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Additional Related Work

TimeGAN integrates ideas from autoregressive models for sequence prediction [1} 2| 3], GAN-based
methods for sequence generation [4}, 5 |6]], and time-series representation learning [7, [8, 9] —the
relation and details for which are discussed in the main manuscript. In this section, we additionally
discuss methods related on the periphery, including RNN-based sequence models using variational
autoencoders, as well as GAN-based approaches for semi-supervised learning.

RNN-based models have been combined with variational autoencoders to generate sequences. In [10],
this was done by learning to map entire sequences to single latent vectors, with the goal of capturing
high-level properties of sequences and interpolating in latent space. This idea was extended to the
general time-series setting [[11], with the additional proposal that the trained weights and network
states can be used to initialize standard RNN models. However, in both cases sampling from the
prior over these representations involved but a simple deterministic decoder, so the only source of
variability is found in the conditional output probability model. On the other hand, [12] proposed
augmenting the representational power of the standard RNN model with stochastic latent variables ar
each time step. Recognizing that model variability should induce dependencies across time steps,
[13] further extended this approach to accommodate temporal dependencies between latent random
variables, and [14] explicitly layer a state space model on top of the RNN structure. In parallel,
this technique has since been applied to temporal convolutional models of sequences as well, with
stochastic latent variables injected into the WaveNet structure [15]. However, the focus of these
methods is specifically on encoding sufficient input variability to model highly structured data (such
as speech and handwriting). In particular, they do not ensure that new sequences unconditionally
sampled from the model match the underlying distribution of the training data. By contrast, TimeGAN
focuses on learning the entire (joint) distribution such that sampled data match the original, while
simultaneously ensuring that the model respects the (conditional) dynamics of the original data.

It is also worth mentioning that our method bears superficial resemblance to GAN-based approaches
for semi-supervised learning. With methods such as [[18} [19, 20], the task of interest is one of
supervised classification, with an auxiliary unsupervised loss for generating additional unlabeled
examples for training. Conversely, the focus of TimeGAN is on the unsupervised task of generative
modeling, with an auxiliary supervised loss to provide additional control over the network’s dynamics.
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Table 1: Summary of Related Work. (Open-loop: Previous outputs are used as conditioning informa-
tion for generation at each step; Mixed-variables: Accommodates static & temporal variables).

C-RNN-GAN RCGAN T-Forcing P-Forcing TimeGAN
[4] [S] [L6k 17 [2] (Ours)

Stochastic v v v
Open-loop v v v v
Adversarial loss v v v v
Supervised loss v v v
Discrete features v v
Embedding space v
Mixed-variables v

Additional Illustrations

Figure 1(b) in the main manuscript details the training scheme for TimeGAN. For side-by-side
comparison, Figure 1(a) below additionally illustrates the training scheme for existing methods
C-RNN-GAN and RCGAN, which employ the standard GAN setup during training. Furthermore,
Figure 1(b) also compares the flow of data during sampling time for TimeGAN and these existing
methods.
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Figure 1: Block diagram of our proposed method (TimeGAN), shown here in comparison with
existing methods (C-RNN-GAN and RCGAN) during (a) training time, as well as (b) sampling
time. Solid lines indicate forward propagation of data, and dashed lines indicate backpropagation of
gradients.

Hyperparameters and Benchmarks

We use tensorflow to implement TimeGAN; source code will be made available after acceptance. All
of the components (embedding network, generator, and discriminator) are implemented with 3-layer
GRUs with hidden dimensions 4 times the size of the input features. The dimension of the latent
space is half that of the input features. We use tanh as the activation function and sigmoid as the
output layer activation function such that outputs are within the [0, 1] range. We also normalize the
dataset to the [0, 1] range using min-max scaling. We set A = 1 and n = 10 in our experiments.

We use the following publicly available source code to implement our benchmarks.

o C-RNN-GAN [4]: https://github.com/olofmogren/c-rnn-gan
e RCGAN [35]: https://github.com/ratschlab/RGAN


https://github.com/olofmogren/c-rnn-gan
https://github.com/ratschlab/RGAN

T-Forcing [16]: https://github.com/snowkylin/rnn-handwriting-generation
P-Forcing [2]: https://github.com/anirudh9119/LM_GANS

WaveNet [21]: https://github.com/ibab/tensorflow-wavenet

WaveGAN [22]: https://github.com/chrisdonahue/wavegan

For fair comparison, we use the same underlying recurrent neural network architecture (3-layer GRUs
with hidden dimensions 4 times the size of input features) for C-RNN-GAN, RCGAN, T-Forcing,
and P-Forcing as is used in TimeGAN. In the case of deterministic models (such as T-Forcing and
P-Forcing), we first train an original GAN model to generate feature vectors as inputs for the initial
time step, which follows the original feature distribution at the initial time step. Then, using the
generated feature vector as input, we initialize the model to generate the sequence in open-loop mode.
Finally, the post-hoc time-series classification and sequence-prediction models are implemented as
2-layer LSTMs with hidden dimensions 4 times the size of the input features. As before, we use tanh
as the activation function and sigmoid as the output layer activation function such that outputs are
within the [0, 1] range.

Additional Dataset Statistics

Table 2: Additional Dataset Statistics

Dataset | Sequences | Dim. | Avg. Len. | Feature Corr. | Temporal Variance | Temporal Corr.

Sines 10,000 5 24 pts 0.0117 0.3167 0.2056
Stocks 3,773 6 24 days 0.8596 0.0129 0.9902
Energy 19,711 | 29 24 hrs 0.2843 0.0444 0.8506
Events 149,967 | 54 | 58 events 0.0095 0.0622 0.0744

The Google Stocks dataset is available online, and can be downloaded from: LINK. The UCI
Appliances Energy Prediction dataset is also available online, and can be downloaded from: LINK.


https://github.com/snowkylin/rnn-handwriting-generation
https://github.com/anirudh9119/LM_GANS
https://github.com/ibab/tensorflow-wavenet
https://github.com/chrisdonahue/wavegan
https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Algorithm Pseudocode

Algorithm 1 Pseudocode of TimeGAN

1: Input: \ = 1, n = 10, D, batch size n,,;, learning rate -y
2: Initialize: 0., 0,.,0,, 0,4
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while Not converged do
(1) Map between Feature Space and Latent Space
Sample (Sl’ Xlal:Tn)7 sy (snmbvxnmb,lzTn ) 1’1‘9 D
forn=1,...n,,t=1,...,T), do
(hn,Sy hn,t) = (65 (Sn)a €x (hn,Sa hn,t—la Xn,t))
(gna in,t) = (TS (hn,S)7 Tx (hn,t))

mb

(2) Generate Synthetic Latent Codes
iid.

Sample (Z5717 Zl,l:Tn)a ceey (Zsynrnlﬂ Z"nlb»l:Tn"Lb) ~ pZSXX
forn=1,...nm,t=1,..,1,do
(hn,Sa hn,t) = (gS (ZS,n)a 9x (hn,87 hn,t—l , Zn,t))

(3) Distinguish between Real and Synthetic Codes

forn=1,...nmp,t=1,...,T,, do
(yn,Sa yn,t) = (dS (hn,S)v dx (ﬁn,t7 ﬁn,t))
(g'VL,Sv ?)n,t) = (dS (ﬁn,S)v dX (ﬁn,h 1ﬁn,t))
(4) Compute Reconstruction £ r), Unsupervised (ﬁU), and Supervised (ﬁS) Losses
Lr= 750 (lsn — Sullz + 32, e — Znoelo]
Lo = 7 T [ [og s + X log v + [log(1 — fu.s) + 3, log(1 — )]

ﬁS = -1 ZZ:? [Zt ||hn,t - gX(hn,Sv hn,t—la Zn,t)”Q]

Nmb

(5) Update 6., 0,., 04, 64 via Stochastic Gradient Descent (SGD)
0 = 0. — Vo, — [\Ls + Lg]
0, =0, — Vo, — [\es + Lg]
eg = 99 - 'YVOH - [nﬁs + [:U]
0a =04 +7Vo, — Lu

(6) Synthetic Data Generation
iid.

(6-]) Sample (Zg,l, Z171:Tn), ceey (Z&N7 ZN,l:TN) ~ pZSXX
(6-2) Generate synthetic latent codes
forn=1,..N,t=1,..T,do R

(hn,Sa hn,t) = (95 (ZS,n)7 9x (hTL,Sa hn,t—l, Zn,t))
(6-3) Mapping to the feature space
forn=1,...N,t=1,...,T, do

(§n7 f(l:Tn) =(rs (hn,S)a Tx (hn,t))

Output: D = {8, X1.7, }N_,




Additional Visualizations with t-SNE and PCA
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Figure 2: t-SNE (1% column) and PCA (2" column) visualizations on Sines, and t-SNE (3™ column)
and PCA (4" column) visualizations on Stocks. Each row provides the visualization for each of the 7
benchmarks, ordered as follows: (1) TimeGAN, (2) RCGAN, (3) C-RNN-GAN, (4) T-Forcing, (5)
P-Forcing, (6) WaveNet, and (7) WaveGAN. Red denotes original data, and blue denotes synthetic.
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