. The
interaction model Ψ (z,Mθ) is then the distribution of the trajectories x = {(st, at)}Lt=1, where
the player always starts at sinit, and at each state st, we sample an action at using the Gumbel-
max trick [11] with a noise parameter λ. Specifically, let the probability over actions π(·|st) be
(u1, . . . , u|A|) and gi be independent samples from Gumbel(0, 1), a sampled action at can be defined
as

at = arg max
i=1,...,|A|

log(ui)

λ
+ gi. (10)

When λ = 1, there is no noise and at distributes according to π(·|st). The amount of noise increases
as λ increases. Similarly, we sample the next state st+1 from T (·|st, at) using Gumbel-max, with λ
always set to one.

Our goal in behavior diagnostic game design then reduces to solving the optimization in Eq (3), where
the player space Z consisting of distortion parameters z = (ξpos, ξneg), the game space parameterized
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asMθ = (S,A, Tθ, Rθ, γ), and an interaction model Ψ(z,Mθ) of trajectories x generated by noisy
value iteration using distorted reward v(Rθ; z),

As discussed in the previous section, for computational tractability, we optimize the variational lower
bound from Eq (6) on this mutual information. As the variational distribution qZ|X , we use a factored
Gaussian, with means parameterized by a Recurrent Neural Network [12]. The input at each step
is the concatenation of a one-hot (or softmax approximated) encoding of state st and action at. We
optimize this variational bound via stochastic gradient descent [16]. In order for the objective to
be end-to-end differentiable, during trajectory sampling, we use the Gumbel-softmax trick [14, 19],
which uses the softmax function as a continuous approximation to the argmax operator in Eq (10).

4 Experiments

4.1 Learning to Design Games

We learn to design gamesM by maximizing the mutual information objective in Eq (6), with known
player prior pZ and interaction model Ψ. We study how the degrees of freedom in gamesM affect
the mutual information. In particular, we consider environments that are Path or Grid of various
sizes. Path environment has two actions, stay and moveRight. And Grid has one additional action
moveUp. Besides learning the reward Rθ, we also consider learning part of the transition Tθ. To be
more specific, we learn the probability αs that the action moveRight actually stays in the same state.
Therefore moveRight becomes a probabilistic action that at each state s,

p(s′|s, moveRight) =


αs if s′ = s

1− αs if s′ = s+ 1

0 otherwise
(11)

We experiment with Path of length 6 and Grid of size 3 by 6. The player prior pZ is uniform over
[0.5, 1.5]× [0.5, 1.5]. For the baseline, we manually design the reward for each state s to be1

RPath(s) =


−3 if s = 3

5 if s = 6

0 otherwise
RGrid(s) =


−3 if s = 9 (a middle state)
5 if s = 18 (a corner state)
0 otherwise

The intuition behind this design is that the positive reward at the end of the Path (or Grid) will
encourage players to explore the environment, while the negative reward in the middle will discourage
players that are averse to loss but not affect gain-seeking players, hence elicit distinctive behavior.

In Table 1, mutual information optimization losses for different settings are listed. The baselines have
higher mutual information loss than other learnable settings. When only the reward is learnable, the
Grid setting achieves slightly better mutual information than the Path one. However, when both
reward and transition are learnable, the Grid setting significantly outperforms the others. This shows
that our optimization-based approach can effectively search through the large game space and find
the ones that are more informative.

Table 1: Mutual Information Optimization Loss
Baselines Learn Reward Only Learn Reward and Transition

Path (1 x 6) Grid (3 x 6) Path (1 x 6) Grid (3 x 6) Path (1 x 6) Grid (3 x 6)

0.111 0.115 0.108 0.099 0.107 0.078

1We have also experimented with different manually designed baseline reward functions. Their performances
are similar to the presented baselines, both in terms of mutual information loss and player classifier accuracy.
The performance of randomly generated rewards is worse than the manually designed baselines.
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4.2 Player Classification Using Designed Games

To further quantify the effectiveness of learned games, we create downstream classification tasks.
In the classification setting, each data instance consists of a player label y and its behavior (i.e.
trajectory) x. We assume that the player attribute z is sampled from a mixture of Gaussians.

z ∼
K∑
k=1

1

K
· N

([
ξkpos
ξkneg

]
, 0.1 · I

)
(12)

The label y for each player corresponds to the component k, and the trajectory is sampled from
x ∼ Ψ

(
z,Mθ̂

)
, whereMθ̂ is a learned game. There are three types (i.e. components) of players,

namely Loss-Neutral (ξpos = 1, ξneg = 1), Gain-Seeking (ξpos = 1.2, ξneg = 0.7), and Loss-Averse
(ξpos = 0.7, ξneg = 1.2). We simulate 1000 data instances for train, and 100 each for validation and
test. We use a model similar to the one used for qZ|X , except for the last layer, which now outputs a
categorical distribution. The optimization is run for 20 epochs and five rounds with different random
seed. Validation set is used to select the test set performance. Mean test accuracy and its standard
deviation are reported in Table 2.

Table 2: Classification Task Accuracy
Baselines Learn Reward Only Learn Reward and Transition

Path (1 x 6) Grid (3 x 6) Path (1 x 6) Grid (3 x 6) Path (1 x 6) Grid (3 x 6)

0.442 (0.056) 0.482(.052) 0.678 (0.044) 0.658 (0.066) 0.686 (0.044) 0.822 (0.027)

Similar to the trend in mutual information, baseline methods have the lowest accuracies, which are
about 35% less than any learned games. Grid with learned reward and transition outperforms other
methods with a large margin of a 20% improvement in accuracy.

To get a more concrete understanding of learned games and the differences among them, we visualize
two examples below. In Figure 3a, the learned reward for each state in a Path environment is shown
via heatmap. The learned reward is similar to the manually designed one—highest at the end and
negative in the middle—but with an important twist: there are also smaller positive rewards at the
beginning of the Path. This twist successfully induces distinguishable behavior from Loss-Averse
players. The induced policy (Figure 3b)) and sampled trajectories (Figure 3c)) are very different
between Loss-Averse and Gain-Seeking. However, Loss-Neutral and Loss-Averse players still behave
quite similarly in this game.
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(a) Learned reward for each state in a
1 x 6 Path

stay
Loss-Neutral

moveRight

stay
Gain-Seeking

moveRight

stay
Loss-Averse
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(b) Induced policies by different types of players, using reward in 3a
Loss-Neutral Gain-Seeking Loss-Averse

(c) Sampled trajectories by different types of players, using policies in 3b

Figure 3: A 1 x 6 Path with learned reward. Gain-Seeking and Loss-Averse behave distinctively.

In Figure 4c and 4d, we show induced policies and sampled trajectories in a Grid environment
where both reward and transition are learned. The learned game elicits distinctive behavior from
different types of players. Loss-Averse players choose moveUp at the beginning and then always stay.
Loss-Neutral players explore along the states in the bottom row, while Gain-Seeking players choose
moveUp early on and explore the middle row. The learned reward and transition are visualized in
Figure 4a and 4b. The middle row is particular interesting. The states have very mixed reward—some
are relatively high and some are the lowest. We conjecture that the possibility of stay (when take
moveRight) at some states with high reward (e.g. the first and third state from left in the middle row)
makes Gain-Seeking behave differently from Loss-Neutral.
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(a) Learned reward for each state in a 3 x 6 Grid (b) Learned transition p(s|s, moveRight) at each state

stay

Loss-Neutral

moveRight

moveUp

stay

Gain-Seeking

moveRight

moveUp

stay

Loss-Averse

moveRight

moveUp

(c) Induced policies by different types of players, using reward in 4a and transition in 4b
Loss-Neutral Gain-Seeking Loss-Averse

(d) Sampled trajectories by different types of players, using policies in 4c and transition in 4b

Figure 4: A 3 x 6 Grid with learned reward and transition (see 4a and 4b) elicit distinguishable
behaviors from different types of players.

We also consider the case where the interaction model has noise, as described in Eq (10), when
generating trajectories for classification data. In practice, it is unlikely that one interaction model
describes all players, since players have a variety of individual differences. Hence it is important to
study how effective the learned games are when downstream task interaction model Ψ is noisy and
deviates from assumption. In Table 3, classification accuracy on test set is shown at different noise
level. We consider three designs here. As defined above, a baseline method which uses manually
designed reward in Path, a Path environment with learned reward, and a Grid environment with both
learned reward and transition. Interestingly, while adding noise decreases classification performance
of learned games, the manually designed game (i.e. baseline method) achieves higher accuracy in the
presence of noise. Nevertheless, the learned Grid outperforms others, though the margin decreases
from 20% to 12%.

Table 3: Classification Accuracy at Different Noise Level
λ = 1 λ = 1.5 λ = 2.5

Path (1 x 6, Baseline) 0.442 (0.056) 0.510 (0.053) 0.482 (0.041)
Path (1 x 6, Learn Reward Only) 0.678 (0.044) 0.678 (0.039) 0.650 (0.048)
Grid (3 x 6, Learn Reward and Transition) 0.822 (0.027) 0.778 (0.044) 0.730 (0.061)
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In Figure 5, we visualize the trajectories when the noise in the interaction model Ψ is λ = 2.5. This
provides intuition for why the classification performance decreases, as the boundary between the
behavior of Loss-Neutral and Gain-Seeking is blurred.

Loss-Neutral Gain-Seeking Loss-Averse

Figure 5: Sampled trajectories with noise λ = 2.5

4.3 Ablation Study

Lastly, we consider using different distributions for player prior pZ on (ξpos, ξneg), which could be
agnostic of the downstream tasks or not. We compare the classification performance when pZ is
uniform or biased towards the distribution of player types. We consider two cases: Full and Diagonal.
In Full, the player prior pZ is uniform over [0.5, 1.5]× [0.5, 1.5]. In Diagonal, pZ is uniform over the
union of [0.5, 1]× [1, 1.5] and [1, 1.5]× [0.5, 1], which is a strict subset of the Full case and arguably
closer to the player types distribution in the classification task. In Table 4, we show performance of
games learned with Full or Diagonal player prior.

Table 4: Comparison of Learned Games with Different Player Prior pZ

Method Mutual Information Loss Classification Accuracy

Full Diagonal Full Diagonal

Reward Only Path 0.108 0.043 0.678 (0.044) 0.658 (0.034)
Reward Only Grid 0.099 0.039 0.658 (0.066) 0.662 (0.060)
Reward and Transition Path 0.107 0.043 0.686 (0.044) 0.668 (0.048)
Reward and Transition Grid 0.078 0.036 0.822 (0.027) 0.712 (0.051)

Across all methods, using the Diagonal prior achieves lower mutual information loss compared to
using the Full one. However, this trend does not generalize to classification. Using the Diagonal
prior hurts classification accuracy. We visualize the sampled trajectories in Figure 6. As we can
see, Loss-Neutral no longer has its own distinctive behavior, which is the case using Full prior (see
Figure 4d). It seems that learned game is more likely to overfit the Diagonal prior, which leads to
poor generalization on downstream tasks. Therefore, using a play prior pZ agnostic to downstream
task might be preferred.

Loss-Neutral Gain-Seeking Loss-Averse

Figure 6: Sampled trajectories using Diagonal player prior

5 Conclusion and Discussion

We consider designing games for the purpose of distinguishing among different types of players. We
propose a general framework and use mutual information to quantify the effectiveness. Comparing
with games designed by heuristics, our optimization-based designs elicit more distinctive behaviors.
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Our behavior-diagnostic game design framework can be applied to various applications, with player
space, game space and interaction model instantiated by domain-specific ones. For example, [22]
studies how to generate games for the purpose of differentiating players using player performance
instead of behavior trajectory as the observation space. In addition, we have considered the case
when the player traits inferred from their game playing behavior are stationary. However, as pointed
out by [26, 27, 4], there can be complex relationships between players’ in-game and outside-game
personality traits. In future work, we look forward to addressing this distribution shift.
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