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Abstract
Intense recent discussions have focused on how to provide individuals with control
over when their data can and cannot be used — the EU’s Right To Be Forgotten
regulation is an example of this effort. In this paper we initiate a framework studying
what to do when it is no longer permissible to deploy models derivative from specific
user data. In particular, we formulate the problem of efficiently deleting individual
data points from trained machine learning models. For many standard ML models,
the only way to completely remove an individual’s data is to retrain the whole model
from scratch on the remaining data, which is often not computationally practical.
We investigate algorithmic principles that enable efficient data deletion in ML.
For the specific setting of k-means clustering, we propose two provably efficient
deletion algorithms which achieve an average of over 100× improvement in deletion
efficiency across 6 datasets, while producing clusters of comparable statistical
quality to a canonical k-means++ baseline.

1 Introduction
Recently, one of the authors received the redacted email below, informing us that an individual’s data
cannot be used any longer. The UK Biobank [79] is one of the most valuable collections of genetic
and medical records with half a million participants. Thousands of machine learning classifiers are
trained on this data, and thousands of papers have been published using this data.

EMAIL –– UK BIOBANK ––
Subject: UK Biobank Application [REDACTED], Participant Withdrawal Notification [REDACTED]

Dear Researcher,

As you are aware, participants are free to withdraw form the UK Biobank at any time and request that their
data no longer be used. Since our last review, some participants involved with Application [REDACTED]
have requested that their data should longer be used.

The email request from the UK Biobank illustrates a fundamental challenge the broad data science
and policy community is grappling with: how should we provide individuals with flexible control
over how corporations, governments, and researchers use their data? Individuals could decide at
any time that they do not wish for their personal data to be used for a particular purpose by a particular
entity. This ability is sometimes legally enforced. For example, the European Union’s General
Data Protection Regulation (GDPR) and former Right to Be Forgotten [24, 23] both require that
companies and organizations enable users to withdraw consent to their data at any time under certain
circumstances. These regulations broadly affect international companies and technology platforms
with EU customers and users. Legal scholars have pointed out that the continued use of AI systems
directly trained on deleted data could be considered illegal under certain interpretations and ultimately
concluded that: it may be impossible to fulfill the legal aims of the Right to be Forgotten in artificial
intelligence environments [86]. Furthermore, so-called model-inversion attacks have demonstrated
the capability of adversaries to extract user information from trained ML models [85].
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Concretely, we frame the problem of data deletion in machine learning as follows. Suppose a
statistical model is trained on n datapoints. For example, the model could be trained to perform disease
diagnosis from data collected from n patients. To delete the data sampled from the i-th patient from
our trained model, we would like to update it such that it becomes independent of sample i, and looks
as if it had been trained on the remaining n−1 patients. A naive approach to satisfy the requested
deletion would be to retrain the model from scratch on the data from the remaining n−1 patients. For
many applications, this is not a tractable solution – the costs (in time, computation, and energy) for
training many machine learning models can be quite high. Large scale algorithms can take weeks to
train and consume large amounts of electricity and other resources. Hence, we posit that efficient data
deletion is a fundamental data management operation for machine learning models and AI systems,
just like in relational databases or other classical data structures.

Beyond supporting individual data rights, there are various other possible use cases in which
efficient data deletion is desirable. To name a few examples, it could be used to speed-up leave-one-
out-cross-validation [2], support a user data marketplace [75, 80], or identify important or valuable
datapoints within a model [37].

Deletion efficiency for general learning algorithms has not been previously studied. While the
desired output of a deletion operation on a deterministic model is fairly obvious, we have yet to even
define data deletion for stochastic learning algorithms. At present, there is only a handful of learning
algorithms known to support fast data deletion operations, all of which are deterministic. Even so,
there is no pre-existing notion of how engineers should think about the asymptotic deletion efficiency
of learning systems, nor understanding of the kinds of trade-offs such systems face.

The key components of this paper include introducing deletion efficient learning, based on an
intuitive and operational notion of what it means to (efficiently) delete data from a (possibly stochastic)
statistical model. We pose data deletion as an online problem, from which a notion of optimal deletion
efficiency emerges from a natural lower bound on amortized computation time. We do a case-study
on deletion efficient learning using the simple, yet perennial, k-means clustering problem. We
propose two deletion efficient algorithms that (in certain regimes) achieve optimal deletion efficiency.
Empirically, on six datasets, our methods achieve an average of over 100× speedup in amortized
runtime with respect to the canonical Lloyd’s algorithm seeded by k-means++ [53, 5]. Simultaneously,
our proposed deletion efficient algorithms perform comparably to the canonical algorithm on three
different statistical metrics of clustering quality. Finally, we synthesize an algorithmic toolbox for
designing deletion efficient learning systems.

We summarize our work into three contributions:

(1) We formalize the problem and notion of efficient data deletion in the context of machine learning.

(2) We propose two different deletion efficient solutions for k-means clustering that have theoretical
guarantees and strong empirical results.

(3) From our theory and experiments, we synthesize four general engineering principles for
designing deletion efficient learning systems.

2 Related Works
Deterministic Deletion Updates As mentioned in the introduction, efficient deletion operations
are known for some canonical learning algorithms. They include linear models [55, 27, 83, 81, 18, 74],
certain types of lazy learning [88, 6, 11] techniques such as non-parametric Nadaraya-Watson kernel
regressions [61] or nearest-neighbors methods [22, 74], recursive support vector machines [19, 81],
and co-occurrence based collaborative filtering [74].

Data Deletion and Data Privacy Related ideas for protecting data in machine learning — e.g.
cryptography [63, 16, 14, 13, 62, 31], and differential privacy [30, 21, 20, 64, 1] — do not lead to
efficient data deletion, but rather attempt to make data private or non-identifiable. Algorithms that
support efficient deletion do not have to be private, and algorithms that are private do not have to
support efficient deletion. To see the difference between privacy and data deletion, note that every
learning algorithm supports the naive data deletion operation of retraining from scratch. The algorithm
is not required to satisfy any privacy guarantees. Even an operation that outputs the entire dataset in
the clear could support data deletion, whereas such an operation is certainly not private. In this sense,
the challenge of data deletion only arises in the presence of computational limitations. Privacy, on the
other hand, presents statistical challenges, even in the absence of any computational limitations. With
that being said, data deletion has direct connections and consequences in data privacy and security,
which we explore in more detail in Appendix A.
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3 Problem Formulation
We proceed by describing our setting and defining the notion of data deletion in the context of a
machine learning algorithm and model. Our definition formalizes the intuitive goal that after a specified
datapoint, x, is deleted, the resulting model is updated to be indistinguishable from a model that was
trained from scratch on the dataset sans x. Once we have defined data deletion, we define a notion of
deletion efficiency in the context of an online setting. Finally, we conclude by synthesizing high-level
principles for designing deletion efficient learning algorithms.

Throughout we denote datasetD={x1,...,xn} as a set consisting ofn datapoints, with each datapoint
xi ∈Rd; for simplicity, we often represent D as a n×d real-valued matrix as well. Let A denote
a (possibly randomized) algorithm that maps a dataset to a model in hypothesis spaceH. We allow
models to also include arbitrary metadata that is not necessarily used at inference time. Such metadata
could include data structures or partial computations that can be leveraged to help with subsequent
deletions. We also emphasize that algorithm A operates on datasets of any size. Since A is often
stochastic, we can also treatA as implicitly defining a conditional distribution overH given datasetD.
Definition 3.1. Data Deletion Operation: We define a data deletion operation for learning algorithm
A,RA(D,A(D),i), which maps the datasetD, modelA(D), and index i∈{1,...,n} to some model
inH. Such an operation is a data deletion operation if, for allD and i, random variablesA(D−i) and
RA(D,A(D),i) are equal in distribution,A(D−i)=dRA(D,A(D),i).

Here we focus on exact data deletion: after deleting a training point from the model, the model should
be as if this training point had never been seen in the first place. The above definition can naturally be
relaxed to approximate data deletion by requiring a bound on the distance (or divergence) between dis-
tributions ofA(D−i) andRA(D,A(D),i). Refer to Appendix A for more details on approximate data
deletion, especially in connection to differential privacy. We defer a full discussion of this to future work.

A Computational Challenge Every learning algorithm,A, supports a trivial data deletion operation
corresponding to simply retraining on the new dataset after the specified datapoint has been removed
— namely running algorithm A on the dataset D−i. Because of this, the challenge of data deletion
is computational: 1) Can we design a learning algorithmA, and supporting data structures, so as to
allow for a computationally efficient data deletion operation? 2) For what algorithmsA is there a data
deletion operation that runs in time sublinear in the size of the dataset, or at least sublinear in the time
it takes to compute the original model, A(D)? 3) How do restrictions on the memory-footprint of
the metadata contained inA(D) impact the efficiency of data deletion algorithms?

Data Deletion as an Online Problem One convenient way of concretely formulating the computa-
tional challenge of data deletion is via the lens of online algorithms [17]. Given a dataset ofn datapoints,
a specific training algorithmA, and its corresponding deletion operationRA, one can consider a stream
ofm≤n distinct indices, i1,i2,...,im∈{1,...,n}, corresponding to the sequence of datapoints to be
deleted. The online task then is to design a data deletion operation that is given the indices {ij} one
at a time, and must output A(D−{i1,...,ij}) upon being given index ij . As in the extensive body of
work on online algorithms, the goal is to minimize the amortized computation time. The amortized
runtime in the proposed online deletion setting is a natural and meaningful way to measure deletion
efficiency. A formal definition of our proposed online problem setting can be found in Appendix A.

In online data deletion, a simple lower bound on amortized runtime emerges. All (sequential)
learning algorithms A run in time Ω(n) under the natural assumption that A must process each
datapoint at least once. Furthermore, in the best case,A comes with a constant time deletion operation
(or a deletion oracle).
Remark 3.1. In the online setting, forn datapoints andm deletion requests we establish an asymptotic
lower bound of Ω( nm ) for the amortized computation time of any (sequential) learning algorithm.

We refer to an algorithm achieving this lower bound as deletion efficient. Obtaining tight upper
and lower bounds is an open question for many basic learning paradigms including ridge regression,
decision tree models, and settings whereA corresponds to the solution to a stochastic optimization
problem. In this paper, we do a case study on k-means clustering, showing that we can achieve deletion
efficiency without sacrificing statistical performance.

3.1 General Principles for Deletion Efficient Machine Learning Systems

We identify four design principles which we envision as the pillars of deletion efficient learning
algorithms.

3



Linearity Use of linear computation allows for simple post-processing to undo the influence of
a single datapoint on a set of parameters. Generally speaking, the Sherman-Morrison-Woodbury
matrix identity and matrix factorization techniques can be used to derive fast and explicit formulas for
updating linear models [55, 27, 83, 43]. For example, in the case of linear least squares regressions, QR
factorization can be used to delete datapoints from learned weights in timeO(d2) [41, 90]. Linearity
should be most effective in domains in which randomized [70], reservoir [89, 76], domain-specific
[54], or pre-trained feature spaces elucidate linear relationships in the data.

Laziness Lazy learning methods delay computation until inference time [88, 11, 6], resulting in
trivial deletions. One of the simplest examples of lazy learning is k-nearest neighbors [32, 4, 74],
where deleting a point from the dataset at deletion time directly translates to an updated model at
inference time. There is a natural affinity between lazy learning and non-parametric techniques
[61, 15]. Although we did not make use of laziness for unsupervised learning in this work, pre-existing
literature on kernel density estimation for clustering would be a natural starting place [44]. Laziness
should be most effective in regimes when there are fewer constraints on inference time and model
memory than training time or deletion time. In some sense, laziness can be interpreted as shifting
computation from training to inference. As a side effect, deletion can be immensely simplified.

Modularity In the context of deletion efficient learning, modularity is the restriction of dependence
of computation state or model parameters to specific partitions of the dataset. Under such a
modularization, we can isolate specific modules of data processing that need to be recomputed in
order to account for deletions to the dataset. Our notion of modularity is conceptually similar to its use
in software design [10] and distributed computing [67]. In DC-k-means, we leverage modularity by
managing the dependence between computation and data via the divide-and-conquer tree. Modularity
should be most effective in regimes for which the dimension of the data is small compared to the
dataset size, allowing for partitions of the dataset to capture the important structure and features.

Quantization Many models come with a sense of continuity from dataset space to model space —
small changes to the dataset should result in small changes to the (distribution over the) model. In
statistical and computational learning theory, this idea is known to as stability [60, 47, 50, 29, 77, 68]. We
can leverage stability by quantizing the mapping from datasets to models (either explicitly or implicitly).
Then, for a small number of deletions, such a quantized model is unlikely to change. If this can be
efficiently verified at deletion time, then it can be used for fast average-case deletions. Quantization
is most effective in regimes for which the number of parameters is small compared to the dataset size.

4 Deletion Efficient Clustering
Data deletion is a general challenge for machine learning. Due to its simplicity we focus on k-means
clustering as a case study. Clustering is a widely used ML application, including on the UK Biobank
(for example as in [33]). We propose two algorithms for deletion efficient k-means clustering. In the
context of k-means, we treat the output centroids as the model from which we are interested in deleting
datapoints. We summarize our proposed algorithms and state theoretical runtime complexity and
statistical performance guarantees. Please refer to [32] for background concerning k-means clustering.

4.1 Quantized k-Means

We propose a quantized variant of Lloyd’s algorithm as a deletion efficient solution to k-means
clustering, called Q-k-means. By quantizing the centroids at each iteration, we show that the
algorithm’s centroids are constant with respect to deletions with high probability. Under this notion
of quantized stability, we can support efficient deletion, since most deletions can be resolved without
re-computing the centroids from scratch. Our proposed algorithm is distinct from other quantized
versions of k-means [73], which quantize the data to minimize memory or communication costs. We
present an abridged version of the algorithm here (Algorithm 1). Detailed pseudo-code for Q-k-means
and its deletion operation may be found in Appendix B.

Q-k-means follows the iterative protocol as does the canonical Lloyd’s algorithm (and makes use
of the k-means++ initialization). There are four key differences from Lloyd’s algorithm. First and
foremost, the centroids are quantized in each iteration before updating the partition. The quantization
maps each point to the nearest vertex of a uniform ε-lattice [38]. To de-bias the quantization, we apply a
random phase shift to the lattice. The particulars of the quantization scheme are discussed in Appendix
B. Second, at various steps throughout the computation, we memoize the optimization state into the
model’s metadata for use at deletion time (incurring an additionalO(ktd) memory cost). Third, we
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introduce a balance correction step, which compensates for γ-imbalanced clusters by averaging current
centroids with a momentum term based on the previous centroids. Explicitly, for some γ∈(0,1), we
consider any partition πκ to be γ-imbalanced if |πκ| ≤ γn

k . We may think of γ as being the ratio of
the smallest cluster size to the average cluster size. Fourth, because of the quantization, the iterations
are no longer guaranteed to decrease the loss, so we have an early termination if the loss increases
at any iteration. Note that the algorithm terminates almost surely.

Algorithm 1 Quantized k-means (abridged)
Input: data matrixD∈Rn×d

Parameters: k∈N, T ∈N, γ∈(0,1), ε>0
c←k++(D) // initialize centroids with k-means++
Save initial centroids: save(c).
L←k-means loss of initial partition π(c)
for τ=1 to T do

Store current centroids: c′←c
Compute centroids: c←c(π)
Apply correction to γ-imbalanced partitions
Quantize to random ε-lattice: ĉ←Q(c;θ)
Update partition: π′←π(ĉ)
Save state to metadata: save(c,θ,ĉ,|π′|)
Compute lossL′
ifL′<L then (c,π,L)←(ĉ,π′,L′) else break

end for
return c //output final centroids as model

Deletion in Q-k-means is straightforward. Us-
ing the metadata saved from training time, we
can verify if deleting a specific datapoint would
have resulted in a different quantized centroid
than was actually computed during training. If
this is the case (or if the point to be deleted is
one of randomly chosen initial centroids accord-
ing to k-means++) we must retrain from scratch
to satisfy the deletion request. Otherwise, we
may satisfy deletion by updating our metadata
to reflect the deletion of the specified datapoint,
but we do not have to recompute the centroids.
Q-k-means directly relies the principle of quanti-
zation to enable fast deletion in expectation. It is
also worth noting that Q-k-means also leverages
on the principle of linearity to recycle computa-
tion. Since centroid computation is linear in the
datapoints, it is easy to determine the centroid
update due to a removal at deletion time.

Deletion Time Complexity We turn our attention to an asymptotic time complexity analysis of
Q-k-means deletion operation. Q-k-means supports deletion by quantizing the centroids, so they are
stable to against small perturbations (caused by deletion of a point).

Theorem 4.1. Let D be a dataset on [0,1]d of size n. Fix parameters T , k, ε, and γ for Q-k-means.
Then, Q-k-means supportsm deletions in timeO(m2d5/2/ε) in expectation, with probability over the
randomness in the quantization phase and k-means++ initialization.

The proof for the theorem is given in Appendix C. The intuition is as follows. Centroids are computed
by taking an average. With enough terms in an average, the effect of a small number of those terms is
negligible. The removal of those terms from the average can be interpreted as a small perturbation to
the centroid. If that small perturbation is on a scale far below the granularity of the quantizing ε-lattice,
then it is unlikely to change the quantized value of the centroid. Thus, beyond stability verification,
no additional computation is required for a majority of deletion requests. This result is in expectation
with respect to the randomized initializations and randomized quantization phase, but is actually
worst-case over all possible (normalized) dataset instances. The number of clusters k, iterations T ,
and cluster imbalance ratio γ are usually small constants in many applications, and are treated as such
here. Interestingly, for constant m and ε, the expected deletion time is independent of n due to the
stability probability increasing at the same rate as the problem size (see Appendix C). Deletion time
for this method may not scale well in the high-dimensional setting. In the low-dimensional case, the
most interesting interplay is between ε, n, andm. To obtain as high-quality statistical performance as
possible, it would be ideal if ε→0 as n→∞. In this spirit, we can parameterize ε=n−β for β∈(0,1).
We will use this parameterization for theoretical analysis of the online setting in Section 4.3.

Theoretical Statistical Performance We proceed to state a theoretical guarantee on statistical
performance of Q-k-means, which complements the asymptotic time complexity bound of the deletion
operation. Recall that the loss for a k-means problem instance is given by the sum of squared Euclidean
distance from each datapoint to its nearest centroid. LetL∗ be the optimal loss for a particular problem
instance. Achieving the optimal solution is, in general, NP-Hard [3]. Instead, we can approximate it
with k-means++, which achieves EL++≤(8logk+16)L∗ [5].
Corollary 4.1.1. LetL be a random variable denoting the loss of Q-k-means on a particular problem
instance of size n. Then EL≤(8logk+16)L∗+ε

√
nd(8logk+16)L∗+ 1

4ndε
2.

This corollary follows from the theoretical guarantees already known to apply to Lloyd’s algorithm
when initialized with k-means++, given by [5]. The proof can be found in Appendix C. We can
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interpret the bound by looking at the ratio of expected loss upper bounds for k-means++ and Q-k-
means. If we assume our problem instance is generated by iid samples from some arbitrary non-
atomic distribution, then it follows that L∗ = O(n). Taking the loss ratio of upper bounds yields
EL/EL++≤1+O(dε2+

√
dε). Ensuring that ε<<1/

√
d implies the upper bound is as good as that

of k-means++.

4.2 Divide-and-Conquer k-Means

Algorithm 2 DC-k-means
Input: data matrixD∈Rn×d

Parameters: k∈N, T ∈N, tree width w∈N, tree
height h∈N
Initialize aw-ary tree of height h such that each node
has a pointer to a dataset and centroids
for i=1 to n do

Select a leaf node uniformly at random
node.dataset.add(Di)

end for
for l=h down to 0 do

for each node in level l do
c←k-means++(node.dataset,k,T )
node.centroids←c
if l>0 then

node.parent.dataset.add(c)
else

save all nodes as metadata
return c //model output

end if
end for

end for

We turn our attention to another variant of
Lloyd’s algorithm that also supports efficient
deletion, albeit through quite different means.
We refer to this algorithm as Divide-and-Conquer
k-means (DC-k-means). At a high-level, DC-
k-means works by partitioning the dataset into
small sub-problems, solving each sub-problem
as an independent k-means instance, and recur-
sively merging the results. We present pseudo-
code for DC-k-means here, and we refer the
reader to Appendix B for pseudo-code of the
deletion operation.

DC-k-means operates on a perfectw-ary tree
of height h (this could be relaxed to any rooted
tree). The original dataset is partitioned into each
leaf in the tree as a uniform multinomial random
variable with datapoints as trials and leaves as
outcomes. At each of these leaves, we solve
for some number of centroids via k-means++.
When we merge leaves into their parent node,
we construct a new dataset consisting of all the
centroids from each leaf. Then, we compute new centroids at the parent via another instance of
k-means++. For simplicity, we keep k fixed throughout all of the sub-problems in the tree, but this
could be relaxed. We make use of the tree hierarchy to modularize the computation’s dependence on
the data. At deletion time, we need only to recompute the sub-problems from one leaf up to the root.
This observation allows us to support fast deletion operations.

Our method has close similarities to pre-existing distributed k-means algorithms [69, 67, 9, 7, 39, 8,
92], but is in fact distinct (not only in that it is modified for deletion, but also in that it operates over
general rooted trees). For simplicity, we restrict our discussion to only the simplest of divide-and-
conquer trees. We focus on depth-1 trees withw leaves where each leaf solves for k centroids. This
requires only one merge step with a root problem size of kn/w.

Analogous to how ε serves as a knob to trade-off between deletion efficiency and statistical perfor-
mance in Q-k-means, for DC-k-means, we imagine that w might also serve as a similar knob. For
example, if w= 1, DC-k-means degenerates into canonical Lloyd’s (as does Q-k-means as ε→ 0).
The dependence of statistical performance on tree widthw is less theoretically tractable than that of
Q-k-means on ε, but in Appendix D, we empirically show that statistical performance tends to decrease
asw increases, which is perhaps somewhat expected.

As we show in our experiments, depth-1 DC-k-means demonstrates an empirically compelling trade-
off between deletion time and statistical performance. There are various other potential extensions
of this algorithm, such as weighting centroids based on cluster mass as they propagate up the tree or
exploring the statistical performance of deeper trees.

Deletion Time Complexity For ensuing asymptotic analysis, we may consider parameterizing tree
widthw asw=Θ(nρ) for ρ∈(0,1). As before, we treat k and T as small constants. Although intuitive,
there are some technical minutia to account for to prove correctness and runtime for the DC-k-means
deletion operation. The proof of Proposition 3.2 may be found in Appendix C.

Proposition 4.2. LetD be a dataset on Rd of size n. Fix parameters T and k for DC-k-means. Let
w=Θ(nρ) and ρ∈(0,1) Then, with a depth-1,w-ary divide-and-conquer tree, DC-k-means supports
m deletions in timeO(mmax{nρ,n1−ρ}d) in expectation with probability over the randomness in
dataset partitioning.
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4.3 Amortized Runtime Complexity in Online Deletion Setting

We state the amortized computation time for both of our algorithms in the online deletion setting
defined in Section 3. We are in an asymptotic regime where the number of deletionsm=Θ(nα) for
0<α< 1 (see Appendix C for more details). Recall the Ω( nm ) lower bound from Section 3. For a
particular fractional powerα, an algorithm achieving the optimal asymptotic lower bound on amortized
computation is said to be α-deletion efficient. This corresponds to achieving an amortized runtime of
O(n1−α). The following corollaries result from direct calculations which may be found in Appendix
C. Note that Corollary 4.2.2 assumes DC-k-means is training sequentially.

Corollary 4.2.1. With ε=Θ(n−β), for 0<β<1, the Q-k-means algorithm is α-deletion efficient in
expectation if α≤ 1−β

2 .

Corollary 4.2.2. With w = Θ(nρ), for 0 < ρ < 1, and a depth-1 w-ary divide-and-conquer tree,
DC-k-means is α-deletion efficient in expectation if α<1−max{1−ρ,ρ}.

5 Experiments
With a theoretical understanding in hand, we seek to empirically characterize the trade-off between
runtime and performance for the proposed algorithms. In this section, we provide proof-of-concept
for our algorithms by benchmarking their amortized runtimes and clustering quality on a simulated
stream of online deletion requests. As a baseline, we use the canonical Lloyd’s algorithm initialized
by k-means++ seeding [53, 5]. Following the broader literature, we refer to this baseline simply as
k-means, and refer to our two proposed methods as Q-k-means and DC-k-means.

Datasets We run our experiments on five real, publicly available datasets: Celltype (N=12,009,
D= 10, K = 4) [42], Covtype (N = 15,120, D= 52, K = 7) [12], MNIST (N = 60,000, D= 784,
K= 10) [51], Postures (N = 74,975,D= 15,K= 5) [35, 34] , Botnet (N = 1,018,298,D= 115,
K=11)[56], and a synthetic dataset made from a Gaussian mixture model which we call Gaussian
(N=100,000,D=25,K=5). We refer the reader to Appendix D for more details on the datasets. All
datasets come with ground-truth labels as well. Although we do not make use of the labels at learning
time, we can use them to evaluate the statistical quality of the clustering methods.

Online Deletion Benchmark We simulate a stream of 1,000 deletion requests, selected uniformly
at random and without replacement. An algorithm trains once, on the full dataset, and then runs its
deletion operation to satisfy each request in the stream, producing an intermediate model at each
request. For the canonical k-means baseline, deletions are satisfied by re-training from scratch.

Protocol To measure statistical performance, we evaluate with three metrics (see Section 5.1) that
measure cluster quality. To measure deletion efficiency, we measure the wall-clock time to complete
our online deletion benchmark. For both of our proposed algorithms, we always fix 10 iterations
of Lloyd’s, and all other parameters are selected with simple but effective heuristics (see Appendix
D). This alleviates the need to tune them. To set a fair k-means baseline, when reporting runtime
on the online deletion benchmark, we also fix 10 iterations of Lloyd’s, but when reporting statistical
performance metrics, we run until convergence. We run five replicates for each method on each dataset
and include standard deviations with all our results. We refer the reader to Appendix D for more
experimental details.

5.1 Statistical Performance Metrics

To evaluate clustering performance of our algorithms, the most obvious metric is the optimization loss
of the k-means objective. Recall that this is the sum of square Euclidean distances from each datapoint
to its nearest centroid. To thoroughly validate the statistical performance of our proposed algorithms,
we additionally include two canonical clustering performance metrics.

Silhouette Coefficient [72]: This coefficient measures a type of correlation (between -1 and +1)
that captures how dense each cluster is and how well-separated different clusters are. The silhouette
coefficient is computed without ground-truth labels, and uses only spatial information. Higher scores
indicate denser, more well-separated clusters.

Normalized Mutual Information (NMI) [87, 49]: This quantity measures the agreement of the
assigned clusters to the ground-truth labels, up to permutation. NMI is upper bounded by 1, achieved by
perfect assignments. Higher scores indicate better agreement between clusters and ground-truth labels.
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5.2 Summary of Results

We summarize our key find-
ings in four tables. In Tables
1-3, we report the statistical
clustering performance of the
3 algorithms on each of the 6
datasets. In Table 1, we report
the optimization loss ratios of
our proposed methods over the
k-means++ baseline.

Table 1: Loss Ratio

Dataset k-means Q-k-means DC-k-means
Celltype 1.0±0.0 1.158±0.099 1.439±0.157
Covtype 1.0±0.029 1.033±0.017 1.017±0.031
MNIST 1.0±0.002 1.11±0.004 1.014±0.003
Postures 1.0±0.004 1.014±0.015 1.034±0.017
Gaussian 1.0±0.014 1.019±0.019 1.003±0.014
Botnet 1.0±0.126 1.018±0.014 1.118±0.102

In Table 2, we report the sil-
houette coefficient for the clus-
ters. In Table 3, we report
the NMI. In Table 4, we report
the amortized total runtime of
training and deletion for each
method. Overall, we see that
the statistical clustering per-
formance of the three meth-
ods are competitive.

Table 2: Silhouette Coefficients (higher is better)

Dataset k-means Q-k-means DC-k-means
Celltype 0.384±0.001 0.367±0.048 0.422±0.057
Covtype 0.238±0.027 0.203±0.026 0.222±0.017
Gaussian 0.036±0.002 0.031±0.002 0.035±0.001
Postures 0.107±0.003 0.107±0.004 0.109±0.005
Gaussian 0.066±0.007 0.053±0.003 0.071±0.004
Botnet 0.583±0.042 0.639±0.028 0.627±0.046

Furthermore, we find that
both proposed algorithms
yield orders of magnitude of
speedup. As expected from
the theoretical analysis, Q-k-
means offers greater speed-ups
when the dimension is lower
relative to the sample size,
whereas DC-k-means is more
consistent across dimensional-
ities.

Table 3: Normalized Mutual Information (higher is better)

Dataset k-means Q-k-means DC-k-means
Celltype 0.36±0.0 0.336±0.032 0.294±0.067
Covtype 0.311±0.009 0.332±0.024 0.335±0.02
MNIST 0.494±0.006 0.459±0.011 0.494±0.004
Gaussian 0.319±0.024 0.245±0.024 0.318±0.024
Postures 0.163±0.018 0.169±0.012 0.173±0.011
Botnet 0.708±0.048 0.73±0.015 0.705±0.039

Table 4: Amortized Runtime in Online Deletion Benchmark (Train once + 1,000 Deletions)
k-means Q-k-means DC-k-means

Dataset Runtime (s) Runtime (s) Speedup Runtime (s) Speedup
Celltype 4.241±0.248 0.026±0.011 163.286× 0.272±0.007 15.6×
Covtype 6.114±0.216 0.454±0.276 13.464× 0.469±0.021 13.048×
MNIST 65.038±1.528 29.386±0.728 2.213× 2.562±0.056 25.381×
Postures 26.616±1.222 0.413±0.305 64.441× 1.17±0.398 22.757×
Gaussian 206.631±67.285 0.393±0.104 525.63× 5.992±0.269 34.483×
Botnet 607.784±64.687 1.04±0.368 584.416× 8.568±0.652 70.939×

Figure 1: Online deletion efficiency: # of deletions vs. amortized runtime (secs) for 3 algorithms on 6 datasets.
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In particular, note that MNIST has the highest d/n ratio of the datasets we tried, followed by Covtype,
These two datasets are, respectively, the datasets for which Q-k-means offers the least speedup.
On the other hand, DC-k-means offers consistently increasing speedup as n increases, for fixed d.
Furthermore, we see that Q-k-means tends to have higher variance around its deletion efficiency,
due to the randomness in centroid stabilization having a larger impact than the randomness in the
dataset partitioning. We remark that 1,000 deletions is less than 10% of every dataset we test on, and
statistical performance remains virtually unchanged throughout the benchmark. In Figure 1, we plot
the amortized runtime on the online deletion benchmark as a function of number of deletions in the
stream. We refer the reader to Appendix D for supplementary experiments providing more detail on
our methods.

6 Discussion

At present, the main options for deletion efficient supervised methods are linear models, support vector
machines, and non-parametric regressions. While our analysis here focuses on the concrete problem
of clustering, we have proposed four design principles which we envision as the pillars of deletion
efficient learning algorithms. We discuss the potential application of these methods to other supervised
learning techniques.

Segmented Regression Segmented (or piece-wise) linear regression is a common relaxation of
canonical regression models [58, 59, 57]. It should be possible to support a variant of segmented
regression by combining Q-k-means with linear least squares regression. Each cluster could be given
a separate linear model, trained only on the datapoints in said cluster. At deletion time, Q-k-means
would likely keep the clusters stable, enabling a simple linear update to the model corresponding to the
cluster from which the deleted point belonged.

Kernel Regression Kernel regressions in the style of random Fourier features [70] could be readily
amended to support efficient deletions for large-scale supervised learning. Random features do not
depend on data, and thus only the linear layer over the feature space requires updating for deletion.
Furthermore, random Fourier feature methods have been shown to have affinity for quantization [91].

Decision Trees and Random Forests Quantization is also a promising approach for decision trees.
By quantizing or randomizing decision tree splitting criteria (such as in [36]) it seems possible to
support efficient deletion. Furthermore, random forests have a natural affinity with bagging, which
naturally can be used to impose modularity.

Deep Neural Networks and Stochastic Gradient Descent A line of research has observed the
robustness of neural network training robustness to quantization and pruning [84, 46, 40, 71, 25, 52].
It could be possible to leverage these techniques to quantize gradient updates during SGD-style
optimization, enabling a notion of parameter stability analgous to that in Q-k-means. This would
require larger batch sizes and fewer gradient steps in order to scale well. It is also possible that
approximate deletion methods may be able to overcome shortcomings of exact deletion methods for
large neural models.

7 Conclusion

In this work, we developed a notion of deletion efficiency for large-scale learning systems, proposed
provably deletion efficient unsupervised clustering algorithms, and identified potential algorithmic
principles that may enable deletion efficiency for other learning algorithms and paradigms. We have
only scratched the surface of understanding deletion efficiency in learning systems. Throughout, we
made a number of simplifying assumptions, such that there is only one model and only one database
in our system. We also assumed that user-based deletion requests correspond to only a single data
point. Understanding deletion efficiency in a system with many models and many databases, as well as
complex user-to-data relationships, is an important direction for future work.
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A Supplementary Materials

Here we provide material supplementary to the main text. While some of the material provided here
may be somewhat redundant, it also contains technical minutia perhaps too detailed for the main body.

A.1 Online Data Deletion

We precisely define the notion of a learning algorithm for theoretical discussion in the context of data
deletion.

Definition A.1. Learning Algorithm

A learning algorithmA is an algorithm (on some standard model of computation) taking values in
some hypothesis space and metadata spaceH×M based on an input datasetD. Learning algorithm
A may be randomized, implying a conditional distribution overH×M given D. Finally, learning
algorithms must process each datapoint inD at least once, and are constrained to sequential computation
only, yielding a runtime bounded by Ω(n).

We re-state the definition of data deletion. We distinguish between a deletion operation and a
robust deletion operation. We focus on the former throughout our main body, as it is appropriate for
average-case analysis in a non-security context. We use =d to denote distributional equality.

Definition A.2. Data Deletion Operation

Fix any dataset D and learning algorithm A. Operation RA is a deletion operation for A if
RA(D,A(D),i)=dA(D−i) for any i selected independently ofA(D).

For notational simplicity, we may letRA refer to an entire sequence of deletions (∆={i1,i2,...,im})
by writing RA(D,A(D),∆). This notation means the output of a sequence of applications of RA
to each i in deletion sequence ∆. We also may drop the dependence on A when it is understood
for which A the deletion operation R corresponds. We also drop the arguments for A and R when
they are understood from context. For example, when datasetD can be inferred from context, we let
A−i directly meanA(D−i) and when and deletion stream ∆ can be inferred, we letR directly mean
R(D,A(D),∆).

Our definition is somewhat analogous to information-theoretic (or perfect) secrecy in cryptography
[78]. Much like in cryptography, it is possible to relax to weaker notions – for example, by statistically
approximating deletion and bounding the amount of computation some hypothetical adversary could
use to determine if a genuine deletion took place. Such relaxations are required for encryption
algorithms because perfect secrecy can only be achieved via one-time pad [78]. In the context of
deletion operations, retraining from scratch is, at least slightly, analogous to one-time pad encryption:
both are simple solutions that satisfy distributional equality requirements, but both solutions are
impractical. However, unlike in encryption, when it comes to deletion, we can, in fact, at least for some
learning algorithms, find deletion operations that would be both practical and perfect.

The upcoming robust definition may be of more interest in a worst-case, security setting. In such
a setting, an adaptive adversary makes deletion requests while also having perfect eavesdropping
capabilities to the server (or at least the internal state of the learning algorithm, model and metadata).

Definition A.3. Robust Data Deletion Operation

Fix any dataset D and learning algorithm A. Operation RA is a robust deletion operation if
RA(D,A(D),i) =dA(D−i) in distribution, for any i, perhaps selected by an adversarial agent with
knowledge ofA(D).

To illustrate the difference between these two definitions, consider Q-k-means and DC-k-means.
Assume an adversary has compromised the server with read-access and gained knowledge of the
algorithm’s internal state. Further assume that said adversary may issue deletion requests. Such a
powerful adversary could compromise the exactness of DC-k-means deletion operations by deleting
datapoints from specific leaves. For example, if the adversary always deletes datapoints partitioned to
the first leaf, then the number of datapoints assigned to each leaf is no longer uniform or independent
of deletion requests. In principle, this, at least rigorously speaking, violates equality in distribution.
Note that this can only occur if requests are somehow dependent on the partition. However, despite an
adversary being able to compromise the correctness of the deletion operation, it cannot compromise
the efficiency. That is because efficiency depends on the maximum number of datapoints partitioned to
a particular leaf, a quantity which is decided randomly without input from the adversary.
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In the case of Q-k-means we can easily see the deletion is robust to the adversary by the enforced
equality of outcome imposed by the deletion operation. However, an adversary with knowledge of
algorithm state could make the Q-k-means deletion operation entirely inefficient by always deleting
an initial centroid. This causes every single deletion to be satisfied by retraining from scratch. From
the security perspective, it could be of interest to study deletion operations that are both robust and
efficient.

We continue by defining the online data deletion setting in the average-case.

Definition A.4. Online Data Deletion (Average-Case)

We may formally define the runtime in the online deletion setting as the expected runtime of
Algorithm 3. We amortize the total runtime bym.

Algorithm 3 Online Data Deletion
Input: DatasetD, learning algorithmA, deletion operationR
Parameters: α∈(0,1)
µ←A(D)
m←Θ(|D|α)
for τ=1 tom do
i←Unif[1,...,|D|] //constant time
µ←R(D,µ,i)
D←D−i //constant time

end for

Fractional power regime. For dataset size n, whenm=Θ(nα) for 0<α<1, we say we are in the
fractional power regime. For k-means, our proposed algorithms achieve the ideal lower bound for
small enough α, but not for all α in (0,1).

Online data deletion is interesting in both the average-case setting (treated here), where the indices
{i1,...,im} are chosen uniformly and independently without replacement, as well as in a worst-case
setting, where the sequence of indices is computed adversarially (left for future work). It may also
be practical to include a bound on the amount of memory available to the data deletion operation and
model (including metadata) as an additional constraint.

Definition A.5. Deletion Efficient Learning Algorithm

Recall the Ω(n/m) lower bound on amortized computation for any sequential learning algorithm in
the online deletion setting (Section 2). Given some fractional power scalingm=Θ(nα), we say an
algorithmA is α-deletion efficient if it runs Algorithm 3 in amortized timeO(n1−α).

Inference Time Of course, lazy learning and non-parametric techniques are a clear exception to
our notions of learning algorithm. For these methods, data is processed at inference time rather than
training time – a more complete study of the systems trade-offs between training time, inference time,
and deletion time is left for future work.

A.2 Approximate Data Deletion

We present one possible relaxation from exact to approximate data deletion.

Definition A.6. Approximate deletion

We say that such a data deletion operationRA is an δ-deletion for algorithmA if, for allD and for
every measurable subset S⊆H×M :

Pr[A(D−i)∈S|D−i]≥δPr[RA(D,A(D),i)∈S|D−i]

The above definition corresponds to requiring that the probability that the data deletion operation
returns a model in some specified set,S, cannot be more than a δ−1 factor larger than the probability that
algorithmA retrained on the datasetD−i returns a model in that set. We note that the above definition
does allow for the possibility that some outcomes that have positive probability underA(D−i) have
zero probability under the deletion operation. In such a case, an observer could conclude that the model
was returned by runningA from scratch.
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A.2.1 Approximate Deletion and Differential Privacy

We recall the definition of differential privacy [30]. A map,A, from a datasetD to a set of outputs,H,
is said to be ε-differentially private if, for any two datasetsD1,D2 that differ in a single datapoint, and
any subset S⊂H, Pr[A(D1)∈S]≤eε ·Pr[A(D2)∈S].

Under the relaxed notion of data deletion, it is natural to consider privatization as a manner to
support approximation deletion. The idea could be to privatize the model, and then resolve deletion
requests by ignoring them. However, there are some nuances involved here that one should be careful
of. For example, differential privacy does not privatize the number of datapoints, but this should not
be leaked in data deletion. Furthermore, since we wish to support a stream of deletions in the online
setting, we would need to use group differential privacy [30], which can greatly increase the amount
of noise needed for privatization. Even worse, this requires selecting the group size (i.e. total privacy
budget) during training time (at least for canonical constructions such as the Laplace mechanism). In
differential privacy, this group size is not necessarily a hidden parameter. In the context of deletion,
it could leak information about the total dataset size as well as how many deletions any given model
instance has processed. While privatization-like methods are perhaps a viable approach to support
approximate deletion, there remain some technical details to work out, and this is left for future work.

B Algorithmic Details

In Appendix B, we present psuedo-code for the algorithms described in Section 3. We also reference
https://github.com/tginart/deletion-efficient-kmeans for Python implementations of
our algorithms.

B.1 Quantized k-Means

We present the psuedo-code for Q-k-means (Algo. 4). Q-k-means follows the iterative protocol as
the canonical Lloyd’s (and makes use of the k-means++ initialization). As mentioned in the main
body, there are four key variations from the canonical Lloyd’s algorithm that make this method
different: quantization, memoization, balance correction, and early termination. The memoization of
the optimization state and the early termination for increasing loss are self-explanatory from Algo. 4.
We provide more details concerning the quantization step and the balance correction in Appendix B.1.1
and B.1.2 respectively.

Algorithm 4 Quantized k-means
Input: data matrixD∈Rn×d

Parameters: k∈N, T ∈N, γ∈(0,1), ε>0
c←k++(D) // initialize centroids with k-means++
Save initial centroids: save(c).
L←k-means loss of initial partition π
for τ=1 to T do

Store current centroids: c′←c
Compute centroids: c←c(π)
for κ=1 to k do

if |π(cκ)|< γn
k

then
Apply correction to γ-imbalanced partition:
cκ←|π(cκ)|cκ+( γn

k
−|π(cκ)|)c′κ

end if
end for
Generate random phase θ∼Unif [− 1

2
, 1
2
]d

Quantize to ε-lattice: ĉ←Q(c;θ)
Update partition: π′←π(ĉ)
Save state to metadata: save(c,θ,ĉ,|π′|)
Compute lossL′
ifL′<L then

(c,π,L)←(ĉ,π′,L′) //update state
else

break
end if

end for
return c //output final centroids as model
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A Supplementary Materials

Here we provide material supplementary to the main text. While some of the material provided here
may be somewhat redundant, it also contains technical minutia perhaps too detailed for the main body.

A.1 Online Data Deletion

We precisely define the notion of a learning algorithm for theoretical discussion in the context of data
deletion.

Definition A.1. Learning Algorithm

A learning algorithmA is an algorithm (on some standard model of computation) taking values in
some hypothesis space and metadata spaceH×M based on an input datasetD. Learning algorithm
A may be randomized, implying a conditional distribution overH×M given D. Finally, learning
algorithms must process each datapoint inD at least once, and are constrained to sequential computation
only, yielding a runtime bounded by Ω(n).

We re-state the definition of data deletion. We distinguish between a deletion operation and a
robust deletion operation. We focus on the former throughout our main body, as it is appropriate for
average-case analysis in a non-security context. We use =d to denote distributional equality.

Definition A.2. Data Deletion Operation

Fix any dataset D and learning algorithm A. Operation RA is a deletion operation for A if
RA(D,A(D),i)=dA(D−i) for any i selected independently ofA(D).

For notational simplicity, we may letRA refer to an entire sequence of deletions (∆={i1,i2,...,im})
by writing RA(D,A(D),∆). This notation means the output of a sequence of applications of RA
to each i in deletion sequence ∆. We also may drop the dependence on A when it is understood
for which A the deletion operation R corresponds. We also drop the arguments for A and R when
they are understood from context. For example, when datasetD can be inferred from context, we let
A−i directly meanA(D−i) and when and deletion stream ∆ can be inferred, we letR directly mean
R(D,A(D),∆).

Our definition is somewhat analogous to information-theoretic (or perfect) secrecy in cryptography
[78]. Much like in cryptography, it is possible to relax to weaker notions – for example, by statistically
approximating deletion and bounding the amount of computation some hypothetical adversary could
use to determine if a genuine deletion took place. Such relaxations are required for encryption
algorithms because perfect secrecy can only be achieved via one-time pad [78]. In the context of
deletion operations, retraining from scratch is, at least slightly, analogous to one-time pad encryption:
both are simple solutions that satisfy distributional equality requirements, but both solutions are
impractical. However, unlike in encryption, when it comes to deletion, we can, in fact, at least for some
learning algorithms, find deletion operations that would be both practical and perfect.

The upcoming robust definition may be of more interest in a worst-case, security setting. In such
a setting, an adaptive adversary makes deletion requests while also having perfect eavesdropping
capabilities to the server (or at least the internal state of the learning algorithm, model and metadata).

Definition A.3. Robust Data Deletion Operation

Fix any dataset D and learning algorithm A. Operation RA is a robust deletion operation if
RA(D,A(D),i) =dA(D−i) in distribution, for any i, perhaps selected by an adversarial agent with
knowledge ofA(D).

To illustrate the difference between these two definitions, consider Q-k-means and DC-k-means.
Assume an adversary has compromised the server with read-access and gained knowledge of the
algorithm’s internal state. Further assume that said adversary may issue deletion requests. Such a
powerful adversary could compromise the exactness of DC-k-means deletion operations by deleting
datapoints from specific leaves. For example, if the adversary always deletes datapoints partitioned to
the first leaf, then the number of datapoints assigned to each leaf is no longer uniform or independent
of deletion requests. In principle, this, at least rigorously speaking, violates equality in distribution.
Note that this can only occur if requests are somehow dependent on the partition. However, despite an
adversary being able to compromise the correctness of the deletion operation, it cannot compromise
the efficiency. That is because efficiency depends on the maximum number of datapoints partitioned to
a particular leaf, a quantity which is decided randomly without input from the adversary.
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In the case of Q-k-means we can easily see the deletion is robust to the adversary by the enforced
equality of outcome imposed by the deletion operation. However, an adversary with knowledge of
algorithm state could make the Q-k-means deletion operation entirely inefficient by always deleting
an initial centroid. This causes every single deletion to be satisfied by retraining from scratch. From
the security perspective, it could be of interest to study deletion operations that are both robust and
efficient.

We continue by defining the online data deletion setting in the average-case.

Definition A.4. Online Data Deletion (Average-Case)

We may formally define the runtime in the online deletion setting as the expected runtime of
Algorithm 3. We amortize the total runtime bym.

Algorithm 3 Online Data Deletion
Input: DatasetD, learning algorithmA, deletion operationR
Parameters: α∈(0,1)
µ←A(D)
m←Θ(|D|α)
for τ=1 tom do
i←Unif[1,...,|D|] //constant time
µ←R(D,µ,i)
D←D−i //constant time

end for

Fractional power regime. For dataset size n, whenm=Θ(nα) for 0<α<1, we say we are in the
fractional power regime. For k-means, our proposed algorithms achieve the ideal lower bound for
small enough α, but not for all α in (0,1).

Online data deletion is interesting in both the average-case setting (treated here), where the indices
{i1,...,im} are chosen uniformly and independently without replacement, as well as in a worst-case
setting, where the sequence of indices is computed adversarially (left for future work). It may also
be practical to include a bound on the amount of memory available to the data deletion operation and
model (including metadata) as an additional constraint.

Definition A.5. Deletion Efficient Learning Algorithm

Recall the Ω(n/m) lower bound on amortized computation for any sequential learning algorithm in
the online deletion setting (Section 2). Given some fractional power scalingm=Θ(nα), we say an
algorithmA is α-deletion efficient if it runs Algorithm 3 in amortized timeO(n1−α).

Inference Time Of course, lazy learning and non-parametric techniques are a clear exception to
our notions of learning algorithm. For these methods, data is processed at inference time rather than
training time – a more complete study of the systems trade-offs between training time, inference time,
and deletion time is left for future work.

A.2 Approximate Data Deletion

We present one possible relaxation from exact to approximate data deletion.

Definition A.6. Approximate deletion

We say that such a data deletion operationRA is an δ-deletion for algorithmA if, for allD and for
every measurable subset S⊆H×M :

Pr[A(D−i)∈S|D−i]≥δPr[RA(D,A(D),i)∈S|D−i]

The above definition corresponds to requiring that the probability that the data deletion operation
returns a model in some specified set,S, cannot be more than a δ−1 factor larger than the probability that
algorithmA retrained on the datasetD−i returns a model in that set. We note that the above definition
does allow for the possibility that some outcomes that have positive probability underA(D−i) have
zero probability under the deletion operation. In such a case, an observer could conclude that the model
was returned by runningA from scratch.
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A.2.1 Approximate Deletion and Differential Privacy

We recall the definition of differential privacy [30]. A map,A, from a datasetD to a set of outputs,H,
is said to be ε-differentially private if, for any two datasetsD1,D2 that differ in a single datapoint, and
any subset S⊂H, Pr[A(D1)∈S]≤eε ·Pr[A(D2)∈S].

Under the relaxed notion of data deletion, it is natural to consider privatization as a manner to
support approximation deletion. The idea could be to privatize the model, and then resolve deletion
requests by ignoring them. However, there are some nuances involved here that one should be careful
of. For example, differential privacy does not privatize the number of datapoints, but this should not
be leaked in data deletion. Furthermore, since we wish to support a stream of deletions in the online
setting, we would need to use group differential privacy [30], which can greatly increase the amount
of noise needed for privatization. Even worse, this requires selecting the group size (i.e. total privacy
budget) during training time (at least for canonical constructions such as the Laplace mechanism). In
differential privacy, this group size is not necessarily a hidden parameter. In the context of deletion,
it could leak information about the total dataset size as well as how many deletions any given model
instance has processed. While privatization-like methods are perhaps a viable approach to support
approximate deletion, there remain some technical details to work out, and this is left for future work.

B Algorithmic Details

In Appendix B, we present psuedo-code for the algorithms described in Section 3. We also reference
https://github.com/tginart/deletion-efficient-kmeans for Python implementations of
our algorithms.

B.1 Quantized k-Means

We present the psuedo-code for Q-k-means (Algo. 4). Q-k-means follows the iterative protocol as
the canonical Lloyd’s (and makes use of the k-means++ initialization). As mentioned in the main
body, there are four key variations from the canonical Lloyd’s algorithm that make this method
different: quantization, memoization, balance correction, and early termination. The memoization of
the optimization state and the early termination for increasing loss are self-explanatory from Algo. 4.
We provide more details concerning the quantization step and the balance correction in Appendix B.1.1
and B.1.2 respectively.

Algorithm 4 Quantized k-means
Input: data matrixD∈Rn×d

Parameters: k∈N, T ∈N, γ∈(0,1), ε>0
c←k++(D) // initialize centroids with k-means++
Save initial centroids: save(c).
L←k-means loss of initial partition π
for τ=1 to T do

Store current centroids: c′←c
Compute centroids: c←c(π)
for κ=1 to k do

if |π(cκ)|< γn
k

then
Apply correction to γ-imbalanced partition:
cκ←|π(cκ)|cκ+( γn

k
−|π(cκ)|)c′κ

end if
end for
Generate random phase θ∼Unif [− 1

2
, 1
2
]d

Quantize to ε-lattice: ĉ←Q(c;θ)
Update partition: π′←π(ĉ)
Save state to metadata: save(c,θ,ĉ,|π′|)
Compute lossL′
ifL′<L then

(c,π,L)←(ĉ,π′,L′) //update state
else

break
end if

end for
return c //output final centroids as model
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Although it is rare, it is possible for a Lloyd’s iteration to result in a degenerate (empty) cluster. In
this scenario, we have two reasonable options. All of the theoretical guarantees are remain valid under
both of the following options. The first option is to re-initialize a new cluster via a k-means++ seeding.
Since the number of clusters k and iterations T are constant, this does not impact any of the asymptotic
deletion efficiency results. The second option is to simply leave a degenerate partition. This does not
impact the upper bound on expected statistical performance which is derived only as a function of
the k-means++ initialization. For most datasets, this issue hardly matters in practice, since Lloyd’s
iterations do not usually produce degenerate clusters (even the presence of quantization noise). In our
implementation, we have chosen to re-initialize degenerate clusters, and are careful to account for this
in our metadata, since such a re-initialization could trigger the need to retrain at deletion time if the
re-initialized point is part of the deletion stream.

We present the pseudo-code for the deletion operation (Algo. 5), and then elaborate on the quantiza-
tion scheme and balance correction.

Algorithm 5 Deletion Op for Q-k-means
Input: data matrixD∈Rn×d, target deletion index i, training metadata
Obtain target deletion point p←Di
Retrieve initial centroids from metadata: load(c0)
if p∈c0 then

// Selected initial point.
return Q-k-means(D−i) // Need to retrain from scratch.

else
for τ=1 to T do

Retrieve state for iteration τ : load(c,θ,ĉ,|π|)
Cluster assignment of p: κ←argmink|p−ck|
Perturbed centroid: c′κ←cκ−p/|π(cκ)|
Apply γ-correction to c′κ if necessary
Quantize perturbed centroid: ĉ′κ←Q(c′κ;θ)
if ĉ′κ 6= ĉκ then

// Centroid perturbed→ unstable quantization
return Q-k-means(D−i) // Need to retrain from scratch.

end if
Update metadata with perturbed state: save(c′,θ,ĉ′,|π′|)

end for
end if
UpdateD←D−i
return ĉ //Successfully verified centroid stability

We proceed elaborate on the details of the balance correction and quantization steps

B.1.1 γ-Balanced Clusters

Definition B.1. γ-Balanced

Given a partition π, we say it us γ-balanced if |πκ| ≥ γn
k for all partitions κ. The partition is

γ-imbalanced if it is not γ-balanced.

In Q-k-means, imbalanced partitions can lead to unstable quantized centroids. Hence, it is preferable
to avoid such partitions. As can be seen in the pseudo-code, we add mass to small clusters to correct
for γ-unbalance. At each iteration we apply the following formula on all clusters such that |πκ|≥ γn

k :
cκ←|π(cκ)|cκ+(γnk −|π(cκ)|)c′κ where c′ denotes the centroids from the previous iteration.

In prose, for small clusters, current centroids are averaged with the centroids from the previous
iteration to increase stability.

For use in practice, a choice of γ must be made. If no class balance information is known, then,
based on our observations, setting γ=0.2 is a solid heuristic for all but severely imbalanced datasets,
in which case it is likely that DC-k-means would be preferable to Q-k-means.

B.1.2 Quantizing with an ε-Lattice

We detail the quantization scheme used. A quantization maps analog values to a discrete set of points.
In our scheme, we uniformly cover Rd with an ε-lattice, and round analog values to the nearest vertex
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on the lattice. It is also important to add an independent, uniform random phase shift to each dimension
of lattice, effectively de-biasing the quantization.

We proceed to formally define our quantization Q(ε,θ). Q(ε,θ) is parameterized by a phase shift
θ∈ [− 1

2 ,
1
2 ]d and an granularity parameter ε>0. For brevity, we omit the explicit dependence on phase

and granularity when it is clear from context. For a given (ε,θ):

a(x)=argminj∈Zd{||x−ε(θ+j)||2}
Q(x)=ε(θ+a(x))

We set {θ}t0 with an iid random sequence such that θτ ∼Unif [− 1
2 ,

1
2 ]d.

B.2 Divide-and-Conquer k-Means

We present pseudo-code for the deletion operation of divide-and-conquer k-means. The pseudo-code
for the training algorithm may be found in the main body. The deletion update is conceptually simple.
Since a deleted datapoint only belong to one leaf’s dataset, we only need recompute the sub-problems
on the path from said leaf to the root.

Algorithm 6 Deletion Op for DC-k-means
Input: data matrixD∈Rn×d, target deletion index i, model metadataM
Obtain target deletion point p←Di
node← leaf node assignment of p
node.dataset←node.dataset\p
while node is not root do

node.parent.data←node.parent.data\node.centroids
node.centroids←k-means++(node.data,k,T )
node.parent.dataset.add(node.centroids)
node←node.parent

end while
node.centroids←k-means++(node.dataset,k,T )
UpdateD←D−i
return node.centroids

B.3 Initialization for k-Means

For both of our algorithms, we make use of the k-means++ initialization scheme [5]. This initialization
is commonplace, and is the standard initialization in many scientific libraries, such as Sklearn [66]. In
order to provide a more self-contained presentation, we provide some pseudo-code for the k-means++
initialization.

Algorithm 7 Initialization by k-means++
Input: data matrixD∈Rn×d, number of clusters k
i←Uni{1,...,n}
I←{Di}.
u←0n∈Rn.
for 1<l≤k do
uj =minη∈I ||η−Dj ||2 for all 1≤j≤n
Z=

∑n
j=1uj

Sample i∼ 1
Z
u

I←I∪{Di}
end for
return I

C Mathematical Details

Here, we provide proofs for the claims in the main body. We follow notation introduced in the main body
and Appendix A. As a notational shorthand, we will let denoteA(D−i) byA−i andR(D,A(D),D−i)
as R when there is only one dataset in the context. Also, when it is unambiguous, we will use A to
denote the specific learning algorithm in question, andR to denote its corresponding deletion operation.
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C.1 Proof of Theorem 4.1

Refer to the main body for the statement of Theorem 4.1. Here is an abridged version:

Theorem. Q-k-means supportsm deletions in expected timeO(m2d5/2/ε).

Note that we assume the dataset is scaled onto the unit hypercube. Otherwise, the theorem still holds
with an assumed constant factor radial bound. We prove the theorem in three successive steps, given by
Lemma C.1 through Lemma C.3.

Lemma C.1. Define C= [− ε
2 ,
ε
2 ]d for some ε> 0. C is the hypercube in Euclidean d-space of side

length ε centered at the origin. Let C ′= [−ε+ε
′

2 , ε−ε
′

2 ]d for some ε′<ε. LetX be a uniform random
variable with supportC. Then, Pr[X∈C/C ′]≤ 2dε′

ε .

Proof. (Lemma C.1) IfX ∈C/C ′, then there exists some i∈{1,...,d} such thatXi ∈ [− ε
2 ,
−ε+ε′

2 ]∪
[ ε−ε

′

2 , ε2 ]. Marginally, Pr[Xi ∈ [− ε
2 ,
−ε+ε′

2 ]∪ [ ε−ε
′

2 , ε2 ]] = 2ε′/ε. Taking a union bound over the d
dimensions obtains the bound.

We make use of Lemma C.1 in proving the following lemma. First, recall the definition of our
quantization schemeQ from Section 3:

Q(x)=ε(θ+argminj∈Zd{||x−ε(θ+j)||2}).
We take θ∼Uni[− 1

2 ,
1
2 ]d, implying a distribution forQ.

Lemma C.2. LetQ be a uniform quantization ε-lattice over Rd with uniform phase shift θ. LetQ(·)
denote the quantization mapping over Rd and letQ[·] denote the quantization image for subsets of
Rd. LetX∈Rd. Then Pr[{Q(X)} 6=Q[Bε′(X)]]< 2dε′

ε , whereBε′(X) is the ε′-ball aboutX under
Euclidean norm.

Proof. (Lemma C.2) Due to invariance of measure under translation, we may apply a coordinate trans-
formation by translationQ(X) to the origin ofRd. Under this coordinate transform,X∼Uni[− ε

2 ,
ε
2 ]d.

Further, note that Pr[Bε′(X)⊂ [− ε
2 ,
ε
2 ]d] is precisely equivalent to Pr[X∈ [−ε+ε

′

2 , ε−ε
′

2 ]d]. Because
X is uniform, applying Lemma C.1 as an upper bound completes the proof.

With Lemma C.2 in hand, we proceed to state and prove Lemma C.3.

Lemma C.3. LetD be an dataset on [0,1]d of sizen. Let c(D) be the centroids computed by Q-k-means
with initialization I and parameters T , k, ε, and γ. Then, with probability greater than 1− 2mTkd3/2

εγn ,
it holds that c(D) = c(D−∆) for any ∆⊂D with |∆|≤m and ∆∩I = ∅, where probability is with
respect to the randomness in the quantization phase.

Proof. (Lemma C.3) We analyze two instances of Q-k-means algorithm operating with the same initial
centroids and the same sequence of iid quantization maps {Qτ}t1. One instance runs on input dataset
D and the other runs on input datasetD−∆. This is the only difference between the two instances.

Let c(τ,κ)
I (δ) denote the κ-th analog (i.e. non-quantized) centroid at the τ -th iteration of Q-k-means

on some input dataset δ with initialization I . By construction, for any datasets δ,δ′, we have that
cI(δ)=cI(δ

′) ifQτ (c
(τ,κ)
I (δ)) =Qτ (c

(τ,κ)
I (δ′)) for all τ ∈{1,...,t} and all κ∈{1,...,k}.

Fix any particular τ and κ. We can bound ||c(τ,κ)
I (D)− c

(τ,κ)
I (D−∆)||2 as follows. Note that

c
(τ,κ)
I (D) = 1

n

∑n
i=1 Di1(Di ∈ πκ) where 1(·) denotes the indicator function. Furthermore,

c
(τ,κ)
I (D−∆) = 1

n

∑n
i=1Di1(Di ∈ πκ)1(Di /∈ ∆). Assume that |πκ| ≥ γn/k. Because |∆| ≤ m

and ||Di||2≤
√
d, these sums can differ by at most mk

√
d

γn . On the other hand, assume that |πκ|<γn/k.

In this case, the γ-correction still ensures that the sums differ by at most mk
√
d

γn . This bounds

||c(τ,κ)
I (D)−c(τ,κ)

I (D−∆)||2≤ mk
√
d

γn .

To complete the proof, apply Lemma C.2 setting ε′= mk
√
d

γn . Taking a union bound over τ ∈{1,...,t}
and κ∈{1,...,k} yields the desired result.

20



We are now ready to complete the theorem. We briefly sketch and summarize the argument before
presenting the proof. Recall the deletion algorithm for Q-k-means (Appendix B). Using the runtime
memo, we verify that the deletion of a point does not change what would have been the algorithm’s
output. If it would have changed the output, then we retrain the entire algorithm from scratch. Thus,
we take a weighted average of the computation expense in these two scenarios. Recall that retraining
from scratch takes timeO(nkTd) and verifying the memo at deletion time takes timeO(kTd). Finally,
note that we must sequentially process a sequence ofm deletions, with a valid model output after each
request. We are mainly interested in the scaling with respect tom, ε and n, treating other factors as
non-asymptotic constants in our analysis. We now proceed with the proof.

Theorem. Q-k-means supportsm deletions in expected timeO(m2d5/2/ε).

Proof. (Correctness)
In order forR to be a valid deletion, we require thatR=dA−i for any i. In this setting, we identify
models with the output centroids: A(D) = cI(D). Consider the sources of randomness: the iid
sequence of random phases and the k-means++ initializations.

Let I(·) be a set-valued random function computing the k-means++ initializations over a given
dataset. E denote the event that Di /∈ I(D). Then, from the construction of k-means++, we have
that for all j 6= i, Pr[Dj ∈ I(D−i)] = Pr[Dj ∈ I(D)|E]. Thus, I(D) and I(D−i) are equal in
distribution conditioned on i not being an initial centroid. Note that this is evident from the construction
of k-means++ (see algorithm 7).

Let θ denote the iid sequence of random phases forA and let θ−i denote the iid sequence of random
phases forA−i. Within eventE, we define a set of eventsE′(θ̂), parameterized by θ̂, as the event that
output centroids are stable under deletion conditioned on a given sequence of phases θ̂:

E={i /∈I(D)},E′(θ̂)={A|{θ= θ̂}=A−i|{θ−i= θ̂}}∩E

By construction ofR, we haveR=A1(E′(θ))+A−i1(E′(θ)) where eventE′(θ) is verified given
the training time memo. To conclude, let S be any Borel set:

Pr[R ∈ S] = Pr[E′(θ)]Pr[R ∈ S|E′(θ)] + (1−Pr[E′(θ)])Pr[R ∈ S|E′(θ)] by law of total
probability.

=Pr[E′(θ)]Pr[A∈S|E′(θ)]+(1−Pr[E′(θ)])Pr[A−i∈S] by construction ofR

=Pr[E′(θ)]Pr[A−i∈S|θ−i=θ]+(1−Pr[E′(θ)])Pr[A−i∈S] by definition ofE′

=Pr[E′(θ)]Pr[A−i∈S]+(1−Pr[E′(θ)])Pr[A−i∈S]=Pr[A−i∈S] by θ=d θ−i.

Proof. (Runtime)

Let T be the total runtime ofR after trainingA once and then satisfyingm deletion requests withR.
Let ∆={i1,i2,...,im} denote the deletion sequence, with each deletion sampled uniformly without
replacement fromD.

Let Ψ be the event that the centroids are stable for allm deletions. Using Lemma C.3 to bound the
event complement probability Pr(Ψ):

ET ≤E[T |Ψ]+Pr[Ψ]E[T |Ψ]=O(mkTd)+O(ε−1m2T 2k3d2.5)=O(m2d2.5/ε).

In Ψ the centroids are stable, and verifying in Ψ takes timeO(mktd) in total. In Ψ we coarsely upper
bounded T by assuming we re-train to satisfy each deletion.

C.2 Proofs of Corollaries and Propositions

We present the proofs of the corollaries in the main body. We are primarily interested in the asymptotic
effects of n,m, ε, andw. We treat other variables as constants. For the purposes of online analysis, we
let ε=Θ(n−β) for some β∈(0,1) andw=Θ(nρ) for some ρ∈(0,1)

21



C.2.1 Proof of Corollory 4.1.1

We state the following Theorem of Arthur and Vassilvitskii concerning k-means++ initializations [5]:
Theorem C.4. (Arthur and Vassilivitskii)

LetL∗ be the optimal loss for a k-means clustering problem instance. Then k-means++ achieves
expected loss EL++≤(8lnk+16)L∗

We re-state corollary 4.1.1:
Corollary. Let L be a random variable denoting the loss of Q-k-means on a particular problem
instance of size n. Then EL≤(8lnk+16)L∗+ε

√
nd(8lnk+16)L∗+ 1

4ndε
2.

Proof. Let c be the initialization produced k-means++. LetL++ =
∑n
i=1||c(i)−xi||22 where c(i) is the

centroid closest to the i-th datapoint. Let ||c(i)−xi||22 =
∑d
j=1δ

2
ij , with δij denoting the scalar distance

betweenxi and c(i) in the j-th dimension. Then we may upper boundL≤
∑n
i=1

∑d
j=1(δ2

ij+
1
4ε

2+δijε)
by adding a worst-case ε

2 quantization penalty in each dimension. This sum reduces to:
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√
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L++ if
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ij=L++ and δij>0 (to see this, treat it

as a constrained optimization over the δij). Thus:
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1
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√
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Using Jensen’s inequality [26] yields E
√
L≤
√
EL:

EL≤EL+++
1

4
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√
nd
√
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To complete the proof, apply Theorem C.4:

EL≤CL∗+ 1

4
ndε2+ε

√
ndCL∗

whereC=8lnk+16.

C.2.2 Proof of Proposition 4.2

Proposition. Let D be an dataset on Rd of size n. Fix parameters T and k for DC-k-means. Let
w=Θ(nρ) and ρ∈(0,1) Then, with a depth-1,w-ary divide-and-conquer tree, DC-k-means supports
m deletions in timeO(mnmax(ρ,1−ρ)d) in expectation with probability over the randomness in dataset
partitioning.

Proof. (Correctness) We require that R(D,A(D),i) =d A(D−i). Since each datapoint is assigned
to a leaf independently, the removal of a datapoint does not change the distribution of the remaining
datapoints to leaves. However, one must be careful when it comes to the number of leaves, which
cannot change due to a deletion. This is problematic if the number of leaves is dnρe (or another similar
quantity based on n).

The simplest way to address this (without any impact on asymptotic rates) is to round the number of
leaves to the nearest power of 2. This works because the intended number of leaves will only be off
from nρ by at most a factor of 2. In the rare event this rounding changes due to a deletion, we will have
to default to retraining from scratch, but, asymptotically in the fractional power regime, this can only
happen a constant number of times which does not affect an amortized or average-case time complexity
analysis.

We proceed to prove the runtime analysis.

Proof. (Runtime)

Let T be the total runtime ofR after trainingA once and then satisfyingm deletion requests withR.
Let ∆={i1,i2,...,im} denote the deletion sequence, with each deletion sampled uniformly without
replacement fromD.
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Let S be the uniform distribution over nρ elements and let Ŝ be the empirical distribution of n
independent samples of S. The fraction of datapoints assigned to the i-th leaf is then modeled by Ŝi.
We treat Ŝ as probability vector. Let random variable J=nŜi with probability Ŝi. Thus, J models the
distribution over sub-problem sizes for a randomly selected datapoint. Direct calculation yields the
following upper bound on runtime:

T ≤m(O(kTdJ)+O(nρk2Td)) where the first term is due to the total deletion time at the leaves,
the second term is due to the total deletion time at the root, and them factor is due to the number of
deletions.

Hence, we have E(T )≤O(mkTd)E(J)+O(mnρk2Td), with E(J) representing the quantity of
interest. Computing E(J) is simple using the second moments of the Binomial distribution , denoted
by B:

E(J)=E(E(J |Ŝ))=

nρ∑
i=1

nE(Ŝ2
i )

Noting that Ŝi∼ 1
nB(n,n−ρ) and E((B(n,p)2)=n(n−1)p+np [48] yields:

=nρ−1E((B(n,n−ρ)2)=O(n1−ρ)

This yields the final bound: E(T )≤O(n1−ρmkTd)+O(nρmk2Td)=O(mmax{n1−ρ,nρ}d)

C.2.3 Proof of Corollary 4.2.1

Corollary. With ε=Θ(n−β) for 0<β<1, Q-k-means algorithm is deletion efficient in expectation if
α≤ 1−β

2

Proof. We are interested in the asymptotic scaling of n,m, and ε, and treat other factors as cosntants.
We begin with the expected deletion time from Theorem 4.1, given by O(m2d5/2ε−1). Recall we
are using rates ε = Θ(n−β) and m = Θ(nα). Applying the rates, adding in the training time, and
amortizing yieldsO(n1−α+nα+β). Thus, deletion efficiency follows if 1−α>α+β. Rearranging
terms completes the calculation.

C.2.4 Proof of Corollary 4.2.2

Corollary. Withw=Θ(nρ) and a depth-1w-ary divide-and-conquer tree, DC-k-means is deletion
efficient in expectation if α≤1−max(ρ,1−ρ)

Proof. We are interested in the asymptotic scaling of n,m, andw, and treat other factors as constants.
Recall we are using ratesw=Θ(nρ) andm=Θ(nα) By Proposition 4.2, the runtime of each deletion
is upper bounded byO(nmax(ρ,1−ρ)) and the training time isO(n). Amortizing and comparing the
terms yields the desired inequaltiy. Deletion efficiency follows if max{ρ,1−ρ}≤1−α. Rearranging
terms completes the calculation.

D Implementation and Experimental Details

We elaborate on implementation details, the experimental protocol used in the main body, and present
some supplementary experiments that inform our understanding of the proposed techniques.

D.1 Experimental Protocol

We run a k-means baseline (i.e. a k-means++ seeding followed by Lloyd’s algorithm), Q-k-means,
and DC-k-means on 6 datasets in the simulated online deletion setting. As a proxy for deletion
efficiency, we report the wall-clock time of the program execution on a single-core of an Intel Xeon
E5-2640v4 (2.4GHz) machine. We are careful to only clock the time used by the algorithm and pause
the clock when executing test-bench infrastructure operations. We do not account for random OS-level
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interruptions such as context switches, but we are careful to allocate at most one job per core and we
maintain high CPU-utilization throughout.

For each of the three methods and six datasets, we run five replicates of each benchmark to obtain
standard deviation estimates. To initialize the benchmark, each algorithm trains on the complete dataset,
which is timed by wall-clock. We then evaluate the loss and clustering performance of the centroids
(untimed). Then, each model must sequentially satisfy a sequence of 1,000 uniformly random (without
replacement) deletion requests. The time it takes to satisfy each request is also timed and added to the
training time to compute a total computation time. The total computation time of the benchmark is
then amortized by dividing by 1,000 (the number of deletion requests). This produces a final amortized
wall-clock time. For the k-means baseline, we satisfy deletion via naive re-training. For Q-k-means
and DC-k-means we use the respective deletion operations. As part of our benchmark, we also evaluate
the statistical performance of each method after deletions 1,10,100, and 1,000. Since we are deleting
less than 10% of any of our datasets, the statistical performance metrics do not change significantly
throughout the benchmark and neither do the training times (when done from scratch). However, a
deletion operation running in time significantly less than it takes to train from scratch should greatly
reduce the total runtime of the benchmark. Ideally, this can be achieved without sacrificing too much
cluster quality, as we show in our results (Section 5).

D.1.1 Implementation Framework

We are interested in fundamental deletion efficiency, however, empirical runtimes will always be
largely implementation specific. In order to minimize the implementation dependence of our results,
we control by implementing an in-house version of Lloyd’s iterations which is used as the primary
optimization sub-routine in all three methods. Our solver is based on the Numpy Python library
[82]. Thus, Q-k-means and DC-k-means use the same sub-routine for computing partitions and
centroids as does the k-means baseline. Our implementation for all three algorithms can be found at
https://github.com/tginart/deletion-efficient-kmeans.

D.1.2 Heuristic Parameter Selection

Hyperparameter tuning poses an issue for deletion efficiency. In order to be compliant to the strictest
notions of deletion, we propose the following heuristics to select the quantization granularity parameter
ε and the number of leavesw for Q-k-means and DC-k-means, respectively. Recall that we always set
iterations to 10 for both methods.

Heurstic Parameter Selection for Q-k-means. Granularity ε tunes the centroid stability versus the
quantization noise. Intuitively, when the number of datapoints in a cluster is high compared to the
dimension, we need lower quantization noise to stabilize the centroids. A good rule-of-thumb is to
use ε=2

b−log10( n

kd3/2
)−3e, which yields an integer power of 2. The heuristic can be conceptualized as

capturing the effective cluster mass per dimension of a dataset. We use an exponent of 1.5 for d, which
scales like the stability probability (see Lemmas C.1 - C.3). The balance correction parameter γ is
always set to 0.2, which should work well for all but the most imbalanced of datasets.

Heurstic Parameter Selection for DC-k-means. Tree widthw tunes the sub-problem size versus the
number of sub-problems. Intuitively, it is usually better to have fewer larger sub-problems than many
smaller ones. A good rule-of-thumb is to setw to n0.3, rounded to the nearest power of two.

D.1.3 Clustering Performance Metrics

We evaluate our cluster quality using the silhouette coefficient and normalized mutual information, as
mentioned in the main body. To do this evaluation, we used the routines provided in the Scikit-Learn
Python library [65]. Because computing the silhouette is expensive, for each instance we randomly
sub-sample 10,000 datapoints to compute the score.

D.1.4 Scaling

We note that all datasets except MNIST undergo a minmax scaling in order to map them into the unit
hypercube (MNIST is already a scaled greyscale image). In our main body, we treat this as a one-time
scaling inherit to the dataset itself. In practice, the scaling of a dataset can change due to deletions.
However, this is a minor concern (at least for minmax scaling) as only a small number of extremal
datapoints affect the scale. Retraining from scratch when these points come up as a deletion request
does not impact asymptotic runtime, and has a negligible impact on empirical runtime. Furthermore,
we point out that scaling is not necessary for our methods to work. In fact, in datasets where the notion

24



of distance remains coherent across dimensions, one should generally refrain from scaling. Our theory
holds equally well in the case of non-scaled data, albeit with an additional constant scaling factor such
as a radial bound.

D.2 Datasets
• Celltypes [42] consists of 12,009 single cell RNA sequences from a mixture of 4 cell types:

microglial cells, endothelial cells, fibroblasts, and mesenchymal stem cells. The data was retrieved
from the Mouse Cell Atlas and consists of 10 feature dimensions, reduced from an original 23,433
dimensions using principal component analysis. Such dimensionality reduction procedures are a
common practice in computational biology.

• Postures [35, 34] consists of 74,975 motion capture recordings of users performing 5 different
hand postures with unlabeled markers attached to a left-handed glove.

• Covtype [12] consists of 15,120 samples of 52 cartographic variables such as elevation and hillshade
shade at various times of day for 7 forest cover types.

• Botnet [56] contains statistics summarizing the traffic between different IP addresses for a com-
mercial IoT device (Danmini Doorbell). We aim to distinguish between benign traffic data (49,548
instances) and 11 classes of malicious traffic data from botnet attacks, for a total of 1,018,298
instances.

• MNIST [51] consists of 60,000 images of isolated, normalized, handwritten digits. The task is to
classify each 28×28 image into one of the ten classes.

• Gaussian consists of 5 clusters, each generated from 25-variate Gaussian distribution centered
at randomly chosen locations in the unit hypercube. 20,000 samples are taken from each of the 5
clusters, for a total of 100,000 samples. Each Gaussian cluster is spherical with variance of 0.8.

D.3 Supplementary Experiments

We include three supplementary experiments. Our first is specific to Q-k-means (See Appendix
D.3.1), and involves the stability of the quantized centroids against the deletion stream. In our second
experiment we explore how the choices of key parameters (ε and w) in our proposed algorithms
contribute to the statistical performance of the clustering. In our third experiment, we explore how said
choices contribute to the deletion efficiency in the online setting.

D.3.1 Re-training During Deletion Stream for Q-k-means

In this experiment, we explore the stability of the quantized centroids throughout the deletion stream.
This is important to understand since it is a fundamental behavior of the Q-k-means, and is not an
implementation or hardware specific as a quantity like wall-clock time is. We plot, as a function of
deletion request, the average number of times that Q-k-means was forced to re-train from scratch to
satsify a deletion request.

Figure 2: Average retrain occurrences during deletion stream for Q-k-means
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As we can see in Fig. 2, when the effective dimensionality is higher (relative to sample size), like
in the case of MNIST, our retraining looks like somewhat of a constant slope across the deletions,
indicating that the quantization is unable to stabilize the centroids for an extended number of deletion
requests.

D.3.2 Effects of Quantization Granularity and Tree Width on Optimization Loss

Although the viability of hyperparameter tuning in the context of deletion efficient learning is dubious,
from a pedagogical point of view, it is still interesting to sweep the main parameters (quantization
granularity ε and tree width w) for the two proposed methods. In this experiment, we compare the
k-means optimization loss for a range of ε and w. As in the main body, we normalize the k-means
objective loss to the baseline and restrict ourselves to depth-1 trees.

Figure 3: Loss Ratio vs. ε for Q-k-means on 6 datasets

Figure 4: Loss Ratio vs. w for DC-k-means on 6 datasets

In Fig. 3, Q-k-means performance rapidly deteriorates as ε→1. This is fairly expected given our
theoretical analysis, and is also consistent across the six datasets.
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On the other hand, in Fig. 4, we see that the relationship between w and loss is far weaker. The
general trend among the datasets is that performance decreases as width increases, but this is not always
monotonically the case. As was mentioned in the main body, it is difficult to analyze relationship
between loss andw theoretically, and, for some datasets, it seems variance amongst different random
seeds can dominate the impact ofw.

D.3.3 Effects of Quantization Granularity and Tree Width on Deletion Efficiency

On the Covtype dataset, we plot the amortized runtimes on the deletion benchmark for a sweep of ε
andw for both Q-k-means and DC-k-means, respectively. As expected, the runtimes for Q-k-means
monotonically increase as ε→0. The runtimes for DC-k-means are minimized by some an optimal
tree width at approximately 32-64 leaves.

Figure 5: Amortized runtime (seconds) for
Q-k-means as a function of quantization
granularity on Covtype

Figure 6: Amortized runtime (seconds) for
DC-k-means as a function of tree width on
Covtype

E Extended Discussion

We include an extended discussion for relevant and interesting ideas that are unable to fit in the main
body.

E.1 Deletion Efficiency vs. Statistical Performance

In relational databases, data is highly structured, making it easy to query and delete it. This is not the
case for most machine learning models. Modern learning algorithms involve data processing that is
highly complex, costly, and stochastic. This makes it difficult to efficiently quantify the effect of an
individual datapoint on the entire model. Complex data processing may result in high-quality statistical
learning performance, but results in models for which data deletion is inefficient, and, in the worst case,
would require re-training from scratch. On the other hand, simple and structured data processing yields
efficient data deletion operations (such as in relational databases) but may not boast as strong statistical
performance. This is the central difficulty and trade-off engineers would face in designing deletion
efficient learning systems.

Hence, we are primarily concerned with deletion efficiency and statistical performance (i.e. the
performance of the model in its intended learning task). In principle, these quantities can both be
measured theoretically or empirically. We believe that the amortized runtime in the proposed online
deletion setting is a natural and meaningful way to measure deletion efficiency. For deletion time,
theoretical analysis involves finding the amortized complexity in a particular asymptotic deletion regime.
In the empirical setting, we can simulate sequences of online deletion requests from real datasets and
measure the amortized deletion time on wall-clocks. For statistical performance, theoretical analysis
can be difficult but might often take the shape of a generalization bound or an approximation ratio. In
the empirical setting, we can take the actual optimization loss or label accuracy of the model on a real
dataset.

E.2 Overparametrization, Dimensionality Reduction and Quantization

One primary concern with quantization is that it performs poorly in the face of overparameterized
models. In some situations, metric-preserving dimensionality reduction techniques [45, 28] could
potentially be used.
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E.3 Hyperparameter Tuning

Hyperparameter tuning is an essential part of many machine learning pipelines. From the perspective
of deletion efficient learning, hyperparameter tuning presents somewhat of a conundrum. Ultimately,
in scenarios in which hyperparameter tuning does indeed fall under the scope of deletion, one of the
wisest solutions may be to tune on a subset of data that is unlikely to be deleted in the near future, or to
pick hyperparameters via good heuristics that do not depend on specific datapoints.
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