
A necessary and sufficient stability notion for
adaptive generalization

Katrina Ligett
School of Computer Science & Engineering

Hebrew University of Jerusalem
Jerusalem 91904, Israel

katrina@cs.huji.ac.il

Moshe Shenfeld
School of Computer Science & Engineering

Hebrew University of Jerusalem
Jerusalem 91904, Israel

moshe.shenfeld@cs.huji.ac.il

Abstract

We introduce a new notion of the stability of computations, which holds under post-
processing and adaptive composition. We show that the notion is both necessary and
sufficient to ensure generalization in the face of adaptivity, for any computations
that respond to bounded-sensitivity linear queries while providing accuracy with
respect to the data sample set. The stability notion is based on quantifying the effect
of observing a computation’s outputs on the posterior over the data sample elements.
We show a separation between this stability notion and previously studied notion
and observe that all differentially private algorithms also satisfy this notion.

1 Introduction

A fundamental idea behind most forms of data-driven research and machine learning is the concept
of generalization–the ability to infer properties of a data distribution by working only with a sample
from that distribution. One typical approach is to invoke a concentration bound to ensure that, for a
sufficiently large sample size, the evaluation of the function on the sample set will yield a result that is
close to its value on the underlying distribution, with high probability. Intuitively, these concentration
arguments ensure that, for any given function, most sample sets are good “representatives” of the
distribution. Invoking a union bound, such a guarantee easily extends to the evaluation of multiple
functions on the same sample set.

Of course, such guarantees hold only if the functions to be evaluated were chosen independently
of the sample set. In recent years, grave concern has erupted in many data-driven fields, that
adaptive selection of computations is eroding statistical validity of scientific findings [Ioa05, GL14].
Adaptivity is not an evil to be avoided—it constitutes a natural part of the scientific process, wherein
previous findings are used to develop and refine future hypotheses. However, unchecked adaptivity
can (and does, as demonstrated by, e.g., [DFH+15b] and [RZ16]) often lead one to evaluate overfitting
functions—ones that return very different values on the sample set than on the distribution.

Traditional generalization guarantees do not necessarily guard against adaptivity; while generalization
ensures that the response to a query on a sample set will be close to that of the same query on the
distribution, it does not rule out the possibility that the probability to get a specific response will be
dramatically affected by the contents of the sample set. In the extreme, a generalizing computation
could encode the whole sample set in the low-order bits of the output, while maintaining high
accuracy with respect to the underlying distribution. Subsequent adaptive queries could then, by
post-processing the computation’s output, arbitrarily overfit to the sample set.

In recent years, an exciting line of work, starting with Dwork et al. [DFH+15b], has formalized
this problem of adaptive data analysis and introduced new techniques to ensure guarantees of
generalization in the face of an adaptively-chosen sequence of computations (what we call here
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adaptive generalization). One great insight of Dwork et al. and followup work was that techniques
for ensuring the stability of computations (some of them originally conceived as privacy notions) can
be powerful tools for providing adaptive generalization.

A number of papers have considered variants of stability notions, the relationships between them, and
their properties, including generalization properties. Despite much progress in this space, one issue
that has remained open is the limits of stability—how much can the stability notions be relaxed, and
still imply generalization? It is this question that we address in this paper.

1.1 Our Contribution

We introduce a new notion of the stability of computations, which holds under post-processing
(Theorem 2.3) and adaptive composition (Theorems 2.6 and 2.7), and show that the notion is both
necessary (Theorem 3.6) and sufficient (Theorem 3.3) to ensure generalization in the face of adaptivity,
for any computations that respond to bounded-sensitivity linear queries (see Definition 3.1) while
providing accuracy with respect to the data sample set. This means (up to a small caveat)1 that our
stability definition is equivalent to generalization, assuming sample accuracy, for bounded linear
queries. Linear queries form the basis for many learning algorithms, such as those that rely on
gradients or on the estimation of the average loss of a hypothesis.

In order to formulate our stability notion, we consider a prior distribution over the database elements
and the posterior distribution over those elements conditioned on the output of a computation. In
some sense, harmful outputs are those that induce large statistical distance between this prior and
posterior (Definition 2.1). Our new notion of stability, Local Statistical Stability (Definition 2.2),
intuitively, requires a computation to have only small probability of producing such a harmful output.

In Section 4, we directly prove that Differential Privacy, Max Information, Typical Stability and
Compression Schemes all imply Local Statistical Stability, which provides an alternative method to
establish their generalization properties. We also provide a few separation results between the various
definitions.

1.2 Additional Related Work

Most countermeasures to overfitting fall into one of a few categories. A long line of work bases
generalization guarantees on some form of bound on the complexity of the range of the mechanism,
e.g., its VC dimension (see [SSBD14] for a textbook summary of these techniques). Other examples
include Bounded Description Length [DFH+15a], and compression schemes [LW86] (which addi-
tionally hold under post-processing and adaptive composition [DFH+15a, CLN+16]). Another line
of work focuses on the algorithmic stability of the computation [BE02], which bounds the effects on
the output of changing one element in the training set.

A different category of stability notions, which focus on the effect of a small change in the sample
set on the probability distribution over the range of possible outputs, has recently emerged from the
notion of Differential Privacy [DMNS06]. Work of [DFH+15b] established that Differential Privacy,
interpreted as a stability notion, ensures generalization; it is also known (see [DR+14]) to be robust
to adaptivity and to withstand post-processing. A number of subsequent works propose alternative
stability notions that weaken the conditions of Differential Privacy in various ways while attempting
to retain its desirable generalization properties. One example is Max Information [DFH+15a], which
shares the guarantees of Differential Privacy. A variety of other stability notions ([RRST16, RZ16,
RRT+16, BNS+16, FS17, EGI19]), unlike Differential Privacy and Max Information, only imply
generalization in expectation. [XR17, Ala17, BMN+17] extend these guarantees to generalization in
probability, under various restrictions.

[CLN+16] introduce the notion of post-hoc generalization, which captures robustness to post-
processing, but it was recently shown not to hold under composition [NSS+18]. The challenges that
the internal correlation of non-product distributions present for stability have been studied in the
context of Inferential Privacy [GK16] and Typical Stability [BF16].

1In particular, our lower bound (Theorem 3.6) requires one more query than our upper bound (Theorem 3.3).
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2 LS stability definition and properties

LetX be an arbitrary countable domain. Fixing some n ∈ N, letDXn be some probability distribution
defined overXn.2 LetQ,R be arbitrary countable sets which we will refer to as queries and responses,
respectively. Let a mechanism M : Xn ×Q → R be a (possibly non-deterministic) function that,
given a sample set s ∈ Xn and a query q ∈ Q, returns a response r ∈ R. Intuitively, queries can be
thought of as questions the mechanism is asked about the sample set, usually representing functions
from Xn to R; the mechanism can be thought of as providing an estimate to the value of those
functions, but we do not restrict the definitions, for reasons which will become apparent once we
introduce the notion of adaptivity (Definition 2.4).

This setting involves two sources of randomness, the underlying distributionDXn , and the conditional
distribution Dq

R|Xn (r | s)—that is, the probability to get r as the output of M (s, q). These in turn
induce a set of distributions (formalized in Definition A.1): the marginal distribution over R, the
joint distribution (denoted Dq

(Xn,R)) and product distribution (denoted Dq
Xn⊗R) over Xn ×R, and

the conditional distribution over Xn given r ∈ R. Note that even if DXn is a product distribution,
this conditional distribution might not be a product distribution. Although the underlying distribution
DXn is defined over Xn, it induces a natural probability distribution over X as well, by sampling one
of the sample elements in the set uniformly at random.3 This in turn allows us extend our definitions
to several other distributions, which form a connection betweenR and X (formalized in Definition
A.2): the marginal distribution over X , the joint distribution and product distribution over X ×R, the
conditional distribution overR given x ∈ X , and the conditional distribution over X given r ∈ R.
We use our distribution notation to denote both the probability that a distribution places on a subset
of its range and the probability placed on a single element of the range.

Notational conventions We use calligraphic letters to denote domains, lower case letters to denote
elements of these domains, capital letters to denote random variables taking values in these domains,
and bold letters to denote subsets of these domains. We omit subscripts and superscripts from some
notation when they are clear from context.

2.1 Local Statistical Stability

Before observing any output from the mechanism, an outside observer knowing D but without other
information about the sample set s holds prior D (x) that sampling an element of s would return a
particular x ∈ X . Once an output r of the mechanism is observed, however, the observer’s posterior
becomes D (x | r). The difference between these two distributions is what determines the resulting
degradation in stability. This difference could be quantified using a variety of distance measures (a
partial list can be found in Appendix F); here we introduce a particular one which we use to define
our stability notion.
Definition 2.1 (Stability loss of a response). Given a distribution DXn , a query q, and a mechanism
M : Xn ×Q → R, the stability loss `qDXn (r) of a response r ∈ R with respect to DXn and q is
defined as the Statistical Distance (Definition F.1) between the prior distribution over X and the
posterior induced by r. That is,

`qDXn (r) :=
∑

x∈x+(r)

(D (x | r)−D (x)) ,

where x+ (r) := {x ∈ X |D (x | r) > D (x)}, the set of all sample elements which have a posterior
probability (given r) higher then their prior. Similarly, we define the stability loss ` (r) of a set of
responses r ⊆ R as

` (r) :=

∑
r∈rD (r) · ` (r)

D (r)
.

Given 0 ≤ ε ≤ 1, a response will be called ε-unstable with respect to DXn and q if its loss is greater
the ε. The set of all ε-unstable responses will be denoted rDXn ,qε := {r ∈ R | ` (r) > ε}.

2Throughout the paper, Xn can either denote the family of sequences of length n or a multiset of size n; that
is, the sample set s can be treated as an ordered or unordered set.

3It is worth noting that in the case where DXn is the product distribution of some distribution PX over X ,
we get that the induced distribution over X is PX .
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We now introduce our notion of stability of a mechanism.

Definition 2.2 (Local Statistical Stability). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and a query q, a
mechanism M : Xn ×Q → R will be called (ε, δ)-Local-Statistically Stable with respect to DXn
and q (or LS Stable, or LSS, for short) if for any r ⊆ R, D (r) · (` (r)− ε) ≤ δ.

Notice that the maximal value of the left hand side is achieved for the subset rε. This stability
definition can be extended to apply to a family of queries and/or a family of possible distributions.
When there exists a family of queries Q and a family of distributions D such that a mechanism M
is (ε, δ)-LSS for all DXn ∈ D and for all q ∈ Q, then M will be called (ε, δ)-LSS for D,Q. (This
stability notion somewhat resembles Semantic Privacy as discussed by [KS14], though they use it to
compare different posterior distributions.)

Intuitively, this can be thought of as placing a δ bound on the probability of observing an outcome
whose stability loss exceeds ε. This claim is formalized in Lemma B.1.

2.2 Properties

We now turn to prove two crucial properties of LSS: post-processing and adaptive composition.

Post-processing guarantees (known in some contexts as data processing inequalities) ensure that
the stability of a computation can only be increased by subsequent manipulations. This is a key
desideratum for concepts used to ensure adaptivity-proof generalization, since otherwise an adaptive
subsequent computation could potentially arbitrarily degrade the generalization guarantees.

Theorem 2.3 (LSS holds under Post-Processing). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and a
query q, if a mechanism M is (ε, δ)-LSS with respect to DXn and q, then for any range U and any
arbitrary (possibly non-deterministic) function f : R → U , we have that f ◦M : Xn ×Q → U is
also (ε, δ)-LSS with respect to DXn and q. An analogous statement also holds for mechanisms that
are LSS with respect to a family of queries and/or a family of distributions.

The proof appears in Appendix B.1.

In order to formally define adaptive learning and stability under adaptively chosen queries, we
formalize the notion of an analyst who issues those queries.

Definition 2.4 (Analyst and Adaptive Mechanism). An analyst over a family of queries Q is a
(possibly non-deterministic) function A : R∗ → Q that receives a view—a finite sequence of
responses—and outputs a query. We denote by A the family of all analysts, and write Vk := Rk and
V := R∗.
Illustrated below, the adaptive mechanism AdpM̄ : Xn ×A → Vk is a particular type of mechanism,
which inputs an analyst as its query and which returns a view as its range type. It is parameterized
by a sequence of sub-mechanisms M̄ = (Mi)

k
i=1 where ∀i ∈ [k], Mi : Xn × Q → R. Given a

sample set s and an analyst A as input, the adaptive mechanism iterates k times through the process
where A sends a query to Mi and receives its response to that query on the sample set. The adaptive
mechanism returns the resulting sequence of k responses vk. Naturally, this requires A to match M
such that M ’s range can be A’s input, and vice versa.4 5

For illustration, consider a gradient descent algorithm, where at each step the algorithm requests an
estimate of the gradient at a given point, and chooses the next point in which the gradient should be
evaluated based on the response it receives. For us, M evaluates the gradient at a given point, and A

4If the same mechanism appears more then once in M̄ , it can also be stateful, which means it retains an
internal record consisting of internal randomness, the history of sample sets and queries it has been fed, and the
responses it has produced; its behavior may be a function of this internal record. We omit this from the notation
for simplicity, but do refer to this when relevant. A stateful mechanism will be defined as LSS if it is LSS given
any reachable internal record. A pedantic treatment might consider the probability that a particular internal state
could be reached, and only require LSS when accounting for these probabilities.

5If A is randomized, we add one more step at the beginning where AdpM̄ randomly generates some bits
c—A’s “coin tosses.” In this case, vk := (c, r1, . . . , rik) and A receives the coin tosses as an input as well. This
addition turns qk+1 into a deterministic function of vi for any i ∈ N, a fact that will be used multiple times
throughout the paper. In this situation, the randomness of AdpM̄ results both from the randomness of the coin
tosses and from that of the sub-mechanisms.
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Adaptive Mechanism AdpM̄
Input: s ∈ Xn, A ∈ A
Output: vk ∈ Vk
v0 ← ∅ or c
for i ∈ [k] :
qi ← A (vi−1)
ri ←Mi (s, qi)
vi ← (vi−1, ri)

return vk

determines the next point to be considered. The interaction between the two of them constitutes an
adaptive learning process.

Definition 2.5 (k-LSS under adaptivity). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and an analyst
A, a sequence of k mechanisms M̄ will be called (ε, δ)-local-statistically stable under k adaptive
iterations with respect toDXn andA (or k-LSS for short), if AdpM̄ is (ε, δ)-LSS with respect toDXn
and A (in which case we will use vk,A,DXnε to denote the set of ε unstable views). This definition can
be extended to a family of analysts and/or a family of possible distributions as well.

Adaptive composition is a key property of a stability notion, since it restricts the degradation of
stability across multiple computations. A key observation is that the posterior D (s | vk) is itself
a distribution over Xn and qk+1 is a deterministic function of vk. Therefore, as long as each sub-
mechanism is LSS with respect to any posterior that could have been induced by previous adaptive
interaction, one can reason about the properties of the composition.

We first show that the stability loss of a view is bounded by the sum of losses of its responses
with respect to the sub-mechanisms, which provides a linear bound on the degradation of the LSS
parameters. Adding a bound on the expectation of the loss of the sub-mechanisms allows us to also
invoke Azuma’s inequality and prove a sub-linear bound.

Theorem 2.6 (LSS adaptively composes linearly). Given a family of distributions D over Xn, a
family of queries Q, and a sequence of k mechanisms M̄ where ∀i ∈ [k], Mi : Xn ×Q → R, we
will denote DM0,Q := D, and for any i > 0, DMi,Q will denote the set of all posterior distributions
induced by any response of Mi with non-zero probability with respect to DMi−1,Q and Q (see
Definition B.2).

Given a sequence 0 ≤ ε1, δ1, . . . , εk, δk ≤ 1, if for all i, Mi is (εi, δi)-LSS with respect to DMi−1,Q

and Q, the sequence is

( ∑
i∈[k]

εi,
∑
i∈[k]

δi

)
-k-LSS with respect to D and any analyst A over Q×R.

The proof appears in Appendix B.3.

One simple case is when DMi−1,Q = D, and Mi is (εi, δi)-LSS with respect to D and Q, for all i.

Theorem 2.7 (LSS adaptively composes sub-linearly). Under the same conditions as Theorem
2.6, given 0 ≤ α1, . . . , αk ≤ 1, such that for all i and any DXn ∈ DMi−1,Q, and q ∈ Q,

E
S∼DXn ,R∼Mi(s,q)

[` (R)] ≤ αi, then for any 0 ≤ δ′ ≤ 1, the sequence is

(
ε′, δ′ +

∑
i∈[k]

δi
εi

)
-k-

LSS with respect to D and any analyst A over Q×R, where ε′ :=
√

8ln
(

1
δ′

) ∑
i∈[k]

ε2i +
∑
i∈[k]

αi.

The theorem provides a better bound then the previous one in case αi � εi, in which case the
dominating term is the first one, which is sub-linear in k. The proof appears in Appendix B.4.

3 LSS is Necessary and Sufficient for Generalization

Up until this point, queries and responses have been fairly abstract concepts. In order to discuss
generalization and accuracy, we must make them concrete. As a result, in this section, we often
consider queries in the family of functions q : Xn → R, and consider responses which have some
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metric defined over them. We show our results for a fairly general class of functions known as
bounded linear queries.6

Definition 3.1 (Linear queries). A function q : Xn → R will be called a linear query, if it is defined

by a function q1 : X → R such that q (s) := 1
n

n∑
i=1

q1 (si) (for simplicity we will denote q1 simply

as q throughout the paper). If q : X → [−∆,∆] it will be called a ∆-bounded linear query. The set
of ∆-bounded linear queries will be denoted Q∆.

In this context, there is a “correct” answer the mechanism can produce for a given query, defined as
the value of the function on the sample set or distribution, and its distance from the response provided
by the mechanism can be thought of as the mechanism’s error.
Definition 3.2 (Sample accuracy, distribution accuracy). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a distribution
DXn , and a query q, a mechanism M : Xn × Q → R will be called (ε, δ)-Sample Accurate with
respect to DXn and q, if

Pr
S∼DXn ,R∼M(S,q)

[|R− q (S)| > ε] ≤ δ.

Such a mechanism will be called (ε, δ)-Distribution Accurate with respect to DXn and q if

Pr
S∼DXn ,R∼M(S,q)

[|R− q (DXn)| > ε] ≤ δ,

where q (DXn) := E
S∼DXn

[q (S)]. When there exists a family of distributions D and a family of

queries Q such that a mechanism M is (ε, δ)-Sample (Distribution) Accurate for all D ∈ D and for
all q ∈ Q, then M will be called (ε, δ)-Sample (Distribution) Accurate with respect to D and Q.

A sequence of k mechanisms M̄ where ∀i ∈ [k] : Mi : Xn ×Q → R which respond to a sequence
of k (potentially adaptively chosen) queries q1, . . . qk will be called (ε, δ)-k-Sample Accurate with
respect to DXn and q1, . . . qk if

Pr
S∼DXn ,Ri∼Mi(S,qi)

[
max
i∈k
|Ri − qi (S)| > ε

]
≤ δ,

and (ε, δ)-k-Distribution Accurate with respect to DXn and q1, . . . qk if

Pr
S∼DXn ,Ri∼Mi(S,qi)

[
max
i∈k
|Ri − qi (DXn)| > ε

]
≤ δ.

When considering an adaptive process, accuracy is defined with respect to the analyst, and the
probabilities are taken also over the choice of the coin tosses by the adaptive mechanism.7

We denote by V the set of views consisting of responses in R.

We now show that if a mechanism returns accurate results with respect to the sample set, then being
LSS implies accuracy on the underlying distribution.
Theorem 3.3 (LSS implies generalization with high probability). Given 0 ≤ ε ≤ ∆, 0 ≤ δ ≤ 1,
a distribution DXn , and an analyst A : V → Q∆, if a sequence of k mechanisms M̄ where
∀i ∈ [k] ,Mi : Xn×Q∆ → R is both

(
ε

8∆ ,
ε2δ

4800∆2

)
-k-LSS and

(
ε
8 ,

εδ
600∆

)
-k-Sample Accurate with

respect to DXn and A, then it is (ε, δ)-k-Distribution Accurate with respect to DXn and A.

The proof of this theorem consists of two stages, and follows the method introduced by [BNS+16].
First we show that the a query returned by an LSS mechanism has expected value on the underlying
distribution that is close to its value on the sample set that the mechanism received as input (Appendix
C.1). We then proceed to lift this guarantee from expectation to high probability, using a thought
experiment known as the Monitor Mechanism (Appendix C.2). Intuitively, it runs a large number of

6For simplicity, throughout the following section we choose R = R, but all results extend to any metric
space, in particular Rd.

7If the adaptive mechanism invokes a stateful sub-mechanism multiple times, we specify that the mechanism
is Sample (Distribution) Accurate if it is Sample (Distribution) Accurate given any reachable internal record.
Again, a somewhat more involved treatment might consider the probability that a particular internal state of the
mechanism could be reached.
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independent copies of an underlying mechanism, and exposes the results of the least-distribution-
accurate copy as its output. If the expected error of even this least-accurate-copy is relatively low,
then the underlying mechanism generalizes with high probability (Appendix C.3).

We next show that a mechanism that is not LSS cannot be both Sample Accurate and Distribution
Accurate. In order to prove this theorem, we show how to construct a “bad” query.
Definition 3.4 (Loss assessment query). Given a query q and a response r, we will define the Loss
assessment query q̃r as

q̃r (x) =

{
∆ D (x) > D (x | r)
−∆ D (x) ≤ D (x | r) .

Intuitively, this function maximizes the difference between E
X∼DX

[q̃r (X)] and E
X∼DqX|R

[q̃r (X) | r],

and as a result, the potential to overfit.8

This function is used to lower bound the effect of the stability loss on the expected overfitting.
Lemma 3.5 (Loss assessment query overfits in expectation). Given 0 ≤ ε, δ ≤ 1, a distribution DXn ,
a query q, and a mechanism M , if D (rε) > δ, then there is a function f : R → Q∆ such that,∣∣∣∣ E

S∼DXn ,Q′∼f◦M(S,q)
[Q′ (DXn)−Q′ (S)]

∣∣∣∣ > 2ε∆δ.

Proof. Choosing f (r) = qr we get that,∣∣∣∣ E
S∼DXn ,Q′∼f◦M(S,q)

[Q′ (DXn)−Q′ (S)]

∣∣∣∣ (1)
=

∣∣∣∣∣∣
∑
q′∈Q∆

D (q′) ·
∑
x∈X

(D (x)−D (x | q′)) · q′ (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∑
r∈R

D (r) ·
∑
x∈X

(D (x)−D (x | r)) · q̃r (x)

∣∣∣∣∣
(2)

≥

≥δ︷ ︸︸ ︷∑
r∈rε

D (r) ·

=2`(r)>2ε︷ ︸︸ ︷∑
x∈X
|D (x)−D (x | r)| ·∆

(3)
> 2ε∆δ

where (1) is further justified in the proof of Theorem C.1, (2) results from the definition of the loss
assessment query, and (3) from the definition of rε.

We use this method for constructing an overfitting query for non-LSS mechanism, to show that LSS
is necessary in order for a mechanism to be both Sample Accurate and Distribution Accurate.
Theorem 3.6 (Necessity of LSS for Generalization). Given 0 ≤ ε ≤ ∆, 0 ≤ δ ≤ 1, a distribution
DXn , and an analyst A : V → Q∆, if a sequence of k mechanisms M̄ where ∀i ∈ [k] ,Mi :
Xn ×Q∆ → R is not

(
ε
∆ , δ

)
-k-LSS, then it cannot be both

(
ε
5 ,

εδ
5∆

)
(k + 1)-Distribution Accurate

and
(
ε
5 ,

εδ
5∆

)
(k + 1)-Sample Accurate.

The proof of this theorem, which appears in Appendix C.4, uses a similar method to the proof of
Theorem 3.3, employing a variant of the Monitor Mechanism that outputs the loss assessment query
with the highest level of overfitting.

4 Relationship to other notions of stability

In this section, we discuss the relationship between LSS and a few common notions of stability;
definitions can be found in Appendix D.1. In order to do so, we introduce an additional new
stability notion, which relaxes the Max Information (MI) (Definition D.2) notion by moving from the
distribution over the sample sets to the distribution over the sample elements.

8The fact that we are able to define such a query is a result of the way the distance measure of LSS treats the
x’s and the fact that it is defined over X and not Xn.
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Definition 4.1 (Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a distribution DXn and a query q,
a mechanism M will be said to satisfy (ε, δ)-Local-Max-Information with respect to DXn and q (or
LMI, for short), if the joint distributions D(X ,R) and the product distribution DX⊗R over X ×R are
(ε, δ)-indistinguishable. In other words, for any b ⊆ X ×R,

D(X ,R) (b) ≤ eε ·DX⊗R (b) + δ and DX⊗R (b) ≤ eε ·D(X ,R) (b) + δ.

The definition can be extended to apply to a family of queries and/or a family of possible distributions.

4.1 Implications

Prior work ([DFH+15a] and [RRST16]) showed that bounded Differential Privacy (DP) (Definition
D.1) implies bounded MI (Definition D.2). In the case of δ > 0, this holds only if the underlying
distribution is a product distribution [De12]). Bounded MI is also implied by Typical Stability (TS)
(Definition D.3) [BF16], and Bounded Maximal Leakage (ML) [EGI19]. We prove that DP, MI and
TS imply LMI (in the case of DP, only for product distributions). All proofs for this subsection can be
found in Appendix D.2, where we also introduce a local version of ML and prove its relation to LMI.
Theorem 4.2 (Differential Privacy implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a
distribution DX , and a query q, if a mechanism M is (ε, δ)-DP with respect to q then it is (ε, δ)-LMI
with respect to the same q and the product distribution over Xn induced by DX .
Theorem 4.3 (Max Information implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a
distribution DXn and a query q, if a mechanism M has δ-approximate max-information of ε with
respect to DXn and q then it is (ε, δ)-LMI with respect to the same DXn and q.
Theorem 4.4 (Typical Stability implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ, η ≤ 1, a
distribution DXn and a query q, if a mechanism M is (ε, δ, η)-Typically Stable with respect to DXn
and q then it is (ε, δ + 2η)-LMI with respect to the same DXn and q.

These three theorems follow naturally from the fact that LMI is a fairly direct relaxation of DP, MI
and TS.

We next show that LMI implies LSS.
Theorem 4.5 (Local Max Information implies Local Statistical Stability). Given 0 ≤ δ ≤ ε ≤ 1

3 , a
distribution DXn and a query q, if a mechanism M is (ε, δ)-LMI with respect to DXn and q, then it
is
(
ε′, δε

)
-LSS with respect to the same DXn and q, where ε′ = eε − 1 + ε.

We also prove that Compression Schemes (Definition D.6) imply LSS. This results from the fact that
releasing information based on a restricted number of sample elements has a limited effect on the
posterior distribution on one element of the sample set.
Theorem 4.6 (Compressibility implies Local Statistical Stability). Given 0 ≤ δ ≤ 1, an integer
m ≤ n

9ln(2n/δ) , a distribution DX , and a query q ∈ Q, if a mechanism M has a compression scheme
of size m then it is (ε, δ)-LSS with respect to the same q and the product distribution over Xn induced

by DX , for any ε > 11
√

mln(2n/δ)
n .9

4.2 Separations

Finally, we show that MI is a strictly stronger requirement than LMI, and LMI is a strictly stronger
requirement then LSS. Proofs of these theorems appear in Appendix D.3.
Theorem 4.7 (Max Information is strictly stronger than Local Max Information). For any 0 < ε,
n ≥ 3, the mechanism which outputs the parity function of the sample set is (ε, 0)-LMI but not(
1, 1

5

)
-MI.

Theorem 4.8 (Local Max Information is strictly stronger than Local Statistical Stability). For any
0 ≤ δ ≤ 1, n > max

{
2ln
(

2
δ

)
, 6
}

, a mechanism which uniformly samples and outputs one sample

element is
(

11
√

ln(2n/δ)
n , δ

)
-LSS but is not

(
1, 1

2n

)
-LMI.

9In case g releases some side information, the number of bits required to describe this information is added
to the m factor in the bound on ε.
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5 Applications and Discussion

In order to make the LSS notion useful, we must identify mechanisms which manages to remain
stable while maintaining sample accuracy. Fortunately, many such mechanisms have been introduced
in the context of Differential Privacy. Two of the most basic Differentially Private mechanisms are
based on noise addition, of either a Laplace or a Gaussian random variable. Careful tailoring of their
parameters allows “masking” the effect of changing one element, while maintaining a limited effect
on the sample accuracy. By Theorems 4.2 and 4.5, these mechanisms are guaranteed to be LSS as
well. The definitions and properties of these mechanisms can be found in Appendix E.

In moving away from the study of worst-case data sets (as is common in previous stability notions) to
averaging over sample sets and over data elements of those sets, we hope that the Local Statistical
Stability notion will enable new progress in the study of generalization under adaptive data analysis.
This averaging, potentially leveraging a sort of “natural noise” from the data sampling process, may
enable the development of new algorithms to preserve generalization, and may also support tighter
bounds on the implications of existing algorithms. One possible way this might be achieved is by
limiting the family of distributions and queries, such that the empirical mean of the query lies within
some confidence interval around population mean, which would allow scaling the noise to the interval
rather than the full range (see, e.g. , Concentrated Queries, as proposed by [BF16]).

One might also hope that realistic adaptive learning settings are not adversarial, and might therefore
enjoy even better generalization guarantees. LSS may be a tool for understanding the generalization
properties of algorithms of interest (as opposed to worst-case queries or analysts; see e.g. [GK16],
[ZH19]).
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A Distributions: Formal Definitions

Definition A.1 (Distributions over Xn and R). A distribution DXn , a query q, and a mechanism
M : Xn ×Q → R, together induce a set of distributions over Xn,R, and Xn ×R.

The conditional distribution Dq
R|Xn over R represents the probability to get r as the output of

M (s, q). That is, ∀s ∈ Xn, r ∈ R,

Dq
R|Xn (r | s) := Pr

R∼M(s,q)
[R = r | s] ,

where the probability is taken over the internal randomness of M .

The joint distribution Dq
(Xn,R) over Xn ×R represents the probability to sample a particular s and

get r as the output of M (s, q). That is, ∀s ∈ Xn, r ∈ R,

Dq
(Xn,R) (s, r) := DXn (s) ·Dq

R|Xn (r | s) .

The marginal distribution Dq
R over R represents the prior probability to get output r without any

knowledge of s. That is, ∀r ∈ R,

Dq
R (r) :=

∑
s∈Xn

Dq
(Xn,R) (s, r) .

The product distribution Dq
Xn⊗R over Xn ×R represents the probability to sample s and get r as

the output of M (·, q) independently. That is, ∀s ∈ X , r ∈ R,

Dq
Xn⊗R (s, r) := DXn (s) ·Dq

R (r) .

The conditional distribution Dq
Xn|R over Xn represents the posterior probability that the sample set

was s given that M (·, q) returns r. That is, ∀s ∈ Xn, r ∈ R,

Dq
Xn|R (s | r) :=

Dq
(Xn,R) (s, r)

Dq
R (r)

.

Definition A.2 (Distributions over X andR). The marginal distribution DX over X represents the
probability to get x by sampling a sample set uniformly at random without any knowledge of s. That
is, ∀x ∈ X ,

DX (x) :=
∑
s∈Xn

DXn (s) ·DX|Xn (x | s) ,

where DX|Xn (x | s) denotes the probability to get x by sampling s uniformly at random.

The joint distribution Dq
(X ,R) over X ×R represents the probability to get x by sampling a sample

set uniformly at random and also get r as the output of M (·, q) from the same sample set. That is,
∀x ∈ X , r ∈ R,

Dq
(X ,R) (x, r) :=

∑
s∈Xn

DXn (s) ·DX|Xn (x | s) ·Dq
R|Xn (r | s) .

where DX|Xn (x | s) denotes the probability to get x by sampling s uniformly at random.

The product distribution Dq
X⊗R over X ×R represents the probability to get x by sampling a sample

set uniformly at random and get r as the output of M (·, q) independently. That is, ∀x ∈ X , r ∈ R,

Dq
X⊗R (x, r) := DX (x) ·Dq

R (r) .

The conditional distribution Dq
R|X overR represents the probability to get r as the output of M (·, q)

from a sample set, given the fact that we got x by sampling the same sample set uniformly at random.
That is, ∀x ∈ X , r ∈ R,

Dq
R|X (r |x) :=

∑
s∈Xn

DXn|X (s |x) ·Dq
R|Xn (r | s) .
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The conditional distribution Dq
X|R over X represents the probability to get x by sampling a sample

set uniformly at random, given the fact that we got r as the output of M (·, q) from that sample set.
That is, ∀x ∈ X , r ∈ R,

Dq
X|R (x | r) :=

∑
s∈Xn

Dq
Xn|R (s | r) ·DX|Xn (x | s) .

Although all of these definitions depend on DXn and M , we typically omit these from the notation
for simplicity, and usually omit the superscripts and subscripts entirely. We include them only
when necessary for clarity. We also use D to denote the probability of a set: for r ⊆ R, we define
Dq
R (r) :=

∑
r∈r

Dq
R (r).

Though the conditional distributions Dq
R|X and Dq

X|R were not defined as the ratio between the joint
and marginal distribution, the analogue of Bayes’ rule still holds for these distributions.

Proposition A.3. Given any distribution DXn , mechanism M : Xn ×Q → R, and query q,

D(X ,R) (x, r) = D (x) ·D (r |x) = D (r) ·D (x | r) .

Proof. We observe

D(X ,R) (x, r) =
∑
s∈Xn

D (s) ·D (x | s) ·D (r | s)

=
∑
s∈Xn

D(Xn,X ) (s, x) ·D (r | s)

= D (x) ·
∑
s∈Xn

D(Xn,X ) (s, x)

D (x)
·D (r | s)

= D (x) ·
∑
s∈Xn

D (s |x) ·D (r | s)

= D (x) ·D (r |x) .

Similarly,

D(X ,R) (x, r) =
∑
s∈Xn

D (s) ·D (r | s) ·D (x | s)

=
∑
s∈Xn

D(Xn,R) (s, r) ·D (x | s)

= D (r) ·
∑
s∈Xn

D(Xn,R) (s, r)

D (r)
·D (x | s)

= D (r) ·
∑
s∈Xn

D (s | r) ·D (x | s)

= D (r) ·D (x | r) .

B Missing Details from Section 2

Lemma B.1. Given 0 ≤ δ ≤ ε ≤ 1, a distribution DXn , and a query q, if a mechanism M is
(ε, δ)-LSS with respect to DXn , q, then D (r2ε) <

δ
ε .

Proof. Assume by way of contradiction that D (r2ε) ≥ δ
ε ; then

D (r2ε) · (` (r2ε)− ε) >
δ

ε
· (2ε− ε) = δ.
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B.1 Proof of Post-Processing Theorem

Proof of Theorem 2.3. We start by defining a function wεU : R → [0, 1] such that ∀r ∈ R :
wεU (r) =

∑
u∈uε

D (u | r), where uε is the set of ε-unstable values in U as defined in Definition

2.1, and D (u | r) := Pr
U∼f(r)

[U = u | r]. Using this function we get that,

∑
u∈uε

D (u) =
∑
u∈uε

∑
r∈R

D (r) ·D (u | r)

=
∑
r∈R

=wεU (r)︷ ︸︸ ︷∑
u∈uε

D (u | r) ·D (r)

=
∑
r∈R

wεU (r) ·D (r) ,

and

∑
u∈uε

D (u) · ` (u) =
∑
u∈uε

D (u)
∑

x∈x+(u)

(D (x |u)−D (x))

=
∑
u∈uε

∑
x∈x+(u)

D (x) (D (u |x)−D (u))

=
∑
u∈uε

∑
r∈R

∑
x∈x+(u)

D (x) (D (r |x)−D (r))D (u | r)

(1)

≤
∑
u∈uε

∑
r∈R

∑
x∈x+(r)

D (x) (D (r |x)−D (r))D (u | r)

=
∑
r∈R

=wεU (r)︷ ︸︸ ︷∑
u∈uε

D (u | r) ·D (r)
∑

x∈x+(r)

(D (x | r)−D (x))

=
∑
r∈r

wεU (r) ·D (r) · ` (r) ,

where (1) results from the definition of x+ (r).

Combining the two we get that

D (uε) · (` (uε)− ε) =
∑
u∈uε

D (u) (` (u)− ε)

(1)

≤
∑
r∈R

wεU (r) ·D (r) (` (r)− ε)

(2)

≤
∑
r∈rε

≤1︷ ︸︸ ︷
wεU (r) ·D (r) (` (r)− ε)

≤
∑
r∈rε

D (r) (` (r)− ε)

(3)

≤ δ,

where (1) results from the two previous claims, (2) from the fact that we removed only negative terms
and (3) from the LSS definition, which concludes the proof.
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B.2 Adaptivity and View-Induced Posterior Distributions

Definition B.2 (View-induced posterior distributions). A sequence of mechanisms M̄ , an analyst A,
and a view vk ∈ Vk together induce a set of posterior distributions over Xn, X , andR. For clarity
we will denote these induced distributions by P vk instead of D.

As mentioned before, all the distributions we consider stem from two basic distributions; the underly-
ing distribution DXn and the conditional distribution Dq

R|Xn . The posteriors of these distributions
change once we see vk. DXn is replaced by P vkXn := DA

Xn|Vk (· | vk) (actually, the rigorous notation

should have been P M̄,A,vk
Xn , but since M̄ and A will be fixed throughout this analysis, we omit them

for simplicity). Similarly, Dqk+1

R|Xn (r | s) is replaced by

P vkR|Xn (r | s) := D
qk+1

R|Xn (r | s, vk) = Pr
R∼Mk+1(s,qk+1)

[
R = r | s,AdpM̄,k (s,A) = vk

]
,

where AdpM̄,k denotes the first k iterations of the adaptive mechanism, which - as mentioned
previously - determine the k + 1-th query.10

We next establish two important properties of the distributions over Vk+1 induced by AdpM̄ and their
relation to the posterior distributions.

Lemma B.3. Given a distribution DXn , an analyst A : V → Q, and a sequence of k mechanisms
M̄ , for any vk+1 ∈ Vk+1 we denote vk+1 = (vk, rk+1). In this case, using notation from Definition
B.2,

D (vk+1) = D (vk) · P vk (rk+1)

and
`ADXn (vk+1) ≤ `ADXn (vk) + `

qk+1

P
vk
Xn

(rk+1) .

Proof. We begin by proving a set of relations between the prior distributions over Vk+1 and the
posterior distributions induced by the view vk.

D(Xn,Vk+1) (s, vk+1) = D (s) ·D (vk+1 | s)
(1)
= D (s) ·D (vk | s) ·Dqk+1 (rk+1 | s, vk)

= D (vk) ·D (s | vk) ·Dqk+1 (rk+1 | s, vk)

= D (vk) · P vk (s) · P vk (rk+1 | s)
= D (vk) · P vk(Xn,R) (s, rk+1) ,

where (1) is a result of the fact that qk+1 is a deterministic function of vk. As mentioned in Definition
B.2, the distribution of rk+1 might depend on vk in the case of a stateful mechanism, but it is all
encapsulated in the definition of P .

Using this identity and the definition of P vkXn we get that,

D (vk+1) =
∑
s∈Xn

D(Xn,Vk+1) (s, vk+1) =
∑
s∈Xn

D (vk) ·P vk(Xn,R) (s, rk+1) = D (vk) ·P vk (rk+1) .

D (x | vk) =
∑
s∈Xn

D (s | vk) ·D (x | s) =
∑
s∈Xn

P vk (s) ·D (x | s) = P vk (x) .

D (x | vk+1) =
∑
s∈Xn

D (s | vk+1) ·D (x | s) =
∑
s∈Xn

P vk (s | rk+1) ·D (x | s) = P vk (x | rk+1) .

10If Mk+1 is stateful, the conditioning can result from any unknown state of Mk+1 which might affect
its response to qk+1. If Mk+1 has no shared state with the previous sub-mechanisms (either because it is
a different mechanism or because it is stateless), then the only effect vk has on the posterior on R is by
governing qk+1 (which, as mentioned before, is a deterministic function of vk for the given A), in which case
P

vk
R|Xn (r | s) = D

qk+1

R|Xn (r | s) where the mechanism is Mk+1.
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where we keep using the fact that D (x | s) does not depend on the underlying distribution DXn at all.
Using these identities we can analyze the stability loss, and we would do so by invoking an equivalent
definition of the statistical distance (see Appendix F),

`ADXn (vk+1) =
1

2

∑
x∈X
|D (x | vk+1)−DX (x)|

≤(1) 1

2

∑
x∈X
|D (x | vk)−DX (x)|+ 1

2

∑
x∈X
|D (x | vk+1)−D (x | vk)|

= `ADXn (vk) +
1

2

∑
x∈X

∣∣∣P vk,qk+1

X|R (x | rk+1)− P vkX (x)
∣∣∣

= `ADXn (vk) + `
qk+1

P
vk
Xn

(rk+1) ,

where (1) is simply the triangle inequality.

B.3 Proof of Linear Adaptive Composition Theorem

Proof of Theorem 2.6. This theorem is a direct result of combining Lemma B.3 with the triangle
inequality over the posteriors created at any iteration, and the fact that the mechanisms are LSS over
the new posterior distributions. Formally this is proven using induction on the number of adaptive
iterations. The base case k = 0 is the coin tossing step, which is independent of the set and therefore
has zero loss. For the induction step we start by denoting the projections of vk+1

ε[k+1]
on Vk andR by

∀rk+1 ∈ R,vk (rk+1) :=
{
vk ∈ Vk | (vk, rk+1) ∈ vk+1

ε[k+1]

}
∀vk ∈ Vk, r (vk) :=

{
rk+1 ∈ R | (vk, rk+1) ∈ vk+1

ε[k+1]

}
,

where ε[k] :=
∑
i∈[k]

εi.

Using this notation and that in Definition B.2 we get that

D
(
vk+1
ε[k+1]

)
·
(
`ADXn

(
vk+1
ε[k+1]

)
− ε[k+1]

)
=

∑
vk+1∈vk+1

ε[k+1]

D (vk+1)
(
`ADXn (vk+1)− ε[k+1]

)
(1)

≤
∑

(vk,rk+1)∈vk+1
ε[k+1]

D (vk) · P vk (rk+1)
(
`ADXn (vk) + `

qk+1

P
vk
Xn

(rk+1)− ε[k+1]

)

where (1) is a direct result of Lemma B.3. Analyzing the two parts separately we get

∑
vk∈Vk

∑
rk+1∈r(vk)

D (vk) · P vk (rk+1)
(
`ADXn (vk)− ε[k]

) (1)

≤
∑

vk∈vkε[k]

D (vk)
(
`ADXn (vk)− ε[k]

)
= D

(
vkε[k]

)(
`ADXn

(
vkε[k]

)
− ε[k]

)
(2)

≤
∑
i∈[k]

δi

and similarly,
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∑
rk+1∈R

∑
vk∈vk(rk+1)

D (vk) · P vk (rk+1)
(
`
qk+1

P
vk
Xn

(rk+1)− εk+1

)
(1)

≤
∑

rk+1∈r
qk+1
εk+1

P vk (rk+1)
(
`
qk+1

P
vk
Xn

(rk+1)− εk+1

)
= P vk

(
rqk+1
εk+1

)(
`
qk+1

P
vk
Xn

(
rqk+1
εk+1

)
− εk+1

)
(2)

≤ δk+1,

where in both cases (1) is a result of the fact that in both sums we add positive summands and remove
negative ones, and (2) results from the inductive assumption.

Combining the two we get that D
(
vk+1
ε[k+1]

)
·
(
`ADXn

(
vk+1
ε[k+1]

)
− ε[k+1]

)
≤
∑
i∈[k+1] δi.

B.4 Proof of Sub-Linear Adaptive Composition Theorem

Lemma B.4 (Azuma inequality extended to high probability bound). Given k ∈ N, 0 ≤ ε1, . . . , εk,
0 ≤ δ1, . . . , δk ≤ 1, if Y0, . . . , Yk is a martingale with respect to another sequence Z0, . . . , Zk such
that for any i ∈ [k], Pr [|Yi − Yi−1| > εi] ≤ δi, then for any λ > 0,

Pr [|Yk − Y0| > λ] ≤ exp

(
− λ2

2
∑k
i=1 ε

2
i

)
+

k∑
i=1

δi.

The proof parallels that of a similar lemma by [TV+15] (their Proposition 34).

Proof. For any given realization of the random variable y = (y0, . . . , yk), we denote by I (y) the first
index i for which |yi − yi−1| > εi. If no such index exists, I (y) = k+ 1. We then define ȳ′ := f (y)
where ∀i < I (ȳ) : y′i = yi and ∀i ≥ I (ȳ) : y′i = yI(ȳ)−1. Notice that the random variable Y ′ is also
a martingale with respect to Z0, Pr

[∣∣Y ′i − Y ′i−1

∣∣ > εi
]

= 0, and

Pr [Y ′ 6= Y ] ≤
k∑
i=1

Pr [Y ′i 6= Yi] ≤
k∑
i=1

δi.

Using these facts we get

Pr [|Yk − Y0| > λ] =

≤1︷ ︸︸ ︷
Pr [Y ′ = Y ] ·Pr [|Y ′k − Y ′0 | > λ] + Pr [Y ′ 6= Y ] ·

≤1︷ ︸︸ ︷
Pr [|Yk − Y0| > λ]

(1)

≤ exp

(
− λ2

2
∑k
i=1 ε

2
i

)
+

k∑
i=1

δi.

where (1) results from the previous inequality and Azuma’s inequality for Y ′.

Proof of Theorem 2.7. The proof is based on the fact that the sum of the stability losses is a martingale
with respect to vk, and invoking Lemma B.4.

Formally, for any given k > 0, we can define Ω0 := Xn and ∀i ∈ [k] ,Ωi := R.11 We define a
probability distribution over Ω0 as DXn , and for any i > 0, define a probability distribution over Ωi

11If the analyst A is non-deterministic, Ω0 := Xn × C, where C is the set of all possible coin tosses of
the analyst, as mentioned in Definition 2.4. If the mechanisms have some internal state not expressed by the
responses, Ωi will be the domain of those states, as mentioned in Definition B.2.
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given Ω1, . . . ,Ωi−1 as P vi−1 (see Definition B.2). We then define a sequence of functions, y0 = 0
and ∀i > 0,

yi (s, r1, . . . , ri) =

i∑
j=1

(
`Pvj−1 (rj)− E

R∼P
vj−1
R

[
`Pvj−1 (R)

])
.

Intuitively yi is the sum of the first i losses, with a correction term which zeroes the expectation.

Notice that these random variables are a martingale with respect to the random process S,R1, . . . , Rk
since

E
Ri+1

[Yi+1 |S,R1, . . . , Ri] = E
Ri+1

i+1∑
j=1

(
`PVj−1 (Rj)− E

R∼P
Vj−1
R

[
`PVj−1 (R)

])
|S,R1, . . . , Ri



=

=Yi(S,R1,...,Ri)︷ ︸︸ ︷
i∑

j=1

(
`PVj−1 (Rj)− E

R∼P
Vj−1
R

[
`PVj−1 (R)

])

+

=0︷ ︸︸ ︷
E

Ri+1

[
`PVi (Ri+1)− E

R∼PViR

[
`PVi (R)

]
|S,R1, . . . , Ri

]
= Yi (S,R1, . . . , Ri)

where the expectation is taken over the random process, which has randomness that results from the
choice of s ∈ Xn and the internal probability of M .

From the LSS definition (Definition 2.2) and Lemma B.1, for any i ∈ [k] we get that
Pr

R∼P
vi−1
R

[
`Pvi (Ri) > 2εi

]
≤ δi

εi
, so with probability greater than δi+1

εi+1
,

|Yi+1 − Yi| =
∣∣∣∣`PVi (Ri+1)− E

R∼PVi

[
`PVi (R)

]∣∣∣∣ ≤ `PVi (Ri+1) ≤ 2εi+1.

Using this fact we can invoke Lemma B.4 and get that for any 0 ≤ δ′ ≤ 1,
Pr

V∼DVk
[`DXn (V ) > ε′]

(1)

≤ Pr
V∼DVk

 k∑
i=1

`PVi−1 (Ri) >

√√√√8ln

(
1

δ′

) k∑
i=1

ε2i +

k∑
i=1

αi


(2)

≤ Pr
V∼DVk

 k∑
j=1

(
`PVj−1 (Rj)− E

R∼P
Vj−1
R

[
`PVj−1 (R)

])
>

√√√√8ln

(
1

δ′

) k∑
i=1

ε2i


(3)
= Pr

V∼DVk

Yk − =0︷︸︸︷
Y0 >

√√√√8ln

(
1

δ′

) k∑
i=1

ε2i


(4)

≤ δ′ +

k∑
i=1

δi
εi

where (1) results from Lemma B.3, (2) from the bound on the expectation of the stability loss, (3)
from the definition of Yi, and (4) from Lemma B.4.

C Missing Details from Section 3

C.1 Generalization of Expectation

As a step toward showing that LS Stability implies a high probability generalization, we first show a
generalization of expectation result. We do so, as a tool, specifically for a mechanism that returns
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a query as its output. Intuitively, this allows us to wrap an entire adaptive process into a single
mechanism. Analyzing the potential of the mechanism to generate an overfitting query is a natural
way to learn about the generalization capabilities of the mechanism.
Theorem C.1 (Generalization of expectation). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , a query q,
and a mechanism M : Xn ×Q → Q∆, if D (qε) < δ, then∣∣∣∣ E

S∼DXn ,Q′∼M(S,q)
[Q′ (DXn)−Q′ (S)]

∣∣∣∣ < 2∆ (ε+ δ) .

Proof. First notice that,

q (s) =
1

n

n∑
i=1

q (si) =
∑
x∈X

D (x | s) · q (x)

where s1, . . . sn denotes the elements of the sample set s. Using this identity we separately analyze
the expected value of the returned query with respect to the distribution, and with respect to the
sample set.

E
S∼DXn ,Q′∼M(S,q)

[Q′ (DXn)] =
∑
s∈Xn

D (s) ·
∑
q′∈Q∆

D (q′ | s) · q′ (DXn)

=
∑
q′∈Q∆

=D(q′)︷ ︸︸ ︷∑
s∈Xn

D (s) ·D (q′ | s) ·

=q′(DXn )︷ ︸︸ ︷∑
s′∈Xn

DXn (s′) · q (s′)

=
∑
q′∈Q∆

D (q′)
∑
x∈X

D(x)︷ ︸︸ ︷∑
s′∈Xn

D (s′) ·D (x | s′) ·q′ (x)

=
∑
q′∈Q∆

D (q′)
∑
x∈X

D (x) · q′ (x)

E
S∼DXn ,Q′∼M(S,q)

[Q′ (S)] =
∑
s∈Xn

D (s) ·
∑
q′∈Q∆

D (q′ | s) · q′ (s)

=
∑
q′∈Q∆

∑
x∈X

=Dq
(X ,Q∆)(x,q

′)︷ ︸︸ ︷∑
s∈Xn

D (s) ·D (q′ | s) ·D (x | s) ·q′ (x)

(1)
=

∑
q′∈Q∆

D (q′)
∑
x∈X

D (x | q′) · q′ (x) ,

where (1) is a result of Lemma A.3.

Now we can calculate the difference:∣∣∣∣ E
S∼DXn ,Q′∼M(S,q)

[Q′ (DXn)−Q′ (S)]

∣∣∣∣ =

∣∣∣∣∣∣
∑
q′∈Q∆

D (q′)
∑
x∈X

(D (x)−D (x | q′)) · q′ (x)

∣∣∣∣∣∣
(1)

≤
∑
q′∈Q∆

D (q)

=2`(q′)︷ ︸︸ ︷∑
x∈X
|D (x)−D (x | q′)| ·∆

= 2∆ ·


≤1︷ ︸︸ ︷∑

q′ /∈qε

D (q′) ·
≤ε︷ ︸︸ ︷
` (q′) +

<δ︷ ︸︸ ︷∑
q′∈qε

D (q′) ·
≤1︷ ︸︸ ︷
` (q′)


(2)
< 2∆ (ε+ δ) ,
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where (1) results from the definition of Q∆ and the triangle inequality, and (2) from the condition
that D (qε) < δ.

Corollary C.2. Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and a query q, if a mechanism M :
Xn ×Q → Q∆ is (ε, δ)-LSS with respect to DXn , q, then∣∣∣∣ E

S∼DXn ,Q′∼M(S,q)
[Q′ (DXn)−Q′ (S)]

∣∣∣∣ < 2∆

(
2ε+

δ

ε

)
.

Proof. This is a direct result of combining Theorem C.1 with Lemma B.1.

C.2 Monitoring Argument

Definition C.3 (The Monitor Mechanism). The Monitor Mechanism is a function MonM̄ : (Xn)
t ×

A → Q × R × [t] which is parametrized by a sequence of k mechanisms M̄ where ∀i ∈ [k],
Mi : Xn × Q → R. Given a series of sample sets s̄ ∈ (Xn)

t and analyst A as input, it runs the
adaptive mechanism between M̄ and A for t independent times (which in particular means neither of
them share state across those iterations) and outputs a query q ∈ Q, response r ∈ R and index i ∈ t,
based on the following process:

Monitor Mechanism MonM̄
Input: s̄ ∈ (Xn)

t
, A ∈ A

Output: q ∈ Q, r ∈ R, i ∈ t
for i = 1, ..., t :
vi ← AdpM̄ (si, A)(
q̃i, r̃i

)
← arg max

(q,r)∈vi
|q (DXn)− r|a

if q̃i (DXn) ≥ r̃i:b
qi ← q̃i

ri ← r̃i

else:
qi ← −q̃i
ri ← −r̃i

i∗ ← arg max
i∈[t]

(
qi (DXn)− ri

)
return

(
qi
∗
, ri
∗
, i∗
)

aWe slightly abuse notation since q is not part of vi, but since it can be recovered from it, this term is
well defined.

bThe addition of this condition ensures that q (DXn) ≥ r for the output of the mechanism, a fact that
will be used later in the proof of Claim C.6.

Notice that the monitor mechanism makes use of the ability to evaluate queries according to the true
underlying distribution.12

We begin by proving that the monitor mechanism has generalization of expectation. In this claim and
the following ones, the probabilities and expectations are taken over the randomness of the choice of
s̄ ∈ (Xn)

t (which is assumed to be drawn iid from DXn ) and the internal probability of AdpM̄ .
Claim C.4. Given 0 ≤ ε, δ ≤ 1, t ∈ N, a distribution DXn , and an analyst A : V → Q∆, if a
sequence of k mechanisms M̄ where ∀i ∈ [k], Mi : Xn ×Q∆ → R is (ε, δ)-k-LSS with respect to
DXn , A, then ∣∣∣∣∣ E

S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)
[q (DXn)−Q (SI)]

∣∣∣∣∣ < 2∆

(
2ε+

tδ

ε

)
.

Proof. Since qi is a post-processing of vi and AdpM̄ is (ε, δ)-LSS with respect to A, Theorem 2.3
implies that the post-processing producing qi is (ε, δ)-LSS with respect to A as well. Using Lemma

12Of course, no realistic mechanism would have such an ability; the monitor mechanism is simply a thought
experiment used as a proof technique.
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B.1 we get that D (q2ε) <
δ
ε for each of the t rounds. Using the union bound and the fact that the

t rounds are independent we get that Pr
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[q ∈ q2ε] <
tδ
ε . This allows us to

invoke Theorem C.1, with tδ
ε replacing δ.13

We next show that k-sample accuracy of the mechanism run inside the monitor mechanism has
implications for the sample accuracy of the result of the monitor mechanism.

Claim C.5. Given 0 ≤ ε, δ ≤ 1, t ∈ N, a distribution DXn , and an analyst A : V → Q∆, if a
sequence of k mechanisms M̄ where ∀i ∈ [k] ,Mi : Xn × Q∆ → R is (ε, δ)-k-Sample Accurate
with respect to DXn , A, then

E
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (SI)−R] ≤ ε+ 2tδ∆.

Proof. This is a direct result of combining the sample accuracy definition and the union bound. If the
probability that the sample accuracy of M will be greater than ε is bounded by δ, then the probability
that it will fail to hold once in t independent iterations is less then tδ, and since the values of the
query are bounded on the interval [−∆,∆] the maximal error in these cases is 2∆.

If the mechanism run by the monitor mechanism is not k-Distribution Accurate, this has implications
for the distribution accuracy of the result of the monitor mechanism, as well.

Claim C.6. Given 0 ≤ ε, δ ≤ 1, t ∈ N, a distribution DXn , and an analyst A : V → Q∆, if a a
sequence of k mechanisms M̄ where ∀i ∈ [k] ,Mi : Xn × Q∆ → R is not (ε, δ)-k-Distribution
Accurate with respect to DXn , A, then

E
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (DXn)−R] > ε
(

1− (1− δ)t
)
.

Proof. First recall that from the definition of the monitor mechanism, ∀i ∈ [t] , qi (DXn)− ri ≥ 0.
Therefore if M is not (ε, δ)-Distribution Accurate, then ∀i ∈ [t]

Pr
S∼DtXn ,V∼Mi(S,A),(Q,R)=arg max

(q,r)∈V
|q(DXn )−r|

[Q (DXn)−R > ε] > δ.

Since the t rounds of the monitor mechanism are independent and i∗ is the index of the round with
the maximal error,

Pr
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (DXn)−R > ε] > 1− (1− δ)t .

So the expectation of this quantity must be greater then ε
(

1− (1− δ)t
)

, concluding the proof.

Finally, we use the monitor mechanism as a tool to show that LSS implies generalization with high
probability.

C.3 Proof of Generalization in Probability Theorem

Proof of Theorem 3.3. We will prove a slightly more general claim. For every 0 < a, b, c, d such that
4a+ 2b+ c+ 2d < 1− e−1, say M is both

(
a ε∆ , ab

ε2δ
∆2

)
-k-LSS and

(
cε, d εδ∆

)
-k-Sample Accurate

and assume M is not (ε, δ)-k-Distribution Accurate.

13The fact that repeating this process t independent times affects only the δ and not the ε will be crucial to the
move from generalization of expectation to generalization with high probability (at least in this proof technique).
This is made possible by the way r’s were treated in the distance measure in the LSS definition. For comparison,
see the remark in Lemma 3.3 in [BNS+16]. We hypothesize, quite informally, that stability definitions that
degrade in the ε term on multiple independent runs cannot yield generalization with high probability. As far as
we are aware, all previously studied stability notions support this claim.
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Setting t =
⌊

1
δ

⌋
, we see∣∣∣∣∣ E

S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)
[Q (DXn)−Q (SI)]

∣∣∣∣∣ (1)
< 2∆

(
2
aε

∆
+
t∆

aε
· abε

2δ

∆2

)
(2)

≤ (4a+ 2b) ε,

where (1) is a direct result of Claim C.4 and (2) uses the definition of t.

But on the other hand,∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (DXn)−Q (SI)]

∣∣∣∣∣ (1)

≥

∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (DXn)−R]

∣∣∣∣∣
−

∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼MonM̄(S̄,A)

[Q (SI)−R]

∣∣∣∣∣
(2)
> ε

(
1− (1− δ)t

)
−
(
cε+ 2t · dεδ

∆
∆

)
(3)
> ε

(
1− e−δb

1
δ c
)
− (c+ 2d) ε

(4)

≥ ε
(
1− e−1

)
− (c+ 2d) ε

(5)
> (4a+ 2b) ε,

where (1) is the triangle inequality, (2) uses Claims C.5 and C.6, (3) the definition of t, (4) the
inequality 1− δ ≤ e−δ , and (5) the definition of a, b, c, d. Since combining all of the above leads to
a contradiction, we know that M̄ must be (ε, δ)-Distribution Accurate, which concludes the proof.
The theorem was stated choosing a = c = 1

8 , b = d = 1
600 .

C.4 Proof of the Necessity of LSS to Generalization Theorem

Definition C.7 (The Second Monitor Mechanism). The Second Monitor Mechanism is a function
Mon2M̄ : (Xn)

t × A → Q × R × [t] which is parametrized by a sequence of k mechanisms M̄
where ∀i ∈ [k] ,Mi : Xn ×Q → R. Given a series of sample sets s̄ ∈ (Xn)

t and analyst A as input,
it runs the adaptive mechanism between M̄ and A for t independent times and outputs a query q ∈ Q,
response r ∈ R and index i ∈ t, based on the following process:

Second Monitor Mechanism Mon2M̄
Input: s̄ ∈ (Xn)

t
, A ∈ A

Output: q ∈ Q, r ∈ R, i ∈ t
for i = 1, ..., t :
vi ← AdpM̄ (si, A)
qi ← q̃vi
ri ←M

(
s, qi

)
i∗ ← arg max

i∈[t]

(
`ADXn

(
vi
))

return
(
qi
∗
, ri
∗
, i∗
)

Proof of Theorem 3.6. Again we will prove a slightly more general claim. For every 0 < a, b, c, d
such that a + 2b + c + 2d < 2

(
1− e−1

)
, say M is both

(
aε, b εδ∆

)
(k + 1)-Sample Accurate and(

cε, d εδ∆
)

(k + 1)-Distribution Accurate and assume M is not
(
ε
∆ , δ

)
-k-LSS.

First notice that if M̄ is not
(
ε
∆ , δ

)
-k-LSS with respect toDXn , A, then in particularD

(
vk

( ε∆ )

)
≥ δ.

Since the t rounds of the second monitor mechanism are independent and i∗ is the index of the round
with the maximal stability loss of the calculated query, we get that

Pr
S̄∼DtXn ,(Q,R,I)∼Mon2M̄(S̄,A)

[
vI ∈ vk( ε∆ )

]
> 1− (1− δ)t .
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Combining this fact with Lemma 3.5, and setting t =
⌊

1
δ

⌋
we get on one hand,∣∣∣∣∣ E

S̄∼DtXn ,(Q,R,I)∼Mon2M̄(S̄,A)
[Q (DXn)−Q (SI)]

∣∣∣∣∣ (1)

≥ 2
ε

∆
∆
(

1− (1− δ)t
)

(2)
> 2ε

(
1− e−δb

1
δ c
)

(3)
> 2ε

(
1− e−1

)
,

where (1) is a direct result of invoking Lemma 3.5 with 1− (1− δ)t for δ, (2) uses the definition of t
and (3) uses the inequality 1− δ ≤ e−δ .
But on the other hand,∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼Mon2M̄(S̄,A)

[Q (DXn)−Q (SI)]

∣∣∣∣∣ (1)

≤

∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼Mon2M̄(S̄,A)

[Q (DXn)−R]

∣∣∣∣∣
+

∣∣∣∣∣ E
S̄∼DtXn ,(Q,R,I)∼Mon2M̄(S̄,A)

[Q (SI)−R]

∣∣∣∣∣
(2)
<

(
aε+ 2t · bεδ

∆
∆

)
+

(
cε+ 2t · dεδ

∆
∆

)
(3)

≤ (a+ 2b+ c+ 2d) ε

(4)
< 2ε

(
1− e−1

)
,

where (1) is the triangle inequality, (2) uses Claim C.5 which was mentioned with relation to the
original monitor mechanism (this time for the distribution error as well), (3) uses the definition of t,
and (4) the definition of a, b, c, d.

Since combining all of the above leads to a contradiction, we know that M̄ cannot be
(
ε
∆ , δ

)
-k-LSS,

which concludes the proof. The theorem was stated choosing a = b = c = d = 1
5 .

D Missing Details from Section 4

D.1 Definitions

In the following definitions, X , DX ,Q,R,M, ε, δ and n are used in a similar manner as for the
definitions leading to LSS.
Definition D.1 (Differential Privacy [DMNS06]). Given 0 ≤ ε, 0 ≤ δ ≤ 1, and a query q, a
mechanism M : Xn×Q → R will be called (ε, δ)-differentially-private with respect to q (or DP, for
short) if for any s1, s1 ∈ Xn that differ only in one element, the two distributions defined overR by
M (s1, q) and M (s2, q) are (ε, δ)-indistinguishable (Definition F.3). In other words, for any r ⊆ R,

D (r | s1) ≤ eε ·D (r | s2) + δ,

where the probability is taken over the internal randomness of M . Notice that in this definition, there
is no probabilistic aspect in the choice of s, and the bound is defined on the worst case.
Definition D.2 (Max Information [DFH+15a]). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a distribution DXn , and
a query q, we say a mechanism M : Xn ×Q → R has δ-approximate max-information of ε with
respect to DXn , q (or MI, for short) if the two distributions D(Xn,R) and DXn⊗R over Xn ×R are
(ε, δ)-indistinguishable. In other words, for any b ⊆ Xn ×R,

D(Xn,R) (b) ≤ eε ·DXn⊗R (b) + δ and DXn⊗R (b) ≤ eε ·D(Xn,R) (b) + δ.

Some definitions replace e with 2 as the base of ε.

These definition can be extended to apply to a family of queries and/or a family of possible distribu-
tions, just like the LSS definition.
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Definition D.3 (Typical Stability, based on Definition 2.3. of [BF16]). Given 0 ≤ ε, 0 ≤ δ, η ≤ 1, a
distribution DXn , and a query q, a mechanism M : Xn ×Q → R will be called (ε, δ, η)-Typically-
Stable with respect to DXn , q (or TS, for short) if with probability at least 1− η over the sampling
of s1, s2 ∈ Xn, the conditional distributions induced by the mechanism given the two sets is
(ε, δ)-indistinguishable. Formally,

Pr
S1,S2∼DXn

[∃r ⊆ R |D (r |S1) > eεD (r |S2) + δ] < η

An equivalent definition requires the existence of a subset s ∈ Xn, such that (1) D (s) ≥ 1− η, and
(2) for any s1, s2 ∈ s

D (r | s1) ≤ eε ·D (r | s2) + δ

Notice that in a way, MI and TS are a natural relaxation of DP, where instead of considering only the
probability which is induced by the mechanism, we also consider the underlying distribution.

Definition D.4 (Bounded Maximal Leakage [EGI19]). Given 0 ≤ ε, a distribution DXn , and a query
q, a mechanism M : Xn × Q → R will be called ε-Bounded-Maximal-Leaking with respect to
DXn , q (or ML, for short) if L (DXn → DR) ≤ ε, where L is the Maximal Leakage (Definition F.4).

Similarly to MI, this definition can also be relaxed to the local version.

Definition D.5 (Bounded Local Maximal Leakage). Given 0 ≤ ε, a distribution DXn , and a query q,
a mechanism M : Xn ×Q → R will be called ε-Bounded-Local-Maximal-Leaking with respect to
DXn , q (or ML, for short) if L (DX → DR) ≤ ε, where L is the Maximal Leakage (Definition F.4).

In Theorem D.7 we prove that LML implies LMI, the same way ML implies MI.

Definition D.6 (Compression Scheme [LW86]). Given an integerm < n
2 and a query q, a mechanism

M will be said to have a compression scheme of size m with respect to q (or CS, for short), if M
can be described as the composition fq ◦ gq where the compression function gq : Xn → Xm has
the property that gq (s) ⊂ s and fq : Xm → R is some arbitrary function which will be called
the encoding function. Both functions might be non deterministic. We will denote w := g (s) and
rw := f (w).14

One simple case is when f is the identity function, and the mechanism releases m sample elements.

D.2 Proofs of Implication Theorems

Proof of Theorem 4.2. Given b ⊆ X ×R we denote rb (x) := {r ∈ R | (x, r) ∈ b} (which might
be empty for some x’s). Using this notation we prove that for any b ⊆ X ×R,

D(X ,R) (b) =
∑
x∈X

D (x)D (rb (x) |x)

(1)
=

=1︷ ︸︸ ︷∑
x′∈X

D (x′)
∑
x∈X

D (x)
∑

s′∈Xn−1

D (s′) ·D (rb (x) | s′ ∪ {x})

(2)

≤
∑
x∈X

D (x)
∑
x′∈X

D (x′)
∑

s′∈Xn−1

D (s′) (eε ·D (rb (x) | s′ ∪ {x′}) + δ)

(1)
=
∑
x∈X

D (x)
∑
s∈Xn

D (s) (eε ·D (rb (x) | s) + δ)

=
∑
x∈X

D (x) (eε ·D (rb (x)) + δ)

= eε ·DX⊗R (b) + δ,

where (1) are a result of the fact that DXn is a product distribution, and (2) is a result of the DP
definition. The proof is concluded by repeating the same process for the second direction.

14some versions include the option of receiving some side information, i.e. the coin tosses of g.
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Proof of Theorem 4.3. Notice that the proof of DP holding under post-processing (see e.g. [DR+14]),
proves in fact that (ε, δ)-indistinguishability is closed under post-processing. Since x is a post-
processing of s, the fact that D(Xn,R) and DXn⊗R are (ε, δ) indistinguishable implies that D(X ,R)

and DX⊗R are indistinguishable as well.

Proof of Theorem 4.4. Given any b ⊆ X × R we denote rb (x) := {r ∈ R | (x, r) ∈ b} (which
might be empty for some x’s). Using this notation and the subset s from Definition D.3 we prove that
for any b ⊆ X ×R,

D(X ,R) (b) =
∑
x∈X

D (x)D (rb (x) |x)

(1)
=
∑
x∈X

∑
s∈Xn

D (s)D (x | s)

=1︷ ︸︸ ︷∑
s′∈Xn

D (s′)D (rb (x) | s)

(2)

≤ eε
∑
x∈X

∑
s∈s

D (s)D (x | s)
∑
s′∈s

D (s′)D (rb (x) | s′) + δ + 2η

≤ eε
∑
x∈X

=D(x)︷ ︸︸ ︷∑
s∈Xn

D (s)D (x | s)

=D(rb(x))︷ ︸︸ ︷∑
s′∈Xn

D (s′)D (rb (x) | s′) +δ + 2η

= eεDX⊗R (b) + δ + 2η

where (1) results from the fact that x and r are independent given s, and (2) from the definition of
TS.

Proof of Theorem 4.5. Assume M is not
(
ε′, δε

)
-LSS, which means that in particular D (rε′) >

δ
ε .

Denoting Bε
′

X×R := ∪
r∈rε′

(x+ (r)× {r}) we get that from the definition of the stability loss,

D(X ,R)

(
Bε
′

X×R

)
−DX⊗R

(
Bε
′

X×R

)
=
∑
r∈rε′

D (r) · ` (r) > ε′ ·D (rε′) .

But on the other hand, from the fact that M is (ε, δ)-LMI we get in contradiction that

D(X ,R)

(
Bε
′ε′

X×R

)
−DX⊗R

(
Bε
′

X×R

)
≤ DX⊗R

(
Bε
′

X×R

)
· (eε − 1) + δ

(1)

≤ D (rε′) · (eε − 1) + ε ·D (rε′)

(2)

≤ ε′ ·D (rε′)

where (1) results from the fact that ε ·D (rε′) > δ, and (2) from the definition of ε′ and the assumption
that M is not

(
ε′, δε

)
-LSS. The proof is concluded by repeating the same process for the second

direction.

Theorem D.7 (Local Bounded Maximal Leakage implies Local Max Information). Given 0 ≤ ε,
0 < δ ≤ 1 a distribution DXn and a query q, if a mechanism M is ε-LML with respect to DXn and
q, then it is

(
ε+ ln

(
1
δ

)
, δ
)
-LMI with respect to the same DXn and q.

Proof. The proof is identical to the one used by [EGI19] when proving that ML implies MI (Theorem
7).

Lemma D.8 (see, e.g., [SSBD14] Theorem 30.2). Given 0 ≤ δ ≤ 1, m ≤ n
2 , a domain X , and

a distribution DX defined over it, we denote by H the family of functions (usually referred to as
hypothesis in the context of Machine Learning) of the form h : X → {0, 1}, and let h∗ ∈ H be some
unique hypothesis which we will think of as the true hypothesis. We will refer to h∗ (x) as the true
label of x, and denote the labeled domain by Xh∗ := {(x, h∗ (x)) |x ∈ X}. Let M : Xn ×Q → H
be a mechanism with a compression scheme (Definition D.6), In this case, with probability (over the
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sampling of s and the internal randomness of the mechanism in case it is non deterministic) greater
then 1− δ we have that,

|hw (s \ w)− hw (DX )| ≤
√
hw (s \ w)

4mln (2n/δ)

n
+

8mln (2n/δ)

n

where hw (s \ w) is the empirical mean of hw over s \w and hw (DX ) is its expectation with respect
to DX .

Proof of Theorem 4.6. We will prove that g is (ε, δ)-LSS for such an ε, and since LSS holds under
post-processing, this suffices. Notice that nowR = Xm. This proof resembles that of [CLN+16].

We start by analyzing the loss of w and get that,

` (w) =
∑

x∈x+(w)

(D (x |w)−D (x))

=
∑

x∈x+(w)

∑
s∈Xn

D (s |w) (D (x | s)−D (x))

=
∑
s∈Xn

D (s |w)
∑

x∈x+(w)

(
m

n
D (x |w) +

n−m
n

D (x | s \ w)−D (x)

)

≤
∑
s∈Xn

D (s |w)

m
n

+
∑

x∈x+(w)

(D (x | s \ w)−D (x))


=
∑
s∈Xn

D (s |w)

(
m

n
+
∑
x∈X

(D (x | s \ w)−D (x))h+
w (x)

)
=
∑
s∈Xn

D (s |w)
(m
n

+ h+
w (s \ w)− h+

w (DX )
)

where h+
w (x) is simply the characteristic function of x+ (w).

Using this inequality we get that ∀r ⊆ R,

D (r) (` (r)− ε) =
∑
w∈r

D (w) (` (w)− ε)

(1)

≤
∑
w∈r

D (w)
∑
s∈Xn

D (s |w)
(m
n

+ h+
w (s \ w)− h+

w (DX )− ε
)

=
∑
s∈Xn

D (s)
∑
w∈r

D (w | s)
(
h+
w (s \ w)− h+

w (DX )−
(
ε− m

n

))
≤
∑
s∈Xn

D (s) max
w=g(s),h=f(w)

(
h (s \ w)− h (DX )−

(
ε− m

n

))
(2)

≤ Pr
S∼DXn ,W∼g(S),H∼f(W )

[
H (S \W )−H (DX ) >

(
ε− m

n

)]
(3)

≤
√

4mln (2n/δ)

n
+

8mln (2n/δ)

n
+
m

n
(4)

≤ 11

√
mln (2n/δ)

n

where (1) results from the previous inequality, (2) from the fact that we removed s’s for which the
summand is negative, and replaced the positive ones with 1 - which is greater then the maximal
possible value, (3) from Lemma D.8 and the fact that the value of h is bounded by 1, and (4) from the
fact that m ≤ n

9ln( 2n
δ )

.
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D.3 Proofs of Separation Theorems

Proof of Theorem 4.7. Without loss of generality, assume 0 < ε ≤ 0.7. Given 0 ≤ α ≤ ε
7 , p = 1

2 +α
we will define some function f : X → {0, 1}, and for i ∈ {0, 1} denote xi := {x ∈ X | f (x) = i},
set an arbitrary distribution DX such that D (x1) = p, and DXn which is the product of DX . We
will consider a mechanism M which in response to a query q returns the parity function of the
vector (f (s1) , . . . , f (sn)), where s1, . . . sn denotes the elements of the sample set s. Formally,
M (q, s) = |s ∩ x1| (mod 2), and we prove that this mechanism is (ε, 0)-LMI but not

(
1, 1

5

)
-MI.

We start with denoting by pn−2 the probability that the parity function of a sample of size n− 2 will
be equal to 1, and the possible outputs as r0, r1. Notice that,

D (r1 |x1) = p · pn−2 + (1− p) (1− pn−2)

D (r1 |x0) = (1− p) pn−2 + p (1− pn−2) = 1−D (r1 |x1)

D (r1) = p ·D (r1 |x1) + (1− p)D (r1 |x0)

= (2p− 1)D (r1 |x1) + 1− p
= (1− 2p)D (r1 |x0) + p

Using these identities we will first prove that D(r1)
D(r1 |x1) ,

D(r1)
D(r1 |x0) ≤ e

ε. Since a similar claim can be

proven for D(r1 |x1)
D(r1) , D(r1 |x0)

D(r1) , we get that this mechanism is (ε, 0)-LMI.

D (r1)

D (r1 |x1)
=

(2p− 1)D (r1 |x1) + 1− p
D (r1 |x1)

= 2p− 1 +
1− p

(2p− 1) pn−2 + 1− p

= 2p− (2p− 1) pn−2

(2p− 1) pn−2 + 1− p

= 1 + 2α−

≥0︷ ︸︸ ︷
2αpn−2

α (2pn−2 − 1) + 1
2

(1)

≤ 1 +

≤ε︷︸︸︷
2α

(2)

≤ eε

where (1) results from the fact that 0 ≤ α < ε
7 ≤

1
10 , so the denominator α (2pn−2 − 1) + 1

2 must
be positive, and (2) is a result of the inequality 1 + ε ≤ eε for any ε < 1. Similarly we get that,

D (r1)

D (r1 |x0)
=

(1− 2p)D (r1 |x0) + p

D (r1 |x0)

= 1− 2p+
p

D (r1 |x0)

= 2− 2p− (1− 2p) pn−2

(1− 2p) pn−2 + p

= 1 + 2α+

≤5α︷ ︸︸ ︷
2α · pn−2

α (1− 2pn−2) + 1
2

(1)

≤ 1 +

≤ε︷︸︸︷
7α

(2)

≤ eε
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where (1) results from the fact that 0 ≤ α < ε
7 ≤

1
10 , and 0 ≤ pn−2 ≤ 1, so α (1− 2pn−2)+ 1

2 ≥
4
10 ,

and (2) is a result of the inequality 1 + ε ≤ eε for any ε < 1.

On the other hand, we will prove the response dramatically changes the distribution over the sample
sets. Using the fact that the parity function of a Binomial random variable b (n, p) is a Bernoulli
random variable Ber

(
1−(1−2p)n

2

)
, and denoting S1 the set of all sample sets with parity value 1, we

get that,

DXn⊗R (S1 × {r0}) =

D(r1)︷ ︸︸ ︷
D (S1) ·D (r0)

=
1− (1− 2p)

2n

4

= e1

=0︷ ︸︸ ︷
D(Xn,R) (S1 × {r0}) +

1− (2α)
2n

4
(1)
> e1D(Xn,R) (S1 × {r0}) +

1

5

where (1) is a result of the fact that 0 ≤ α < ε
7 ≤

1
10 , n ≥ 3 and

1−( 1
5 )

6

4 > 1
5 , which means this

mechanism is not
(
1, 1

5

)
-MI.

Proof of Theorem 4.8. Without loss of generality 0 ≤ δ ≤ 0.1, so n > 2ln
(

2
δ

)
. Given N > n2,

X := [N ], an arbitrary DX such that ∀x ∈ X : DX (x) ≤ 1
n2 , and DXn which is the product of DX ,

we consider a mechanism M which in response to some query q uniformly samples one element
from its sample set and outputs it.

The fact that this mechanism is
(

11
√

ln(2n/δ)
n , δ

)
-LSS is a direct result of Theorem 4.6 for m = 1.

On the other hand, notice that any r ∈ R encodes one sample element which we will denote by x (r).
Using this notation we will define the set b := ∪

r∈R
(x (r) , r).

D(X ,R) (b) =
∑
r∈R

D (r) ·D (x (r) | r)

(1)

≥
∑
r∈R

D (r) · 1

n

(2)
>
∑
r∈R

D (r) e
1

n2
+

=1︷ ︸︸ ︷∑
r∈R

D (r)
1

2n

≥ e
∑
r∈R

D (r) ·

≤ 1
n2︷ ︸︸ ︷

D (x (r)) +
1

2n

= e1 ·DX⊗R (b) +
1

2n

where (1) is a result of the fact that if all elements in the sample set differ from each other, with
probability 1

n the sampling mechanism will return the same sample element which was encoded by r
and if not then the probability is only higher, and (2) is a result of the definitions of δ and n. This
proves the mechanism is not

(
1, 1

2n

)
-LMI.

E Missing Details from Section 5

Definitions and properties in this section are due to [DR+14].
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Definition E.1 (Laplace Mechanism). Given 0 ≤ b and a query q ∈ Q∆, the Laplace mechanism
with parameter b is defined as:

M (s, q) = q (s) + Lapb
where Lapb is a random variable with unbiased Laplace distribution, which if a symmetric exponential
distribution. Formally:

Lapb (x) =
1

2b
e−
|x|
b

Theorem E.2 (Laplace Mechanism is Differentially Private). Given 0 ≤ b, ε and a query q ∈ Q∆,
the Laplace mechanism with parameter b is

(
2∆
n·b , 0

)
-DP.

Theorem E.3 (Laplace Mechanism is Sample Accurate). Given 0 ≤ b, 0 < δ ≤ 1 and a query
q ∈ Q∆, the Laplace mechanism with parameter b is

(
b · ln

(
1
δ

)
, δ
)
-Sample Accurate.

Definition E.4 (Gaussian Mechanism). Given 0 ≤ σ and a query q ∈ Q∆, the Gaussian mechanism
with parameter σ is defined as:

M (s, q) = q (s) + Gσ
where Gσ is a random variable with unbiased Gaussian distribution and standard deviation σ.
Theorem E.5 (Gaussian Mechanism is Differentially Private). Given 0 ≤ σ, ε, 0 < δ ≤ 1, and a

query q ∈ Q∆, the Gaussian mechanism with parameter σ is
(

2∆
√

2ln(1.25/δ)

nσ , δ

)
-DP.

Theorem E.6 (Gaussian Mechanism is Sample Accurate). Given 0 ≤ σ, ε, 0 < δ ≤ 1, and a query

q ∈ Q∆, the Gaussian mechanism with parameter σ is

(
ε√

2ln(
√

2/πδ)
, δ

)
-Sample Accurate.

F Distance Measures on Distributions

These distance measures between distributions will be used in various places in the paper.
Definition F.1 (Statistical Distance). The Statistical Distance (also know as Total Variation Distance)
between two probability distributions D1, D2 over some domainR is defined as,

SD (D1, D2) := max
r∈R

(D1 (r)−D2 (r))

= max
r∈R

(D2 (r)−D1 (r))

=
1

2
·
∑
r∈R
|D1 (r)−D2 (r)| .

The maximal set in the first definition is simply the set of all r’s for which D1 (r) > D2 (r) and for
the second - the set of all r’s for which D1 (r) < D2 (r)

Definition F.2 (δ-approximate max divergence). The δ-approximate max divergence between two
probability distributions D1, D2 over some domainR is defined as

Dδ
∞ (D1‖D2) := max

r⊆Supp(D1)∧D1(r)≥δ
ln

(
D1 (r)− δ
D2 (r)

)
.

The case where δ = 0 is simply called the max divergence.
Definition F.3 (Indistinguishable distributions). Two probability distributions D1, D2 over some
domainR will be called (ε, δ)-indistinguishable if

max
{
Dδ
∞ (D1‖D2) ,Dδ

∞ (D2‖D1)
}
≤ ε.

this can also be written as the condition that for any r ⊆ R
D1 (r) ≤ eε ·D2 (r) + δ and D2 (r) ≤ eε ·D1 (r) + δ

Definition F.4 (Maximal Leakage, based on [IWK18]). Given two finite domains X ,Y and a joint
distribution D(X ,Y) defined over X × Y , The Maximal Leakage between two marginal distributions
DX , DY is defined as,

L (DX → DY) := log

∑
y∈Y

max
x∈X |D(x)>0

D (y |x)

 .
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