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1 Optimal Transport

1.1 Proof of Theorem 1

We first recall the definition of sequential compactness and Prokhorov’s theorem, which relates it to
tightness of measures:

Definition 1 (Sequential compactness). A space X is called sequentially compact if every sequence
of points xn has a convergent subsequence converging to a point in X .

Theorem 1 (Prokhorov’s theorem). A collection C ⊂ P2(X) of probability measures is tight if and
only if C is sequentially compact in P2(X), equipped with the topology of weak convergence.

Now, note that the barycenter objective is bounded below by 0 and is finite, so we may pick out a
minimizing sequence µn of B(µ). Prokhorov’s theorem allows us to extract a subsequence µnk

that
converges to a minimizer µ ∈ P2(X) and the theorem is proved.

1.2 Tightness from Uniform Second Moment Bound

We argue here for a sufficient condition for tightness claimed in the text:

Lemma 1. If a collection of measures C ⊂ P2(X) has a uniform second moment bound (about any
reference point x0 ∈ X), i.e., ∫

X

d2(x0, x) dν(x) < M

for some M > 0 and all ν ∈ C, then C is tight.

Proof. For any ν ∈ C we have the following inequalities:

ν{x | d(x, x0) > R} =

∫
d(x,x0)>R

dν ≤ 1

R2

∫
d(x,x0)>R

d(x, x0)2dν(x) ≤ M

R2
.

The last term converges to 0 as R → ∞, and the set {x | d(x, x0) ≤ R} is compact, so tightness
follows.
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Figure 1: A schematic illustrating the nontrivial part of the action of S3 on R3. It acts on F⊥3 and
the embedded 2-simplex shown via reflection over the dashed lines. One can see that reflection over
these lines correspond to swapping of pairs of means, generating S3 as a group.

1.3 Mean-only Mixture Models

Here we note some facts about mixture models, where the K components are evenly weighted and
identical with only one parameter each in Rd. An example would be the simple case of a Gaussian
mixture model with fixed equal covariance across each component, and a remaining unspecified mean
parameter pi ∈ Rd.

In this instance, we are taking the quotient of (Rd)K by an action of SK which simply permutes
the K factors of the product. Let us begin by investigating the case where d = 1. In this instance,
we note that the sum of the scalar means

∑
i pi remains fixed under the action of the group. In

fact, the action of the group splits into a trivial action on the 1-dimensional fixed subspace FK :=
{(p1, . . . , pk) | pi all equal}, and an action on F⊥K which permutes the vertices of an embedded
regular (K− 1)-simplex about the origin. Namely, one may take the simplex in F⊥K with vertices that
consist of the point (K − 1,−1,−1, . . . ,−1) and its orbit. Figure 1 illustrates the concrete example
of three means: R3/S3. It shows F⊥3 , an embedded 2-simplex, and the action of S3 on this space and
simplex. Section 2.2 proves that the quotient space RK/SK is a convex, easily described set, and
discusses the consequences for label switching.

The splitting mentioned above is the decomposition into irreducible components. For d > 1, the
action of SK is diagonal and acts on the d components of the means pi in parallel. It preserves the
scalar sum of these components over each dimension and we obtain the following splitting for the
general case:

(Rd)K =

d⊕
j=1

(
FK ⊕ F⊥K

) ∼= Rd ⊕
(
RK−1

)d
. (1)

The action on the first Rd component is trivial, while the second component has the diagonal action
permuting the vertices of an embedded regular (K− 1)-simplex for each RK−1. The simple example
of two means in R2 (d = K = 2) is discussed and illustrated in the next section (1.4), and also serves
to provide a counterexample to barycenter uniqueness. For d > 1, the quotient (Rd)K/SK lacks the
simple convexity of the d = 1 case, as described in Section 2.3.

1.4 Counterexample to uniqueness

O

Take d = K = 2 from the scenario above, which might correspond to our mix-
ture model consisting of two Gaussians in R2 with equal weights and fixed vari-
ance. Only the means (x, y; z, w) ∈ (R2)2 are taken as parameters, and the action
of S2 swaps the means: (x, y; z, w) 7→ (z, w;x, y). This action splits into a triv-
ial action on Span{(1, 0; 1, 0), (0, 1; 0, 1)} and an antipodal action (v 7→ −v) on
Span{(1, 0;−1, 0), (0, 1; 0,−1)}, where these are the first and second components in
Eq. (1). Recall that the 1-simplex is just an interval and the action of S2 merely flips the endpoints,
so the antipodal action arises as the diagonal action of this flip.

The inset figure illustrates a simple schematic counterexample in the second span. The two distri-
butions to be averaged are evenly supported on the black and white dots, invariant under reflection
through the center origin O. Two candidate barycenters are those evenly supported on the red and
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blue diamonds, and in fact, any convex combination of these two are a barycenter. This corresponds
to averaging a mixture with means at (1, 0) and (−1, 0) and another with means at (0, 1) and (0,−1).
Two sensible averages are a pair of means at (0.5, 0.5) and (−0.5,−0.5), or a pair of means at
(0.5,−0.5) and (−0.5, 0.5).

Note that the previous example requires a high degree of symmetry for the input distributions, and
uniqueness is recovered if either of the distributions are absolutely continuous. Section 2.3 further
characterizes the geometry of the quotient space for d = K = 2, and how it leads to non-unique
barycenters.

2 Optimal Transport with Group Invariances

2.1 Proof of Lemma 4

Consider an arbitrary point z0 ∈ X/G, and we will show that a minimizer of z → Eδx∼Ω∗

[
d(x, z)2

]
lies in a closed ball about z0. As the function is continuous and this is a compact set, existence of a
minimizer results.

By the triangle inequality, we have d(x, z) ≥ d(x, z0)− d(z, z0). Thus, we have:

Eδx∼Ω∗

[
d(x, z)2

]
=

∫
X/G

d(x, z)2 dΩ∗(δx)

≥
∫
X/G

(d(x, z0)− d(z, z0))
2

dΩ∗(δx)

=

(∫
X/G

d(x, z0)2 dΩ∗(δx)

)
+ d(z, z0)2 − 2d(z, z0)

∫
X/G

d(x, z0) dΩ∗(δx).

The last two terms are quadratic in d(z, z0). Given an arbitrary positive constant M > 0, some
simple algebra shows that:

d(z, z0) >
c+
√
c2 + 4M

2
=⇒ d(z, z0)2 − cd(z, z0) > M

where c = 2
∫
X/G

d(x, z0) dΩ∗(δx). The finiteness of this integral follows from the fact that Ω∗
has finite second moment, implying finite first moment. Thus, if we set M to a realized value of
Eδx∼Ω∗

[
d(x, z)2

]
, we see that a minimizer lies in the ball of radius c+

√
c2+4M
2 about z0. Taking z

outside this ball implies:

Eδx∼Ω∗

[
d(x, z)2

]
≥

(∫
X/G

d(x, z0)2 dΩ∗(δx)

)
+ d(z, z0)2 − 2d(z, z0)

∫
X/G

d(x, z0) dΩ∗(δx).

≥ d(z, z0)2 − 2d(z, z0)

∫
X/G

d(x, z0) dΩ∗(δx) > M.

2.2 Proof of Theorem 3

We recall the minimization problem in (5) of the paper for a sample q = (q1, . . . , qK) and a current
barycenter estimate p = (p1, . . . , pK) (with a squared distance objective for simplicity of expression):

min
σ∈SK

d2
RK ((p1, . . . , pK), (qσ(1), . . . , qσ(K))) = min

σ∈SK

K∑
i=1

‖pi − qσ(i)‖2. (2)

Here, we invoke the monotonicity of transport in 1D (see e.g. Santambrogio (2015), Chapter 2) to see
that we should simply order q in the same way that p is. That is to say: assuming p1 < p2 < . . . < pK
(WLOG), then the optimal σ is such that qσ(1) < qσ(2) < . . . < qσ(K).

The above argument also shows that we have a very concrete realization:

UConfK(R) ∼= {(u1, . . . , uK) ∈ ConfK(R) | u1 < . . . < uK} ⊂ RK .
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As this is an open convex set, we have uniqueness of the single-point barycenter of Theorem 2 from
the paper under mild conditions on the posterior. Namely, consider that Ω∗ ∈ P2(P2(X)) descends
to a measure Ω↓ ∈ P2(X), and we will need to assume that Ω↓ is absolutely continuous (as you
might expect). With this, Kim & Pass (2017) give us the desired result.

Furthermore, we have guaranteed convergence of stochastic gradient descent (our algorithm) in this
setting, as E[W 2

2 (·, ν)] is 1-strongly convex and the domain is convex. The next section shows us
that we may not leverage such simple structure for d > 1.

2.3 Positive Curvature of Mean-Only Models

Section 1.4 shows us that in the case of d = K = 2:

UConf2

(
R2
) ∼= R2 × C∗ where C∗ = (R2\{(0, 0)})/{v ∼ −v}.

C∗ is isometric to an infinite metric cone (2-dimensional) with cone angle π and cone point excised.
It is this positive curvature which gives rise to the counterexample presented.

More generally, 1.3 showed us that in these mean-only models there is a diagonal action on a subspace
isometric to (RK−1)d. In all of these cases, under the action of SK , the solid angle measure of
a sphere about the origin will be divided by K! when quotiented, producing a point of positive
curvature, and leading to highly symmetric counterexamples with non-uniqueness of barycenters.
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