
We thank the reviewers for their detailed comments. We hope this rebuttal addresses their concerns. First we clarify the1

problem we tackle of goal-reaching, its relevance, and properties. Then we provide a rigorous mathematical proof of2

the correctness of our Expert Relabeling technique. We also emphasize our other main contributions from an algorithm3

point of view. Finally, we include results on two considerably more complex environments, and further clarifications.4

We tackle the problem of learning a universal goal-reaching policy [9] that, given any goal g, produces actions that5

lead to it. This can be specified by maximizing the indicator reward as defined in our Section 2: rt = 1[st+1 == g].6

• [R1]“The idea of using sparse rewards depending on goal states” is very extended in the literature [9, 12, 15]. As7

can be seen in these prior works, many robotics problems can be formulated as such. In particular, the FetchSlide8

task referred by R1 was originally introduced in the HER paper [12], where such a sparse reward is used.9

• [R4] “the introduced goals, which are intermediate states, are different from the ground truth goals”: in our10

problem statement, there are not ground truth goals. There is no “true reward” neither, and all our experiments11

only ever use the above-specified indicator reward. We are interested in learning to reach all goals equally well, and12

that is why our performance is evaluated in terms of the fraction of goals reached, as is common in this literature.13

Here we provide a [R5, 4] ”rigorously mathematical proof of the statement“ that “guarantee the benefit of augmenting14

data” with our Expert Relabeling strategy, in the sense that it yields new (s, a, s′, g) tuples that could have been15

produced by the expert. For a discrete state-action space, with deterministic dynamics, and assuming the demonstrations16

are optimal, the proof reduces to a shortest-path argument in graphs:17

1. By the optimality of the demonstration (s0, a0, s1, a1, s2, . . . , g), there is no shorter path from s0 to g.18

2. By contradiction, there is no shorter path from s0 to any encountered st neither, because if such path P ′ =19

(s0, s
′
1, . . . s

′
t−1, st) existed, then the path (s0, s

′
1, . . . , s

′
t−1, st, . . . , g) would be shorter than the demonstration.20

3. By the same argument, there is no shorter path from st to st+k than the one that starts by going to st+1.21

4. Therefore (st, at, st+1, g
′ = st+k) could also have been produced by the expert (the transition is optimal for g′).22

The argument can be extended to continuous stochastic case. We will include further details in the Appendix.23

On top of our study of ER, we propose a novel algorithm, goalGAIL, that combines and outperforms both HER24

and GAIL. We also show that the algorithm is robust to sub-optimal demonstrations and that it can also leverage25

state-only demonstrations, which are very practical in robotics. Note that as long as the discriminator receives the26

state and next state (s, s′, g) as input there is no concern that [R2]“the notion of transition might be lost” because27

this tuple captures the kind of transitions that the expert performs towards the goal g. As can be seen in Fig. 8 of our28

submitted Appendix, there are no negative effects on the studied tasks. BC + HER is not suited for these situations,29

and therefore the comparative performance of goalGAIL and BC + HER is of limited interest. We agree with R5 that30

our results should spark further research directions in the community about BC v.s. GAIL.31

[R2] “Performing experiments with more complex domains”: we added two more complex tasks: BlockPusher and32

Stack2. In BlockPusher a point-mass not only navigates itself, but also displaces a Block. In Stack2 a Fetch robot stacks33

two blocks on a desired spot, as done in [35]. These results bolster the conclusions of our paper. Furthermore [R1]34

“scaling to real robot scenarios” is not too far if we consider that 1M steps corresponds to 6h of real robot time [35].35

Figure 1: Experimental results on BlockPusher(row 1) and Stack2(row2). Column 2, 3, 4 correspond to the study in Fig. 3, 4 and 6 respectively in the submitted paper.

• [R1] "What is the objective J": it’s the expected cumulative reward. We will link this to line 20 of our algorithm.36

• [R1] We will include a paragraph on GAIL in the background section to make the paper more self-contained.37

• [R1] The work on "Task-parameterized movement learning" is very interesting, and we will explore this literature.38

• [R2] Quasi-static tasks can be performed arbitrarily slow. This is the case for most robotics manipulation. If we39

also care about velocities, we can still use our framework by including velocities in the goal space.40

• [R2] The system does not need to start always from the same state. This was the case only for the four-room41

experiment. In fetch robot experiments, the block positions are uniformly sampled at every rollout.42


