
A Proofs for Section 2

We provide the proofs of the claims made in Section 2.

A.1 Tsallis γ-max-divergence gives tighter stability for larger γ

Proposition A.1. Fix a distribution pair P and Q. Then the function D∞,γ(P,Q) is non-decreasing
in γ for γ > 0.

Proof. Since D∞,γ(P,Q) ≥ 0 (obvious by setting B to be the entire space in (2)), we can fix a set
B with P (B) ≥ Q(B) and simply show that, for 0 < γ ≤ γ′,

logγ P (B)− logγ Q(B) ≤ logγ′ P (B)− logγ′ Q(B).

This is equivalent to

logγ P (B)− logγ′ P (B) ≤ logγ Q(B)− logγ′ Q(B).

Since 0 ≤ Q(B) ≤ P (B) ≤ 1, the above inequality will follow if we establish that the function

f(p) = logγ p− logγ′ p

is non-increasing for p ∈ (0, 1]. We can indeed verify this by taking the derivative

f ′(p) = p−γ − p−γ
′
,

which is non-positive since p ≤ 1 and γ′ ≥ γ > 0.

A.2 Post-processing inequality under deterministic mappings

Proposition A.2. Let X,Y be random variables taking values in some space B and let f : B → B′
be a measurable function. Then D∞,γ(f(X), f(Y )) ≤ D∞,γ(X,Y ).

Proof. Fix an arbitrary set B ⊆ B′. We have

logγ P(f(X) ∈ B))− logγ P(f(Y ) ∈ B)) = logγ P(X ∈ f−1(B))− logγ P(Y ∈ f−1(B))

≤ D∞,γ(X,Y ).

B Proofs for Section 3

This section contains full proofs that are either skipped or simplified in Section 3.

B.1 Key Lemma

We first record as a lemma the following characterization of δ-approximate max-divergence provided
by Dwork et al. [16].

Lemma B.1. [16, Lemma 2.1.1] Let Y,Z be random variables over B. Then, Dδ
∞(Y,Z) ≤ ε, if and

only if there exits a random variable Y ′ such that

(i) supB⊆B |P[Y ∈ B]− P[Y ′ ∈ B]| ≤ δ and
(ii) D∞(Y ′, Z) ≤ ε.

In short, we can alter Y into Y ′ by moving no more than δ probability mass from {b ∈ B : P[Y =
b] > eεP[Z = b]} to {b ∈ B : P[Y = b] ≤ eεP[Z = b]} such that D∞(Y ′, Z) is bounded. Then
in the following lemma, we can show that closeness in max-divergence means that expectations of
bounded functions are close. In the result below, when δ = 0, we are allowed to have F =∞.

Lemma B.2. Let Y and Z be random variables taking values in B such that Dδ
∞(Y,Z) ≤ ε. Then

for any non-negative function f : B → [0, F ], we have

E[f(Y )] ≤ eεE[f(Z)] + δF.
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Proof. Let Y ′ be the random variable satisfying the conditions of Lemma B.1. Then we can write

E[f(Y )] =

∫
B
f(b)P[Y = b]db

=

∫
B
f(b)P[Y ′ = b]db+

∫
B
f(b)(P[Y = b]− P[Y ′ = b])db

≤
∫
B
f(b)eεP[Z = b]db+ F |P[Y ∈ B]− P[Y ′ ∈ B]|

≤ eεE[f(Z)] + δF,

where B = {b ∈ B | P[Y = b] ≥ P[Y ′ = b])}. Here we applied Lemma B.1.(ii) for the first
inequality and (i) for the second.

Now we are ready to prove our key lemma.
Lemma 3.1. Consider the loss-only setting with loss functions bounded by B. Let A be
DiffStable(Dδ

∞) at level ε ≤ 1. Then the expected regret of A is at most

2εL∗T + 3E[Regret(A+)T ] + δBT,

where A+ is a fictitious algorithm plays the distribution A(`1:t) at time t (i.e., A+ plays at time t
what A would play at time t+ 1).

Proof. Let xt denote the random variable distributed as A(`1:t−1). Using Lemma B.2, we have for
every t, E[`t(xt)] ≤ eεE[`t(xt+1)] + δB. By summing over t, we have

E

[
T∑
t=1

`t(xt)

]
≤ eεE

[
T∑
t=1

`t(xt+1)

]
+ δBT ≤ eε(L∗T + E[Regret(A+)T ]) + δBT.

To bound the expected regret of A, we subtract L∗T from each side, which gives us the bound

(eε − 1)L∗T + eεE[Regret(A+)T ] + δBT.

Then we complete the proof using the upper bounds eε ≤ 1 + 2ε ≤ 3, which hold for ε ≤ 1.

B.2 Online convex optimization

Theorem 3.2 (First-order regret in OCO). Suppose we are in the loss-only OCO setting. Let X ⊂ Rd,
‖X‖2 ≤ D and let all loss functions be bounded by B. Further assume that ‖∇`t(x)‖2 ≤ β,
λmax(∇2`t(x)) ≤ γ and that the Hessian matrix ∇2`t(x) has rank at most one, for every t
and x ∈ X . Then, the expected regret of Algorithm 1 is at most O(

√
L∗T (γD2 + βdD)) and

O

(√
L∗T (γD2 +D

√
d(β2 log(BT )))

)
with Gamma and Gaussian perturbations, respectively.

Proof. When analyzing the expected regret against an oblivious adversary, we may assume that the
random vector b is just drawn once and reused every round. By definition of xt and induction on t,
we get for any x ∈ X ,

γ

ε
‖x2‖22 + 〈b, x2〉+

t∑
s=1

`s(xs+1) ≤ γ

ε
‖x‖22 + 〈b, x〉+

t∑
s=1

`s(x).

From the case when t = T , we obtain
T∑
t=1

`t(xt+1) ≤ min
x∈X

T∑
t=1

`t(x) +
γ

ε
‖x‖22 + 〈b, x− x2〉 ≤ L∗T +

γ

ε
‖x∗T ‖22 + 〈b, x∗T − x2〉.

This result is often referred to as the “be-the-leader lemma.” Then by taking expectation and applying
the Cauchy-Schwartz inequality, we get

E

[
T∑
t=1

`t(xt+1)

]
≤ L∗T +

γ

ε
D2 + 2DE‖b‖2.
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From the DP result by Kifer et al. [23, Theorem 2], we can infer that D∞(xt, xt+1) ≤ ε when using
the Gamma distribution and Dδ

∞(xt, xt+1) ≤ ε when using the Gaussian distribution. This means
that Algorithm 1 enjoys the one-step differential stability w.r.t. D∞ (resp. Dδ

∞) in the Gamma (resp.
Gaussian) case. Using Lemma 3.1, we can deduce that the expected regret of Algorithm 1 is at most

2εL∗T +
3γ

ε
D2 + 6DE‖b‖2 + δBT, (5)

where δ becomes zero when using the Gamma distribution. We have ‖b‖2 ∼ Gamma(d, ε
2β ) when

using the Gamma distribution, which gives E‖b‖2 = 2βd
ε . In the case of the Gaussian distribution, we

have E‖b‖2 ≤
√
E‖b‖22 =

√
d(β2 log 2

δ+4ε)

ε . Plugging these results in (5) and optimizing ε (setting
δ = 1

BT for the Gaussian case) prove the desired bound.

B.3 Differential consistency and one-step differential stability

We first prove the claim that we made in Section 3.3.1.

Proposition B.3. Suppose Φ̃(L) is of the form minp〈L, p〉 + F (p) for a separable F (p) =∑N
i=1 f(pi) with f : (0,∞)→ R differentiable and strictly convex. Then, the matrix −∇2Φ̃(L) is

POD for any L.

Proof. We have the gradient formula

g(L) = ∇Φ̃(L) = arg min
p∈∆N−1

N∑
i=1

piLi +

N∑
i=1

f(pi).

Let λ = λ(L) be the Lagrange multiplier for the constraint
∑
i pi = 1. We do not have to worry

about the constraint pi ≥ 0 since we have assumed that the domain of f is (0,∞). Setting the
derivative of the Lagrangian ∑

i

piLi +
∑
i

f(pi) + λ(
∑
i

pi − 1)

w.r.t. pi to zero gives us
Li + f ′(pi) + λ = 0. (6)

Taking the derivatives w.r.t. Li and Lj for j 6= i gives us

f ′′(pi)
∂pi
∂Li

= −1− ∂λ

∂Li

f ′′(pi)
∂pi
∂Lj

= − ∂λ

∂Lj
.

Now note that f ′′ > 0 (f strictly convex) and∇2
ijΦ̃(L) = ∂pi

∂Lj
. The proof will therefore be complete

if we can claim that − ∂λ
∂Li
∈ (0, 1). Let us next prove this claim. We can write (6) as

pi = (f?)′(−λ− Li),
where f? is the Fenchel conjugate of f (and therefore f ′ and (f?)′ are inverses of each other).
Plugging this into the constraint

∑
i pi = 1 gives∑

i

(f?)′(−λ− Li) = 1.

Now differentiating w.r.t. Li gives us

(f?)′′(−λ− Li)
(
− ∂λ

∂Li
− 1

)
+
∑
j 6=i

(f?)′′(−λ− Lj)
(
− ∂λ

∂Li

)
= 0,

which upon rearranging yields

− ∂λ

∂Li
=

(f?)′′(−λ− Li)∑
j(f

?)′′(−λ− Lj)
.

Since f is smooth, f? is strictly convex and therefore (f?)′′ > 0 which proves − ∂λ
∂Li
∈ (0, 1).
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Table 1: The parameter settings for the distributions that provide (1, ε)-differential consistency of
the induced potentials while keeping EZ1,···ZN∼Dmaxi Zi = O(logN/ε) [2]. Distributions marked
with a ∗ have to be modified slightly to ensure the differential consistency.

Distribution D Parameter choice

Gamma(α, β) α = 1, β = 1
Gumbel(µ, β) µ = 0, β = 1

Fréchet (α > 1) α = logN
Weibull∗(λ, k) λ = 1, k = 1
Pareto∗(xm, α) xm = 1, α = logN

Next we prove Proposition 3.5.

Proposition 3.5 (Differential consistency implies one-step differential stability). Suppose Φ̃(L) is of
the form E[minp〈a, p〉 + F (p, Z)] and γ ≥ 1. If Φ̃ is (γ, ε)-differentially consistent and −∇2Φ̃ is
always POD, the GBPA using Φ̃ as potential is DiffStable(D∞,γ , ‖ · ‖∞) at level 2ε.

Proof. First, note that by the POD property, the second derivative vector∇2
i·Φ̃ = (∇2

i1Φ̃, . . . ,∇2
iN Φ̃)

satisfies that the i-th coordinate is non-positive and the rest are non-negative. Next, because the
entries in the gradient sum to a constant (it is a probability vector), we know that the coordinate of
the second derivative vector add up to 0 [1]. From this, we can write ‖∇2

i·Φ̃‖1 = −2∇2
iiΦ̃. Let the

cumulative sum of losses so far be L and the new loss vector be `. For P = ∇Φ̃(L), Q = ∇Φ̃(L+ `),
we want to show that D∞,γ(P,Q) ≤ 2ε‖`‖∞. To this end, fix a subset S ⊆ [N ] and define
qS(u) =

∑
i∈S ∇iΦ̃(L+ `− u`) for u ∈ [0, 1]. Its derivative can be written as

q′S(u) =
∑
i∈S
〈∇2

i·Φ̃(L+ `− u`),−`〉

≤
∑
i∈S
‖∇2

i·Φ̃(L+ `− u`)‖1‖`‖∞ =
∑
i∈S
−2∇2

iiΦ̃(L+ `− u`)‖`‖∞

≤ 2ε‖`‖∞
∑
i∈S

(
∇iΦ̃(L+ `− u`)

)γ
≤ 2ε‖`‖∞

(∑
i∈S
∇iΦ̃(L+ `− u`)

)γ
= 2ε‖`‖∞(qS(u))γ .

The first inequality follows from duality of `1, `∞ norms. The second inequality is from our
differential consistency assumption. The last inequality holds because gradient has non-negative
entries and ‖ · ‖γ ≤ ‖ · ‖1 for γ ≥ 1. It follows that for any u ∈ [0, 1], we have

q′S(u)

(qS(u))γ
=

d

du
logγ(qS(u)) ≤ 2ε‖`‖∞,

and therefore

logγ(P (S))− logγ(Q(S)) = logγ qS(1)− logγ qS(0) =

∫ 1

0

d

du
logγ(qi(u)) du

≤ 2ε‖`‖∞.

Now we are ready to prove the first order bound of FTPL in the experts problem.
Theorem 3.6 (First-order bound for experts via FTPL). For the loss-only experts setting, FTPL with
Gamma, Gumbel, Fréchet , Weibull, and Pareto perturbations, with a proper choice of distribution
parameters, all achieve the optimal O(

√
L∗T logN + logN) expected regret.

Proof. Recall that the FTPL algorithm uses the potential Φ̃D(L) = EZ1,··· ,ZN∼Dmini(Li − Zi).
Abernethy et al. [2] show that all the listed distributions, after suitable scaling, have this potential Φ̃D
(1, ε)-differentially consistent and E‖Z‖∞ = O(logN/ε) at the same time (for parameter choices,
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Algorithm 4 GBPA for multi-armed bandits problem
1: Input: Concave potential Φ̃ : RN → R, with∇Φ̃ ∈ ∆N−1

2: Set L̂0 = 0 ∈ RN
3: for t = 1 to T do
4: Sampling: Choose it ∈ [N ] according to distribution pt = ∇Φ̃(L̂t−1) ∈ ∆N−1

5: Loss: Incur loss `t,it and observe this value
6: Estimation: Compute an estimate of loss vector, ˆ̀

t =
`t,it
pt,it

eit

7: Update: L̂t = L̂t−1 + ˆ̀
t

8: end for

see Table 1). Then Proposition 3.5 provides that FTPL with any of the listed distributions is one-step
differentially stable with respect to ‖ · ‖∞ and D∞ at level 2ε. Using the “be-the-leader lemma” (as
in the proof of Theorem 3.2), we have

E[

T∑
t=1

`t,it+1 ]− L∗T ≤ 2E‖Z‖∞ = O(logN/ε).

Applying Lemma 3.1 with ε = min(
√

logN/L∗T , 1) completes the proof.

C Details and proofs for Section 4

Here we present missing parts in Section 4. We start by presenting the GBPA for multi-armed bandits
in Algorithm 4.

C.1 Proof of Lemma 4.1

We will prove the following slightly more general lemma. Lemma 4.1 follows by setting τ = 0 and
lower bounding F (p0, Z) by minp F (p, Z).

Lemma C.1. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)] and γ ∈ [1, 2]. If the full information GBPA is DiffStable(D∞,γ ,‖ · ‖∞) at level ε, then the
expected regret of Algorithm 4 can be bounded as

E

[
T∑
t=1

`t,it

]
− L∗T ≤ εE

[
T∑
t=1

ˆ̀2
t,itp

γ
t,it

]
+ E

[
max
p∈∆τ

F (p, Z)− F (p0, Z)

]
+ τNT,

where ∆τ = {p ∈ RN : pi ≥ τ,
∑
i pi = 1}.

We will prove this lemma by proving two helper lemmas (Lemma C.2 and Lemma C.3 below) that,
when combined, immediately yield the desired result.

Lemma C.2. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. Then, we have

E

[
T∑
t=1

`t,it

]
− L∗T ≤ E

[
T∑
t=1

〈pt − pt+1, ˆ̀
t〉

]
+ E

[
max
p∈∆τ

F (p, Z)− F (p0, Z)

]
+ τNT

where ∆τ = {p ∈ RN : pi ≥ τ,
∑
i pi = 1}.

Proof. Fix the source of internal randomness used by Algorithm 4 to sample it ∼ pt. This fixes all
the estimated loss vectors ˆ̀

t. The full information GBPA algorithm will deterministically generate
the same sequence pt of probabilities on this estimated loss sequence using the rule pt = ∇Φ̃(L̂t−1).
We have

T∑
t=1

〈pt, ˆ̀
t〉 =

T∑
t=1

〈pt − pt+1, ˆ̀
t〉+

T∑
t=1

〈pt+1, ˆ̀
t〉. (7)
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Let us focus on the second summation:
T∑
t=1

〈pt+1, ˆ̀
t〉 =

T∑
t=1

〈E[arg min
p
〈L̂t, p〉+ F (p, Z)], ˆ̀

t〉

= E[

T∑
t=1

〈arg min
p
〈L̂t, p〉+ F (p, Z), ˆ̀

t〉]

≤ E[F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, ˆ̀
t〉, (8)

where the last inequality is true for any p due to the “be-the-leader” argument. Note that the
expectations above are only w.r.t. Z since ˆ̀

t are still fixed. Combining (7) and (8) and taking
expectations over the internal randomness of the bandit algorithm gives, for any p ∈ ∆τ ,

E[

T∑
t=1

〈pt, ˆ̀
t〉] ≤ E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[F (p, Z)− F (p0, Z)] + E[

T∑
t=1

〈p, ˆ̀
t〉]

= E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, `t〉

≤ E[

T∑
t=1

〈pt − pt+1, ˆ̀
t〉] + E[max

p∈∆τ

F (p, Z)− F (p0, Z)] +

T∑
t=1

〈p, `t〉.

To finish the proof, note that 〈pt, ˆ̀
t〉 = `t,it and

min
p∈∆τ

T∑
t=1

〈p, `t〉 ≤ min
p

T∑
t=1

〈p, `t〉+ τNT = L∗T + τNT.

because for any p′ ∈ ∆N−1, there is a p ∈ ∆τ such that ‖p′ − p‖1 ≤ τN .

Lemma C.3. Suppose 1 ≤ γ ≤ 2. If the full information GBPA is DiffStable(D∞,γ ,‖ · ‖∞) at level
ε. Then, we have

〈pt − pt+1, ˆ̀
t〉 ≤ εˆ̀2t,itp

γ
t,it
.

Proof. First let us consider the case γ > 1 first. Recall at most one entry of ˆ̀
t is non-zero. Therefore,

〈pt − pt+1, ˆ̀
t〉 = (pt,it − pt+1,it)

ˆ̀
t,it . For the remainder of the proof, let us denote pt,it and pt+1,it

by p and p′ repectively. Also let ˆ̀denote ˆ̀
t,it . Because of the stability assumption, we know that

D∞,γ(pt, pt+1) ≤ ε‖ˆ̀t‖∞ = εˆ̀. Therefore, we have

logγ p− logγ p
′ ≤ εˆ̀

⇒ p1−γ

1− γ
− (p′)1−γ

1− γ
≤ εˆ̀

⇒ p′ ≥ p
(

1 + (γ − 1)εˆ̀pγ−1
)− 1

γ−1

.

Noting that (1 + x)−r ≥ 1− rx for r > 0 and x ≥ 0, we have

p′ ≥ p
(

1− εˆ̀pγ−1
)
,

which proves the lemma for 1 < γ ≤ 2.

Finally note that the lemma also holds in the case γ = 1, because then we have

log p− log p′ ≤ εˆ̀

⇒ p′ ≥ p exp(−εˆ̀) ≥ p(1− εˆ̀).
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C.2 Proof of Theorem 4.2

Theorem 4.2 (Zero-order and first-order regret bounds for multi-armed bandits). Algorithm 4 enjoys
the following bounds when used with different perturbations/regularizers:

1. FTPL with Gamma, Gumbel, Fréchet , Weibull, and Pareto pertubations (with a proper choice of
distribution parameters) all achieve near-optimal expected regret of O(

√
NT logN).

2. FTRL with Tsallis neg-entropy F (p) = −η
∑N
i=1 pi logα(1/pi) for 0 < α < 1 (with a proper

choice of η) achieves optimal expected regret of O(
√
NT ).

3. FTRL with log-barrier regularizer F (p) = −η
∑N
i=1 log pi (with a proper choice of η) achieves

expected regret of O(
√
NL∗T log(NT ) +N log(NT )).

Proof. For each of the three parts, we will show that the full info GBPA is DiffStable(D∞,γ , ‖ · ‖∞)
for an appropriate γ ∈ [1, 2] and then apply Lemma 4.1 (or, in the log-barrier case, the slightly more
general Lemma C.1).

Part 1: As in the proof of Theorem 3.6, these distributions (with proper choice of parameters)
lead to a full information GBPA that is DiffStable(D∞, ‖ · ‖∞) at level 2ε. In the FTPL case when
|F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞,

which scales as logN
ε for these distributions. Lemma 4.1 gives the expected regret bound of

2εE

[
T∑
t=1

ˆ̀2
t,itpt,it

]
+ 2E‖Z‖∞. (9)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itpt,it

]
= E

[
`2t,it
p2
t,it

pt,it

]
≤ E

[
1

pt,it

]
= E

[
N∑
i=1

pt,i
1

pt,i

]
= N.

Plugging this into (9) and tuning ε give us Part 1.

Part 2: When F (p) = −η
∑N
i=1 pi logα(1/pi) for α ∈ (0, 1), then Φ̃ is (2 − α, 1/(ηα))-

differentially consistent [2]. By Proposition 3.5, the full information GBPA is DiffStable(D∞,2−α,‖ ·
‖∞) at level 2/(ηα). Also note that F (p) is negative and its minimum value is achieved at the
uniform distribution. Therefore we can show

max
p

F (p)−min
p
F (p) ≤ η

∑N
i=1(1/N)α − 1

1− α
≤ ηN

1−α

1− α
.

Lemma 4.1 gives the expected regret bound of

2

ηα
E

[
T∑
t=1

ˆ̀2
t,itp

2−α
t,it

]
+ η

N1−α

1− α
. (10)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itp

2−α
t,it

]
= E

[
`2t,it
p2
t,it

p2−α
t,it

]
≤ E

[
p−αt,it

]
= E

[
N∑
i=1

p1−α
t,i

]
≤ Nα,

where the last inequality follows from the fact that the function p1−α is concave for α ∈ (0, 1).
Plugging this into (10) and tuning η give us Part 2.

Part 3: When F (p) = −η
∑N
i=1 log pi, then Φ̃ is (2, 1/η)-differentially consistent (see Lemma C.4

below). By Proposition 3.5, the full information GBPA is DiffStable(D∞,2,‖ · ‖∞) at level 2/η. Since
F is non-negative, we have

max
p∈∆τ

F (p)− F (p0) ≤ ηN log(1/τ).
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Lemma C.1 gives the expected regret bound of

2

η
E

[
T∑
t=1

ˆ̀2
t,itp

2
t,it

]
+ ηN log(1/τ) + τNT. (11)

Since `t,it ∈ [0, 1], we have

E
[
ˆ̀2
t,itp

2
t,it

]
= E

[
`2t,it
p2
t,it

p2
t,it

]
≤ E

[
`2t,it

]
≤ E [`t,it ] .

Plugging this into (11) and choosing τ = 1/(NT ), we get the following recursive inequality for the
expected regret RT :

RT ≤
2

η
(RT + L∗T ) + ηN log(NT ) + 1.

If L∗T < 2, set η = 4 to get the bound RT ≤ 8N log(NT ) + 4. If L∗T ≥ 2 then set η =√
2L∗TN log(NT ) and note that η > 2

√
2 if N,T ≥ 2. In this case, the bound becomes RT ≤(

4
√
L∗TN log(NT ) + 1

)
/(
√

2− 1), which completes the proof.

C.3 Differential consistency of GBPA potential with log barrier regularization

Lemma C.4. Let F (p) = −η
∑N
i=1 log pi, Φ̃(L) = minp〈L, p〉 + F (p) and p(L) =

arg minp〈L, p〉+ F (p). Then Φ̃ is (2, 1/η)-differentially consistent.

Proof. We observe that straightforward calculus gives ∇2F (p) = ηdiag(p−2
1 , . . . , p−2

N ). Let
I∆N−1(·) be the indicator function of ∆N−1; that is, I∆N−1(x) = 0 for x ∈ ∆N−1 and
I∆N−1(x) =∞ for x /∈ ∆N−1. It is clear that−Φ̃(−L) is the dual of the function F (x)+ I∆N−1(x),
and moreover we observe that ∇2F (p) is a sub-Hessian of F (·) + I∆N

(·) at p, following the setup
of [30]. Taking advantage of Proposition 3.2 in the latter reference, we conclude that∇−2F (p(−L))

is a super-Hessian of F ∗ = −Φ̃(−L) at L. Hence, we get

−∇2Φ̃(−L) � η−1diag(p2
1(−L), . . . , p2

N (−L))

for any L. What we have stated, indeed, is that Φ̃ is (2, 1/η)-differentially-consistent.

C.4 Bandits with experts

We provide full details for the bandits with experts setting.

C.4.1 Helper lemmas for the analysis

Lemma C.5. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. If the full information GBPA is DiffStable(D∞,‖ · ‖∞) at level ε, then the expected regret
of Algorithm 3 with no clipping can be bounded as

E

[
T∑
t=1

`t,jt

]
− L∗T ≤ εE

[
T∑
t=1

ˆ̀2
t,itqt,jt

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
.

We will prove this lemma by proving Lemma C.6 and Lemma C.7 below that, when combined,
immediately yield the desired result.

Lemma C.6. Suppose the full information GBPA uses a potential of the form Φ̃(L) = E[minp〈L, p〉+
F (p, Z)]. Then, we have

E

[
T∑
t=1

`t,it

]
− L∗T ≤ E

[
T∑
t=1

〈pt − pt+1, φt〉

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
.
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Proof. Fix the source of internal randomness used by Algorithm 3 (with no clipping) to sample
jt ∼ qt. This fixes all the estimated loss vectors ˆ̀

t and hence φt. The full information GBPA
algorithm will deterministically generate the same sequence pt of probabilities on this estimated loss
sequence using the rule pt = ∇Φ̃(φt−1). We have

T∑
t=1

〈pt, φt〉 =

T∑
t=1

〈pt − pt+1, φt〉+

T∑
t=1

〈pt+1, φt〉.

Proceeding as in the proof of Lemma C.2 gives us, for any p ∈ ∆N−1,

E[

T∑
t=1

〈pt, φt〉] ≤ E[

T∑
t=1

〈pt − pt+1, φt〉] + E[max
p

F (p, Z)−min
p
F (p, Z)] + E[

T∑
t=1

〈p, φt〉].

To finish the proof, first note that

E[

T∑
t=1

〈pt, φt〉] = E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
= E

[
T∑
t=1

〈ψt(pt), ˆ̀
t)〉

]

= E

[
T∑
t=1

〈qt, ˆ̀
t〉

]
= E

[
T∑
t=1

`t,jt

]
.

Second, note that, by choosing p = ei ∈ RN ,

T∑
t=1

E[〈p, φt〉] =

T∑
t=1

E[〈ei, φt〉] =

T∑
t=1

E[〈ei, φt(ˆ̀
t)〉]

=

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]

=

T∑
t=1

〈ψt(ei), `t〉 =

T∑
t=1

`t,Ei,t .

Choosing i that makes the last summation equal to L∗T completes the proof.

Lemma C.7. If the full information GBPA is DiffStable(D∞,‖ · ‖∞) at level ε. Then, we have

〈pt − pt+1, φt〉 ≤ εˆ̀2t,jtqt,jt .

Proof. Because of the stability assumption, we know that D∞,γ(pt, pt+1) ≤ ε‖φt‖∞ = ε‖ˆ̀t‖∞ =

εˆ̀t,jt . Therefore, for any i ∈ [N ],

pt+1,i ≥ pt,i exp(−εˆ̀t,jt) ≥ pt,i(1− εˆ̀t,jt).

Now we have

〈pt − pt+1, φt(ˆ̀
t)〉 =

∑
i:Ei,t=jt

(pt,i − pt+1,i)ˆ̀
t,jt ≤

∑
i:Ei,t=jt

(εˆ̀t,jtpt,i)
ˆ̀
t,jt

= εˆ̀2t,jt

∑
i:Ei,t=jt

pt,i = εˆ̀2t,jtqt,jt .

C.4.2 Regret bound and analysis

Theorem 4.3 (Zero-order and first-order regret bounds for bandits with experts). Algorithm 3 enjoys
the following bounds when used with different perturbations such as Gamma, Gumbel, Fréchet ,
Weibull, and Pareto (with a proper choice of parameters).

1. With no clipping, it achieves near optimal expected regret of O(
√
KT logN).

2. With clipping, it achieves expected regret of O
(

(K logN)
1/3

(L∗T )2/3
)

.
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Proof. The proof of Part 1 is very similar to the proof of Part 1 of Theorem 4.2. Part 2 needs a few
more arguments to take care of the effects of clipping.

Part 1: Note that without clipping, i.e., when ρ = 0, we have qt = q̃t for all t. As in the proof of
Theorem 3.6, these distributions (with proper choice of parameters) lead to a full information GBPA
that is DiffStable(D∞, ‖ · ‖∞) at level 2ε. In the FTPL case when |F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we
have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞,

which scales as logN
ε for these distributions. Lemma C.5 gives the expected regret bound of

2εE

[
T∑
t=1

ˆ̀2
t,itpt,it

]
+ 2E‖Z‖∞. (12)

Since `t,jt ∈ [0, 1], we have

E
[
ˆ̀2
t,itqt,jt

]
= E

[
`2t,it
q2
t,jt

qt,jt

]
≤ E

[
1

qt,jt

]
= εE

[
K∑
i=1

qt,j
1

qt,j

]
= εK.

Plugging this into (12) and tuning ε gives us Part 1.

Part 2: When there is clipping, i.e. ρ is non-zero, the loss estimate behaves differently from estimate
used in the unclipped version of the algorithm. First, we have the upper bound ‖φt(ˆ̀

t)‖∞ =

‖ˆ̀t‖∞ ≤ 1/ρ. Second, it is unbiased only over the support of q̃t since outside of the support, it is
deterministically zero. Therefore ˆ̀

t, in expectation, now underestimates `t. Crucially, however, we
still have the equality E[〈q̃t, ˆ̀

t〉] = E[`t,jt ].

Lemma C.6 does not directly bound regret in the clipped case. However, examining the proof, it gives
us the bound,

E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
−

N
min
i=1

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]

≤ E

[
T∑
t=1

〈pt − pt+1, φt〉

]
+ E

[
max
p

F (p, Z)−min
p
F (p, Z)

]
. (13)

We will now relate the LHS to regret and bound the RHS.

First, note that

E

[
T∑
t=1

〈pt, φt(ˆ̀
t)〉

]
= E

[
T∑
t=1

〈qt, ˆ̀
t〉

]
≥ (1−Kρ)E

[
T∑
t=1

〈q̃t, ˆ̀
t〉

]
= (1−Kρ)E

[
T∑
t=1

`t,jt

]
(14)

where the inequality follows because ˆ̀
t has all non-negative entries and q̃t,j is either 0 or we have

q̃t,j =
qt,j

1−
∑
j′:qt,j′<ρ

qt,j′
≤ qt,j

1−Kρ
.

Second, note that, because ˆ̀
t underestimates `t, we have

E

[
T∑
t=1

φt,i(ˆ̀
t)

]
=

T∑
t=1

E[〈ei, φt(ˆ̀
t)〉] =

T∑
t=1

E
[
〈ψt(ei), ˆ̀

t〉
]
≤

T∑
t=1

〈ψt(ei), `t〉 =

T∑
t=1

`t,Ei,t .

(15)

Third, note that, as in the proof of Theorem 3.6, these distributions (with proper choice of parameters)
lead to a DiffStable(D∞,‖ · ‖∞) full information GBPA at level 2ε. In the FTPL case, when
|F (p, Z)| = |〈p, Z〉| ≤ ‖Z‖∞, we have

E
[
max
p

F (p, Z)−min
p
F (p, Z)

]
≤ 2E‖Z‖∞ ≤

2 logN

ε
. (16)

21



Fourth, because of the one-step differential stability of the full information GBPA, we begin as in the
proof of Lemma C.7 but use a slightly different bound towards the end of the following calculation
since we now have q̃t,i ≥ ρ.

E
[
〈pt − pt+1, φt(ˆ̀

t)〉
]

= E

 ∑
i:Ei,t=jt

(pt,i − pt+1,i)ˆ̀
t,jt

 ≤ E

 ∑
i:Ei,t=jt

(2εˆ̀t,jtpt,i)
ˆ̀
t,jt


= E

2εˆ̀2t,jt

∑
i:Ei,t=jt

pt,i

 = E

[
2ε
`2t,jt
q̃2
t,jt

q̃t,jt

]
≤ 2ε

ρ
E [`t,jt ] . (17)

Combining (13), (14), (15), (16), and (17) provides

E

[
T∑
t=1

`t,jt

]
− L∗T ≤

(
2ε

ρ
+Kρ

)
E

[
T∑
t=1

`t,jt

]
+

2 logN

ε
,

where L∗T = minNi=1

∑T
t=1 `t,Ei,t . Denoting the expected regret by RT , we therefore have the bound

RT ≤
(

2ε

ρ
+Kρ

)
(RT + L∗T ) +

2 logN

ε
.

We first set ρ =
√

2ε/K which is a valid choice as long as 2εK < 1. With this choice, we have the
bound

RT ≤ 2
√

2εK(RT + L∗T ) +
2 logN

ε
.

If L∗T ≤ 128K logN , set ε = 1/32K to get a bound of RT ≤ L∗T + 128K logN ≤
256K logN . If L∗T > 128K logN , set ε = (logN)2/3/(K1/3(L∗T )2/3) to get a bound of
O(K1/3(logN)2/3(L∗T )2/3). Note that in this case εK < 1/32.

22


