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Abstract

Stochastic gradient descent with a large initial learning rate is widely used for
training modern neural net architectures. Although a small initial learning rate
allows for faster training and better test performance initially, the large learning
rate achieves better generalization soon after the learning rate is annealed. Towards
explaining this phenomenon, we devise a setting in which we can prove that a
two layer network trained with large initial learning rate and annealing provably
generalizes better than the same network trained with a small learning rate from
the start. The key insight in our analysis is that the order of learning different
types of patterns is crucial: because the small learning rate model first memorizes
easy-to-generalize, hard-to-fit patterns, it generalizes worse on hard-to-generalize,
easier-to-fit patterns than its large learning rate counterpart. This concept translates
to a larger-scale setting: we demonstrate that one can add a small patch to CIFAR-
10 images that is immediately memorizable by a model with small initial learning
rate, but ignored by the model with large learning rate until after annealing. Our
experiments show that this causes the small learning rate model’s accuracy on
unmodified images to suffer, as it relies too much on the patch early on.

1 Introduction

It is a commonly accepted fact that a large initial learning rate is required to successfully train a
deep network even though it slows down optimization of the train loss. Modern state-of-the-art
architectures typically start with a large learning rate and anneal it at a point when the model’s fit to
the training data plateaus [25, 32, 17, 42]. Meanwhile, models trained using only small learning rates
have been found to generalize poorly despite enjoying faster optimization of the training loss.

A number of papers have proposed explanations for this phenomenon, such as sharpness of the local
minima [22, 20, 24], the time it takes to move from initialization [18, 40], and the scale of SGD
noise [38]. However, we still have a limited understanding of a surprising and striking part of the
large learning rate phenomenon: from looking at the section of the accuracy curve before annealing, it
would appear that a small learning rate model should outperform the large learning rate model in both
training and test error. Concretely, in Fig. 1, the model trained with small learning rate outperforms
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Figure 1: CIFAR-10 accuracy
vs. epoch for WideResNet with
weight decay, no data augmen-
tation, and initial lr of 0.1 vs.
0.01. Gray represents the anneal-
ing time. Left: Train. Right:
Validation.

the large learning rate until epoch 60 when the learning rate is first annealed. Only after annealing
does the large learning rate visibly outperform the small learning rate in terms of generalization.

In this paper, we propose to theoretically explain this phenomenon via the concept of learning order
of the model, i.e., the rates at which it learns different types of examples. This is not a typical
concept in the generalization literature — learning order is a training-time property of the model, but
most analyses only consider post-training properties such as the classifier’s complexity [8], or the
algorithm’s output stability [9]. We will construct a simple distribution for which the learning order of
a two-layer network trained under large and small initial learning rates determines its generalization.

Informally, consider a distribution over training examples consisting of two types of patterns (“pattern”
refers to a grouping of features). The first type consists of a set of easy-to-generalize (i.e., discrete)
patterns of low cardinality that is difficult to fit using a low-complexity classifier, but easily learnable
via complex classifiers such as neural networks. The second type of pattern will be learnable by a
low-complexity classifier, but are inherently noisy so it is difficult for the classifier to generalize.
In our case, the second type of pattern requires more samples to correctly learn than the first type.
Suppose we have the following split of examples in our dataset:

20% containing only easy-to-generalize and hard-to-fit patterns
20% containing only hard-to-generalize and easy-to-fit patterns
60% containing both pattern types

(1.1)

The following informal theorems characterize the learning order and generalization of the
large and small initial learning rate models. They are a dramatic simplification of our Theo-
rems 3.4 and 3.5 meant only to highlight the intuitions behind our results.

Theorem 1.1 (Informal, large initial LR + anneal). There is a dataset with size N of the form (1.1)
such that with a large initial learning rate and noisy gradient updates, a two layer network will:

1) initially only learn hard-to-generalize, easy-to-fit patterns from the 0.8N examples containing
such patterns.

2) learn easy-to-generalize, hard-to-fit patterns only after the learning rate is annealed.

Thus, the model learns hard-to-generalize, easily fit patterns with an effective sample size of 0.8N
and still learns all easy-to-generalize, hard to fit patterns correctly with 0.2N samples.

Theorem 1.2 (Informal, small initial LR). In the same setting as above, with small initial learning
rate the network will:

1) quickly learn all easy-to-generalize, hard-to-fit patterns.

2) ignore hard-to-generalize, easily fit patterns from the 0.6N examples containing both pattern
types, and only learn them from the 0.2N examples containing only hard-to-generalize patterns.

Thus, the model learns hard-to-generalize, easily fit patterns with a smaller effective sample size of
0.2N and will perform relatively worse on these patterns at test time.

Together, these two theorems can justify the phenomenon observed in Figure 1 as follows: in a
real-world network, the large learning rate model first learns hard-to-generalize, easier-to-fit patterns
and is unable to memorize easy-to-generalize, hard-to-fit patterns, leading to a plateau in accuracy.
Once the learning rate is annealed, it is able to fit these patterns, explaining the sudden spike in
both train and test accuracy. On the other hand, because of the low amount of SGD noise present in
easy-to-generalize, hard-to-fit patterns, the small learning rate model quickly overfits to them before
fully learning the hard-to-generalize patterns, resulting in poor test error on the latter type of pattern.
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Both intuitively and in our analysis, the non-convexity of neural nets is crucial for the learning-order
effect to occur. Strongly convex problems have a unique minimum, so what happens during training
does not affect the final result. On the other hand, we show the non-convexity causes the learning
order to highly influence the characteristics of the solutions found by the algorithm.

In Section F.1, we propose a mitigation strategy inspired by our analysis. In the same setting as
Theorems 1.1 and 1.2, we consider training a model with small initial learning rate while adding noise
before the activations which gets reduced by some constant factor at some particular epoch in training.
We show that this algorithm provides the same theoretical guarantees as the large initial learning rate,
and we empirically demonstrate the effectiveness of this strategy in Section 6. In Section 6 we also
empirically validate Theorems 1.1 and 1.2 by adding an artificial memorizable patch to CIFAR-10
images, in a manner inspired by (1.1).

1.1 Related Work

The question of training with larger batch sizes is closely tied with learning rate, and many papers
have empirically studied large batch/small LR phenomena [22, 18, 35, 34, 11, 41, 16, 38], particularly
focusing on vision tasks using SGD as the optimizer.1 Keskar et al. [22] argue that training with a
large batch size or small learning rate results in sharp local minima. Hoffer et al. [18] propose training
the network for longer and with larger learning rate as a way to train with a larger batch size. Wen
et al. [38] propose adding Fisher noise to simulate the regularization effect of small batch size.

Adaptive gradient methods are a popular method for deep learning [14, 43, 37, 23, 29] that adaptively
choose different step sizes for different parameters. One motivation for these methods is reducing the
need to tune learning rates [43, 29]. However, these methods have been observed to hurt generalization
performance [21, 10], and modern architectures often achieve the best results via SGD and hand-tuned
learning rates [17, 42]. Wilson et al. [39] construct a toy example for which ADAM [23] generalizes
provably worse than SGD. Additionally, there are several alternative learning rate schedules proposed
for SGD, such as warm-restarts [28] and [33]. Ge et al. [15] analyze the exponentially decaying
learning rate and show that its final iterate achieves optimal error in stochastic optimization settings,
but they only analyze convex settings.

There are also several recent works on implicit regularization of gradient descent that establish
convergence to some idealized solution under particular choices of learning rate [27, 36, 1, 7, 26]. In
contrast to our analysis, the generalization guarantees from these works would depend only on the
complexity of the final output and not on the order of learning.

Other recent papers have also studied the order in which deep networks learn certain types of
examples. Mangalam and Prabhu [30] and Nakkiran et al. [31] experimentally demonstrate that deep
networks may first fit examples learnable by “simpler” classifiers. For our construction, we prove that
the neural net with large learning rate follows this behavior, initially learning a classifier on linearly
separable examples and learning the remaining examples after annealing. However, the phenomenon
that we analyze is also more nuanced: with a small learning rate, we prove that the model first learns
a complex classifier on low-noise examples which are not linearly separable.

Finally, our proof techniques and intuitions are related to recent literature on global convergence of
gradient descent for over-parametrized networks [6, 12, 13, 1, 5, 7, 4, 26, 2]. These works show that
gradient descent learns a fixed kernel related to the initialization under sufficient over-parameterization.
In our analysis, the underlying kernel is changing over time. The amount of noise due to SGD governs
the space of possible learned kernels, and as a result, regularizes the order of learning.

2 Setup and Notations

Data distribution. We formally introduce our data distribution, which contains examples supported
on two types of components: a P component meant to model hard-to-generalize, easier-to-fit patterns,
and a Q component meant to model easy-to-generalize, hard-to-fit patterns (see the discussion in our
introduction). Formally, we assume that the label y has a uniform distribution over {−1, 1}, and the

1While these papers are framed as a study of large-batch training, a number of them explicitly acknowledge
the connection between large batch size and small learning rate.
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Figure 2: A visualization of the vectors z, z − ζ, and z + ζ used to define the
distribution Q in 2 dimensions. z ± ζ will have label −1 and z has label +1.
Note that the norm of ζ is much smaller than the norm of z.

data x is generated as

Conditioned on the label y (2.1)
with probability p0, x1 ∼ Py, and x2 = 0 (2.2)
with probability q0, x1 = 0, and x2 ∼ Qy (2.3)

with probability 1− p0 − q0, x1 ∼ Py, and x2 ∼ Qy (2.4)

where P−1,P1 are assumed to be two half Gaussian distributions with a margin γ0 between them:

x1 ∼ P1 ⇔ x1 = γ0w
? + z|〈w?, z〉 ≥ 0, where z ∼ N (0, Id×d/d)

x1 ∼ P−1 ⇔ x1 = −γ0w
? + z|〈w?, z〉 ≤ 0, where z ∼ N (0, Id×d/d)

Therefore, we see that when x1 is present, the linear classifier sign(w?>x1) can classify the example
correctly with a margin of γ0. To simplify the notation, we assume that γ0 = 1/

√
d and w? ∈ Rd

has a unit `2 norm. Intuitively, P is linearly separable, thus learnable by low complexity (e.g. linear)
classifiers. However, because of the dimensionality, P has high noise and requires a relatively large
sample complexity to learn. The distribution Q−1 and Q1 are supported only on three distinct
directions z − ζ, z and z + ζ with some random scaling α, and are thus low-noise and memorizable.
Concretely, z − ζ and z + ζ have negative labels and z has positive labels.

x2 ∼ Q1 ⇔ x2 = αz with α ∼ [0, 1] uniformly
x2 ∼ Q−1 ⇔ x2 = α(z + bζ) with α ∼ [0, 1], b ∼ {−1, 1} uniformly (2.5)

Here for simplicity, we take z to be a unit vector in Rd. We assume ζ ∈ Rd has norm ‖ζ‖2 = r and
〈z, ζ〉 = 0. We will assume r � 1 so that z + ζ, z, z − ζ are fairly close to each other. We depict
z − ζ, z, z + ζ in Figure 2. We choose this type of Q to be the easy-to-generalize, hard-to-fit pattern.
Note that z is not linearly separable from z + ζ, z − ζ, so non-linearity is necessary to learn Q. On
the other hand, it is also easy for high-complexity models such as neural networks to memorize Q
with relatively small sample complexity.

Memorizing Q with a two-layer net. It is easy for a two-layer relu network to memorize the labels
of x2 using two neurons with weights w, v such that 〈w, z〉 < 0, 〈w, z − ζ〉 > 0 an 〈v, z〉 < 0,
〈v, z + ζ〉 > 0. In particular, we can verify that −〈w, x2〉+ − 〈v, x2〉+ will output a negative value
for x2 ∈ {z − ζ, z + ζ} and a zero value for x2 = z. Thus choosing a small enough ρ > 0, the
classifier −〈w, x2〉+ − 〈v, x2〉+ + ρ gives the correct sign for the label y.

We assume that we have a training dataset with N examples {(x(1), y(1)), · · · , (x(N), y(N))} drawn
i.i.d from the distribution described above. We use p and q to denote the empirical fraction of data
points that are drawn from equation (2.2) and (2.3).

Two-layer neural network model. We will use a two-layer neural network with relu activation to
learn the data distribution described above. The first layer weights are denoted by U ∈ Rm×2d and
the second layer weight is denoted by u ∈ Rm. With relu activation, the output of the neural network
is u>(1(Ux)� Ux) where � denotes the element-wise dot product of two vectors and 1(z) is the
binary vector that contains 1(zi ≥ 0) as entries. It turns out that we will often be concerned with the
object that disentangles the two occurrences of U in the formula u>(1(Ux)� Ux). We define the
following notation to facilitate the reference to such an object. Let

NA(u, U ;x) , w> (1(Ax)� Ux) (2.6)

That is, NA(w,W ;x) denotes the function where we compute the activation pattern 1(Ax) by the
matrix A instead of U . When u is clear from the context, with slight abuse of notation, we write
NA(U ;x) , u> (1(Ax)� Ux). In this notation, our model is defined as f(u, U ;x) = NU (u, U ;x).
We consider several different structures regarding the weight matrices U . The simplest version
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which we consider in the main body of this paper is that U can be decomposed into two U =

[
W
V

]
where W only operates on the first d coordinates (that is, the last d columns of W are zero), and V
only operates on the last d coordinates (those coordinates of x2.) Note that W operates on the P
component of examples, and V operates on the Q component of examples. In this case, the model
can be decomposed into

f(u, U ;x) = NU (u, U ;x) = NW (w,W ;x) +NV (v, V ;x) = NW (w,W ;x1) +NV (v, V ;x2)

Here we slightly abuse the notation to use W to denote both a matrix of 2d columns with last d
columns being zero, or a matrix of d columns. We also extend our theorem to other U such as a two
layer convolution network in Section F.

Training objective. Let `(f ; (x, y)) be the loss of the example (x, y) under model f . Throughout
the paper we use the logistic loss `(f ; (x, y)) = − log 1

1+e−yf(x) . We use the standard training loss

function L̂ defined as: L̂(u, U) = 1
N

∑
i∈[N ] `

(
f(u, U ; ·); (x(i), y(i))

)
and let L̂S(u, U) denote the

average over some subset S of examples instead of the entire dataset.

We consider a regularized training objective L̂λ(u, U) = L̂(u, U) + λ
2 ‖U‖

2
F . For the simplicity of

derivation, the second layer weight vector u is random initialized and fixed throughout this paper. Thus
with slight abuse of notation the training objective can be written as L̂λ(U) = L̂(u, U) + λ

2 ‖U‖
2
F .

Notations. Here we collect additional notations that will be useful throughout our proofs. The
symbol ⊕ will refer to the symmetric difference of two sets or two binary vectors. The symbol \
refers to the set difference. Let us defineM1 to be the set of all i ∈ [N ] such that x(i)

1 6= 0, let
M̄1 = [N ]\M1. LetM2 to be the set of all i ∈ [N ] such that x(i)

2 6= 0, let M̄2 = [N ]\M2. We
define q = |M̄1|

N and p = |M̄2|
N to be the empirical fraction of data containing patterns only from Q

and P , respectively. We will sometimes use Ê to denote an empirical expectation over the training
samples. For a vector or matrix v, we use supp(v) to denote the set of indices of the non-zero entries
of v. For U ∈ Rm×d and R ⊂ [m], let UR be the restriction of U to the subset of rows indexed by
R. We use [U ]i to denote the i-th row of U as a row vector in R1×d. Let the symbol � denote the
element-wise product between two vectors or matrices. The notation In×n will denote the n × n
identity matrix, and 1 the all 1’s vector where dimension will be clear from context. We define “with
high probability” to mean with probability at least 1− e−C log2(d) for a sufficiently large constant C.
Õ, Ω̃ will be used to hide polylog factors of d.

3 Main Results

The training algorithm that we consider is stochastic gradient descent with spherical Gaussian noise.
We remark that we analyze this algorithm as a simplification of the minibatch SGD noise encountered
when training real-world networks. There are a number of works theoretically characterizing this
particular noise distribution [19, 18, 38], and we leave analysis of this setting to future work.

We initialize U0 to have i.i.d. entries from a Gaussian distribution with variance τ2
0 , and at each

iteration of gradient descent we add spherical Gaussian noise with coordinate-wise variance τ2
ξ to the

gradient updates. That is, the learning algorithm for the model is

U0 ∼ N (0, τ2
0 Im×m ⊗ Id×d)

Ut+1 = Ut − γt∇U (L̂λ(u, Ut) + ξt) = (1− γtλ)Ut − γt(∇U L̂(u, Ut) + ξt) (3.1)

where ξt ∼ N (0, τ2
ξ Im×m ⊗ Id×d) (3.2)

where γt denotes the learning rate at time t. We will analyze two algorithms:

Algorithm 1 (L-S): The learning rate is η1 for t0 iterations until the training loss drops
below the threshold ε1 + q log 2. Then we anneal the learning rate to γt = η2 (which is
assumed to be much smaller than η1) and run until the training loss drops to ε2.

Algorithm 2 (S): We used a fixed learning rate of η2 and stop at training loss ε′2 ≤ ε2.
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For the convenience of the analysis, we make the following assumption that we choose τ0 in a way
such that the contribution of the noises in the system stabilize at the initialization:2

Assumption 3.1. After fixing λ and τξ , we choose initialization τ0 and large learning rate η1 so that

(1− η1λ)2τ2
0 + η2

1τ
2
ξ = τ2

0 (3.3)

As a technical assumption for our proofs, we will also require η1 . ε1.

We also require sufficient over-parametrization.
Assumption 3.2 (Over-parameterization). We assume throughout the paper that τ0 = 1/poly

(
d
ε

)
and m ≥ poly

(
d
ετ0

)
where poly is a sufficiently large constant degree polynomial. We note that we

can choose τ0 arbitrarily small, so long as it is fixed before we choose m.

As we will see soon, the precise relation between N, d implies that the level of over-parameterization
is polynomial in N, ε, which fits with the conditions assumed in prior works, such as [26, 13].
Assumption 3.3. Throughout this paper, we assume the following dependencies between the param-
eters. We assume that N, d→∞ with a relationship N

d = 1
κ2 where κ ∈ (0, 1) is a small value.3 We

set r = d−3/4, p0 = κ2/2, and q0 = Θ(1). The regularizer will be chosen to be λ = d−5/4. All of
these choices of hyper-parameters can be relaxed, but for simplicity of exposition we only work this
setting.

We note that under our assumptions, for sufficiently large N , p ≈ p0 and q ≈ q0 up to constant
multiplicative factors. Thus we will mostly work with p and q (the empirical fractions) in the
rest of the paper. We also note that our parameter choice satisfies (rd)−1, dλ, λ/r ≤ κO(1) and
λ ≤ r2/(κ2q3p2), which are a few conditions that we frequently use in the technical part of the
paper.

Now we present our main theorems regarding the generalization of models trained with the L-
S and S algorithms. The final generalization error of the model trained with the L-S algorithm
will end up a factor O(κ) = O(p1/2) smaller than the generalization error of the model trained
with S algorithm.
Theorem 3.4 (Analysis of Algorithm L-S). Under Assumption 3.1, 3.2, and 3.3, there exists a
universal constant 0 < c < 1/16 such that Algorithm 1 (L-S) with annealing at loss ε1 + q log 2 for
ε1 ∈

(
d−c, κ2p2q3

)
and stopping criterion ε2 =

√
ε1/q satisfies the following:

1. It anneals the learning rate within Õ
(

d
η1ε1

)
iterations.

2. It stops at at most t = Õ
(

d
η1ε1

+ 1
η2rε31

)
. With probability at least 0.99, the solution Ut has

test (classification) error and test loss at most O
(
pκ log 1

ε1

)
.

Roughly, the learning order and generalization of the L-S model is as follows: before annealing the
learning rate, the model only learns an effective classifier for P on the ≈ (1− q)N samples inM1

as the large learning rate creates too much noise to effectively learn Q (Lemma 4.1 and Lemma 4.2).
After the learning rate is annealed, the model memorizesQ and correctly classifies examples with only
a Q component during test time (formally shown in Lemmas 4.3 and 4.4). For examples with only P
component, the generalization error is (ignoring log factors and other technicalities) p

√
d
N = O(pκ)

via standard Rademacher complexity. The full analysis of the L-S algorithm is clarified in Section 4.
Theorem 3.5 (Lower bound for Algorithm S). Let ε2 be chosen in Theorem 3.4. Under Assump-
tion 3.1, 3.2 and 3.3, there exists a universal constant c > 0 such that w.h.p, Algorithm 2 with any
η2 ≤ η1d

−c and any stopping criterion ε′2 ∈ (d−c, ε2], achieves training loss ε′2 in at most Õ
(

d
η2ε′2

)
iterations, and both the test error and the test loss of the obtained solution are at least Ω(p).

2Let τ ′0 be the solution to (3.3) holding τξ, η1, λ fixed. If the standard deviation of the initialization is chosen
to be smaller than τ ′0, then standard deviation of the noise will grow to τ ′0. Otherwise if the initialization is
chosen to be larger, the contribution of the noise will decrease to the level of τ ′0 due to regularization. In typical
analysis of SGD with spherical noises, often as long as either the noise or the learning rate is small enough, the
proof goes through. However, here we will make explicit use of the large learning rate or the large noise to show
better generalization performance.

3Or in a non-asymptotic language, we assume thatN, d are sufficiently large compared to κ: N, d� poly(κ)
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We explain this lower bound as follows: the S algorithm will quickly memorize the Q component
which is low noise and ignore the P component for the ≈ 1− p− q examples with both P and Q
components (shown in Lemma 5.2). Thus, it only learns P on ≈ pN examples. It obtains a small
margin on these examples and therefore misclassifies a constant fraction of P-only examples at test
time. This results in the lower bound of Ω(p). We formalize the analysis in Section 5.

Decoupling the Iterates. It will be fruitful for our analysis to separately consider the gradient signal
and Gaussian noise components of the weight matrix Ut. We will decompose the weight matrix Ut
as follows: Ut = U t + Ũt. In this formula, U t denotes the signals from all the gradient updates
accumulated over time, and Ũt refers to the noise accumulated over time:

U t = −
t∑

s=1

γs−1

(
t−1∏
i=s

(1− γiλ)

)
∇L̂(Us−1)

Ũt =

(
t−1∏
i=0

(1− γiλ)

)
U0 −

t∑
s=1

γs−1

(
t−1∏
i=s

(1− γiλ)

)
ξs−1

(3.4)

Note that when the learning rate γt is always η, the formula simplifies to U t =
∑t
s=1 η(1 −

ηλ)t−s∇L̂(Us−1) and Ũt = (1 − ηλ)tU0 +
∑t
s=1 η(1 − ηλ)t−sξs−1. The decoupling and our

particular choice of initialization satisfies that the noise updates in the system stabilize at initialization,
so the marginal distribution of Ũt is always the same as the initialization. Another nice aspect of the
signal-noise decomposition is as follows: we use tools from [6] to show that if the signal term U is
small, then using only the noise component Ũ to compute the activations roughly preserves the output
of the network. This facilitates our analysis of the network dynamics. See Section A.1 for full details.

Decomposition of Network Outputs. For convenience, we will explicitly decompose the model
prediction at each time into two components, each of which operates on one pattern: we have
NUt(u, Ut;x) = gt(x) + rt(x),

where gt(x) = gt(x2) , NVt
(v, Vt;x) = NVt

(v, Vt;x2) (3.5)

rt(x) = rt(x1) , NWt(w,Wt;x) = NWt(w,Wt;x1) (3.6)
In other words, the network gt acts on the Q component of examples, and the network rt acts on the
P component of examples.

4 Characterization of Algorithm 1 (L-S)

We characterize the behavior of algorithm L-S with large initial learning rate. We provide proof
sketches in Section B.1 with full proofs in Section D.

Phase I: initial learning rate η1. The following lemma bounds the rate of convergence to the point
where the loss gets annealed. It also bounds the total gradient signal accumulated by this point.

Lemma 4.1. In the setting of Theorem 3.4, at some time step t0 ≤ Õ
(

d
η1ε1

)
, the training loss

L̂(Ut0) becomes smaller than q log 2 + ε1. Moreover, we have ‖U t0‖2F = O
(
d log2 1

ε1

)
.

Our proof of Lemma 4.1 views the SGD dynamics as optimization with respect to the neural tangent
kernel induced by the activation patterns where the kernel is rapidly changing due to the noise terms
ξ. This is in contrast to the standard NTK regime, where the activation patterns are assumed to be
stable [13, 26]. Our analysis extends the NTK techniques to deal with a sequence of changing kernels
which share a common optimal classifier (see Section B.1 and Theorem B.2 for additional details).

The next lemma says that with large initial learning rate, the function gt does not learn anything
meaningful for the Q component before the 1

η1λ
-timestep. Note that by our choice of parameters

1/λ� d and Lemma 4.1, we anneal at the time step Õ
(

d
η1ε1

)
≤ 1

η1λ
. Therefore, the function has

not learned anything meaningful about the memorizable pattern on distribution Q before we anneal.
Lemma 4.2. In the setting of Theorem 3.4, w.h.p., for every t ≤ 1

η1λ
,

|gt(z + ζ) + gt(z − ζ)− 2gt(z)| ≤ Õ
(
r2

λ

)
= Õ(d−1/4) (4.1)
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Phase II: after annealing the learning rate to η2. After iteration t0, we decrease the learning rate
to η2. The following lemma bounds how fast the loss converges after annealing.

Lemma 4.3. In the setting of Theorem 3.4, there exists t = Õ
(

1
ε31η2r

)
, such that after t0 + t

iterations, we have that
L̂(Ut) = O

(√
ε1/q

)
Moreover, ‖U t0+t − U t0‖2F ≤ Õ

(
1
ε21r

)
≤ O(d).

The following lemma bounds the training loss on the example subsetsM1, M̄1.

Lemma 4.4. In the setting of Lemma 4.3 using the same t = Õ
(

1
ε31η2r

)
, the average training losses

on the subsetsM1 and M̄1 are both good in the sense that

L̂M1(rt0+t) = O(
√
ε1/q) and L̂M̄1

(gt0+t) = O(
√
ε1/q3) (4.2)

Intuitively, low training loss of gt0+t on M̄1 immediately implies good generalization on examples
containing patterns from Q. Meanwhile, the classifier for P , rt0+t, has low loss on (1 − q)N
examples. Then the test error bound follows from standard Rademacher complexity tools applied to
these (1− q)N examples.

5 Characterization of Algorithm 2 (S)

We present our small learning rate lemmas, with proofs sketches in Section B.2 and full proofs in
Section E.

Training loss convergence. The below lemma shows that the algorithm will converge to small
training error too quickly. In particular, the norm of Wt is not large enough to produce a large margin
solution for those x such that x2 = 0.

Lemma 5.1. In the setting of Theorem 3.5, there exists a time t′ = Õ
(

1
η2ε′32 r

)
such that L̂M2

(Ut′) ≤

ε′2. Moreover, there exists t with t = Õ
(

1
η2ε′32 r

+ Np
η2ε′2

)
such that L̂(Ut) ≤ ε′2 after t iterations.

Moreover, we have that ‖U t‖2F ≤ Õ
(

1
ε′22 r

+Np
)

.

Lower bound on the generalization error. The following important lemma states that our classifier
for P does not learn much from the examples inM2. Intuitively, under a small learning rate, the
classifier will already learn so quickly from the Q component of these examples that it will not
learn from the P component of examples inM1 ∩M2. We make this precise by showing that the
magnitude of the gradients onM2 is small.
Lemma 5.2. In the setting of theorem 3.5, let

W
(2)

t =
1

N
η2

∑
s≤t

(1− η2λ)t−s
∑
i∈M2

∇W L̂{i}(Us) (5.1)

be the (accumulated) gradient of the weight W , restricted to the subset M2. Then, for every
t = O (d/η2ε

′
2), we have:

∥∥∥W (2)

t

∥∥∥
F
≤ Õ

(
d15/32/ε′22

)
. For notation simplicity, we will define

ε3 = d−1/32 1
ε′22

. Then,
∥∥∥W (2)

t

∥∥∥
F
≤ Õ

(√
dε3

)
.

The above lemma implies that W does not learn much from examples inM2, and therefore must
overfit to the pN examples in M̄2. As pN ≤ d/2 by our choice of parameters, we will not have
enough samples to learn the d-dimensional distribution P . The following lemma formalizes the
intuition that the margin will be poor on samples from P .

Lemma 5.3. There exists α ∈ Rd such that α ∈ span{x(i)
1 }i∈M̄2

and ‖α‖2 = Ω̃(
√
Np) such that

w.h.p. over a randomly chosen x1, we have that

rt(x1)− rt(−x1) = 2〈α, x1〉 ± Õ (ε3) (5.2)

As the margin is poor, the predictions will be heavily influenced by noise. We use this intuition to
prove the classification lower bound for Theorem 3.5.
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Figure 3: Accuracy vs. epoch on patch-augmented CIFAR-10. The gray line indicates annealing of
activation noise and learning rate. Left: Clean validation set. Right: Images containing only the
patch.

6 Experiments

Our theory suggests that adding noise to the network could be an effective strategy to regularize
a small learning rate in practice. We test this empirically by adding small Gaussian noise during
training before every activation layer in a WideResNet16 [42] architecture, as our analysis highlights
pre-activation noise as a key regularization mechanism of SGD. The noise level is annealed over time.
We demonstrate on CIFAR-10 images without data augmentation that this regularization can indeed
counteract the negative effects of small learning rate, as we report a 4.72% increase in validation
accuracy when adding noise to a small learning rate. Full details are in Section H.1.

We will also empirically demonstrate that the choice of large vs. small initial learning rate can indeed
invert the learning order of different example types. We add a memorizable 7 × 7 pixel patch to
a subset of CIFAR-10 images following the scenario presented in (1.1), such that around 20% of
images have no patch, 16% of images contain only a patch, and 64% contain both CIFAR-10 data
and patch. We generate the patches so that they are not easily separable, as in our constructed Q,
but they are low in variation and therefore easy to memorize. Precise details on producing the data,
including a visualization of the patch, are in Section H.2. We train on the modified dataset using
WideResNet16 using 3 methods: large learning rate with annealing at the 30th epoch, small initial
learning rate, and small learning rate with noise annealed at the 30th epoch.

Figure 3 depicts the validation accuracy vs. epoch on clean (no patch) and patch-only images. From
the plots, it is apparent that the small learning rate picks up the signal in the patch very quickly,
whereas the other two methods only memorize the patch after annealing.

From the validation accuracy on clean images, we can deduce that the small learning rate method is
indeed learning the CIFAR images using a small fraction of all the available data, as the validation
accuracy of a small LR model when training on the full dataset is around 83%, but the validation on
clean data after training with the patch is 70%. We provide additional arguments in Section H.2.

7 Conclusion

In this work, we show that the order in which a neural net learns to fit different types of patterns plays
a crucial role in generalization. To demonstrate this, we construct a distribution on which models
trained with large learning rates generalize provably better than those trained with small learning
rates due to learning order. Our analysis reveals that more SGD noise, or larger learning rate, biases
the model towards learning “generalizing” kernels rather than “memorizing” kernels. We confirm on
articifially modified CIFAR-10 data that the scale of the learning rate can indeed influence learning
order and generalization. Inspired by these findings, we propose a mitigation strategy that injects
noise before the activations and works both theoretically for our construction and empirically. The
design of better algorithms for regularizing learning order is an exciting question for future work.
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A Basic Properties and Toolbox

In this section, we collect a few basic properties of the neural networks we are studying. In section G,
we provide two lemmas on Gaussian random variables and perturbation theory of the matrices.
Proposition A.1.

[∇L̂(U)]i = Ê [`′(f(u, U ; (x, y)))1([U ]ix)x] (A.1)

Proposition A.2. Let [∇L̂(U)]i be the i-th row of ∇L̂(U). We have that ‖[∇L̂(U)]i‖2 . 1/
√
m.

Proposition A.3. For any t, if γs = η for every s ≤ t, then we have that ‖[U t]i‖2 .
min{ 1√

mλ
, ηt/
√
m} and ‖U t‖F . 1

λ .

Proof. By equation (3.4) and Proposition A.2, we have that

‖[U t]i‖2 =
∑
s

η(1− ηλ)t−s‖[∇L̂(Us)]i‖2 ≤
1√
m

∑
s

η(1− ηλ)t−s . min

{
1√
mλ

,
ηt√
m

}

Proposition A.4. Suppose that matrix Ũ ∈ Rm×d is a random variable whose columns have
i.i.d distribution N (0, τ2Im×m) and u ∈ Rm such that each entry of u is i.i.d. uniform in
{−m−1/2,m1/2}.For every x, we have that w.h.p. over the randomness of Ũ and u that∣∣∣NŨ (u, Ũ ;x)

∣∣∣ . τ‖x‖2 log d (A.2)

Proof of Proposition A.4. By definition, we have that

NŨ (u, Ũ ;x) =
∑
i∈[m]

ui[[Ũ ]ix]+ (A.3)

By definition, Ũ ∈ Rm×d where each entry is i.i.d. N (0, τ2), which implies that when m ≥ d, w.h.p.
‖Ũ‖2 = O(τ

√
m).

Hence ‖[Ũx]+‖2 ≤ ‖Ũx‖2 . τ
√
m‖x‖2. Now, since each ui is i.i.d. uniform {−m−1/2,m1/2},

using the randomness of ui we know that w.h.p.∣∣∣∣∣∣
∑
i∈[m]

ui[[Ũ ]ix]+

∣∣∣∣∣∣ . logm√
m
‖[Ũx]+‖2 . τ‖x‖2 log d (A.4)

Proposition A.5. Under the same setting as Lemma A.8, we will also have w.h.p over the randomness
of Ũ and u, ∀U ∈ Rd×m,∣∣∣NU (u, Ũ ;x)−NŨ (u, Ũ ;x)

∣∣∣ . B‖U‖5/3F τ−2/3m−1/6 (A.5)

Thus, it also follows that

|NU (u, Ũ ;x)| . B‖U‖5/3F τ−2/3m−1/6 + τB log d (A.6)

Proof. We know that for every i where 1([U ]ix) 6= 1([Ũ ]ix), it holds that |[Ũ ]ix| ≤ |[U ]ix|. This
implies that ∣∣∣NU (u, Ũ ;x)−NŨ (u, Ũ ;x)

∣∣∣ ≤ 1√
m

∑
i∈[m]

|1([U ]ix)− 1([Ũ ]ix)||[U ]ix| (A.7)

≤ 1√
m
‖1(Ux)− 1(Ũx)‖1 max

i
|[U ]ix| (A.8)

. B‖U‖4/3F τ−4/3m1/6 max
i
‖[U ]i‖2 (A.9)

Here in the last inequality we applied Lemma A.8. The second statement follows from Proposition A.4
and triangle inequality.
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We have the following Rademacher complexity bound:

Lemma A.6 (Lemma G5 and 5.9 of [3]). Let U = U + Ũ , where Ũ ∈ Rm×d is a random variable
whose columns have i.i.d distribution N (0, τ2

0 Im×m) and u ∈ Rm such that each entry of u is i.i.d.
uniform in {−m−1/2,m1/2}. W.h.p. over the samples {x(i)} and the randomness of u, Ũ , we have
that for every ρ ∈ [0, 1/λ]:

R :=
1√
N

∑
i∈[N ]

Eσ

[∣∣∣∣∣ sup
‖Ū‖2F≤ρ2

σiNU (u, Ū ;x(i))

∣∣∣∣∣
]
≤ O(ρ+ εs) (A.10)

A.1 Preliminaries on Decoupling the Iterates

In this section, we collect useful statements which will help with decoupling the signal U from
the noise Ũ in our analysis. First, we observe that if the noise updates in the system stabilize at
initialization, the marginal distribution of Ut is always the same as the initialization.
Proposition A.7. Under Assumption 3.1, suppose we run Algorithm 1. Then for any t before
annealing the learning rate, Ũt has marginal distribution N (0, τ2

0 Im×m ⊗ Id×d). In other words,
each entry of Ũt follows N (0, τ2

0 ) and they are independent with each others.

One nice aspect of the signal-noise decomposition is as follows: we use tools from [6] to show that if
the signal term U is small, then using only the noise component Ũ to compute the activations roughly
preserves the output of the network. This facilitates our analysis of the network dynamics.
Lemma A.8. [Lemma 5.2 of [6]] Let x ∈ Rd be a fixed example with ‖x‖2 ≤ B. For every τ > 0,
let U = U + Ũ where Ũ ∈ Rm×d is a random variable whose columns have i.i.d distribution
N (0, τ2Im×m) and u ∈ Rm such that each entry of u is i.i.d. uniform in {−m−1/2,m1/2}. We have
that, w.h.p over the randomness of Ũ and u, ∀U ∈ Rd×m,∣∣NU (u, U ;x)−NŨ (u, U ;x)

∣∣ . B‖U‖F τ−2m−1/6 (A.11)

Moreover, we have that ‖1(Ux)− 1(Ũx)‖1 . ‖U‖4/3F τ−4/3m2/3.

As we will often apply (A.11) with ‖U‖F . 1
λ , for notational simplicity we denote throughout the

paper εs =
(

1
λτ0

)4/3

m−1/3. By our choice of m ≥ poly(d/τ0) we know that εs ≤ d−Θ(1).

B Proof Sketches

B.1 Proof Sketches for Large Learning Rate

We first introduce notations that will be useful in these proofs. We will explicitly decouple the noise
in the weights from the signal by abstracting the loss as a function of only the signal portion U t of
the weights. Let us define the following:

ft(B;x) = NUt
(u,B + Ũt;x) (B.1)

Moreover, we define

Kt(B) ,
1

N

N∑
i=1

`(ft(B; ·); (x(i), y(i))) (B.2)

By definition, we know that

Lt = L̂(Ut) = Kt(U t) (B.3)

∇U L̂(Ut) = ∇Kt(U t) (B.4)

Now the proof of Lemma 4.1 relies on the following two results, which we state below and prove in
Section D.1. The first says that there is a common target for the signal part of the network that is a
good solution for all of the Kt.
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Lemma B.1. In the setting of Lemma 4.1, there exists a solution U? satisfying a) ‖U?‖2F ≤
O
(
d log2 1

ε1

)
and b) for every t ≥ 0

Kt(U
?) ≤ q log 2 + ε1/2 (B.5)

Now the second statement is a general one proving that gradient descent on a sequence of convex, but
changing, functions will still find a optimum provided these functions share the same solution.

Theorem B.2. Suppose K1, . . . ,KT : Rd → R∗ is a sequence of differentiable convex functions
satisfying

1. ∃z? and a constant c? ∈ R∗ such that Kt(z
?) ≤ c?,∀t = 1, . . . , T , and that ‖z0 − z?‖2 ≤

R, ‖z?‖2 ≤ R.

2. Kt’s are L-Lipschitz, i.e., ‖∇Kt(z)‖2 ≤ L,∀z, t

Let Kλ
t (z) , Kt(z) + λ

2 ‖z‖
2
2. Consider the following iterative algorithm that starts from z0 ∈ Rd,

∀t ≥ 0, zt+1 = zt − η∇Kλ
t (zt) (B.6)

For every µ > 0, we have that for λR2 ≤ 1
100µ and η ≤ µ

100(λ2R2+L2) , ηT > R2

µ , there is a t? ∈ [T ]

such that:

Kt?(zt?) ≤ c? + µ (B.7)

Furthermore, the iterates satisfy ‖zt − z?‖2 ≤ R for all t ≤ t?.

Combining these two statements leads to the proof of Lemma 4.1.

Proof of Lemma 4.1. We can apply Theorem B.2 with Kt defined in (B.2) and z? = U? defined in
Lemma B.1, using R = O

(
d log2 1

ε1

)
. We note that η1 satisfies the conditions of Theorem B.2 by

our parameter choices, which completes the proof.

To prove Lemma 4.2, we will essentially argue in Section D.2 that the change in activations caused
by the noise will prevent the model from learning Q with a large learning rate. This is because the
examples in Q require a very specific configuration of activation patterns to learn correctly, and the
noise will prevent the model from maintaining this configuration.

Now after we anneal the learning rate, in order to conclude Lemmas 4.3 and 4.4, the following must
hold: 1) the network learns the Q component of the distribution and 2) the network does not forget
the P component that it previously learned. To prove the latter, we rely on the following lemma
stating that the activations do not change much with a small learning rate:

Lemma B.3. The activation patterns do not change much after annealing the learning rate: for
every t0, t ≤ 1

η2λ
, for any x and for any row [Ut]i of the weight matrix U , we have that

‖1([Ut0+t]x)− 1([Ut0 ]x)‖1 .
√
η2

η1
m+ εsm (B.8)

Moreover, for all i ∈ [m],
∥∥[U t]i

∥∥
2
≤ 1

λ
√
m

, it holds that w.h.p. for every x:

∣∣NUt0+t(u, Ut0+t;x)−NUt0
(u, U t0+t;x)

∣∣ . 1

λ
×
(√

η2

η1
+ εs

)
+ τ0 log d (B.9)

We prove the above lemma in Section D.3. Now to complete the proof of Lemma 4.3, we will
construct a target solution for all timesteps after annealing the learning rate based on the activations at
time t0 (as they do not change by much in subsequent time steps because of Lemma B.3) and reapply
Theorem B.2. Finally, to prove Lemma 4.4, we use the fact that the Wt component of the solution
does not change by much, and therefore the loss onM1 is still low.
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B.2 Proof Sketches for Small Learning Rate

The proof of Lemma 5.1 proceeds similarly as the proof of Lemma 4.3: we will show the existence
of a target solution of Kt for all iterations, and use Theorem B.2 to prove convergence to this target
solution.

Now to sketch the proof of Lemma 5.2, we will first define the following notation: define `′j,t =

`′(−y(j)NUt(u, Ut;x
(j)) to be the derivative of the loss at time t on example j. Let ρt be the average

of the absolute value of the derivative.

ρt =
1

N

∑
j∈M2

∣∣`′i,t∣∣ (B.10)

The next two statements argue that ρt can be large only in a limited number of time steps. As
the training loss converges quickly with small learning rate, this will be used to argue that the P
components of examples inM2 provide a very limited signal to Wt. The proofs of these statements
are in Section E.2.

We first show the following lemma that says that if ρt is large (which means the loss is large as well),
then the total gradient norm has to be big. This lemma holds because there is little noise in the Q
component of the distribution, and therefore the gradient of Vt will be large if ρt is large.
Lemma B.4. For every t ≤ 1

η2λ
, we have that if ρt = Ω

(
1
N

)
, then w.h.p.

‖∇L̂(Ut)‖2F ≥ Ω
(
rρ4
t

)
(B.11)

Now we use the above lemma to bound the number of times when ρt is large.
Proposition B.5. In the setting of Lemma 5.2, let T be the set of iterations where ρt ≥ ε′22 ε2

3, where
ε3 is defined in Lemma 5.2. Then w.h.p, |T | . 1

rε′82 ε
8
3η2

.

Now if ρt is small, the gradient accumulated on Wt from examples in M2 must be small. We
formalize this argument in our proof of Lemma 5.2 in Section E.2.

Lemma 5.3 will then follow by explicitly decomposing W t into a component in span{x(i)
1 }i∈M̄2

and
some remainder, which is shown to be small by Lemma 5.2. This is presented in the below lemma,
which is proved in Section E.3.
Lemma B.6. There exists real numbers {αk}k∈M̄2

such that for every j ∈ [m], we have

[W t]j = wj
∑
k∈M̄2

αkx
(k)
1 1([W0]jx

(k)
1 ) + [W

′
t]j

with ‖W ′t‖F ≤ Õ
(
ε3

√
d
)

.

This allows us to conclude Lemma 5.3 via computations carried out in Section E.3.

Finally, to complete the proof of Theorem 3.5, we will argue in Section C.2 that a classifier rt of the
form given by (5.2) cannot have small generalization error because it will be too heavily influenced
by the noise in x1.

C Proof of Main Theorems

C.1 Proof of Theorem 3.4

We start with the following lemma that shows that if g has small training error on M̄1, then the
output of g on x2 is large compared to ‖x2‖. This is because for the loss to be low, g must have a
good margin on x2. However, as the norm of x2 is roughly uniform in [0, 1], the examples with small
norm will force g to have larger output.

Lemma C.1 (Signal of g). W.h.p. for every t ≥ 0 and every δ ≥ 1√
qN

, as long as L̂M̄1
(gt0+t) ≤ δ,

we have that: for every (x, y),

ygt0+t(x2) &
‖x‖2
δ

(C.1)
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Proof of Lemma C.1. We use M̄(1)
1 to denote the set of all x(i)

2 ∈ M̄1 such that x(i)
2 = α(z − ζ).

Similarly, we use M̄(2)
1 to denote the set of all x(i)

2 ∈ M̄1 such that x(i)
2 = α(z + ζ), and use M̄(3)

1

to denote the set of all x(i)
2 ∈ M̄1 such that x(i)

2 = αz.

Let gt0+t(z + ζ) = ρ1, gt0+t(z − ζ) = ρ2, gt+t0(z) = ρ3. By the positive homogeneity of ReLU,
we know that for every x2 ∈ M̄(i)

1 , it holds:

gt0+t(x2) = ‖x2‖2ρi (C.2)

Since L̂M̄1
(gt0+t) ≤ δ, it holds that w.h.p. for every i ∈ [3],

L̂M̄(i)
1

(gt0+t) ≤ 4δ (C.3)

Hence, at most 40δ fraction of x2 ∈ M̄(i)
1 satisfies `(gt0+t; (x2, y)) ≥ 1

10 . Since ‖x2‖2 is uni-
form on [0, 1], this implies that as long as δ ≥ 1√

qN
, w.h.p., 80δ fraction of the x2 ∈ M̄(i)

1

satisfies that ‖x2‖2 = O(δ). Among of these examples, at least 40δ fraction of them should sat-
isfy `(gt0+t; (x2, y)) ≤ 1

10 , which implies that ‖x2‖ρi & 1. This implies that ρi & 1/δ and the
conclusion follows from equality (C.2).

Our proof of Theorem 3.4 now amounts to carefully checking that all examples inM2 are classified
correctly, and the classifier rt0+t will generalize well on M̄2.

Proof of Theorem 3.4. By Lemma 4.4, we know that for t = Õ
(

1
ε31η2r

)
we have L̂M̄1

(gt0+t) =

O(
√
ε1/q3). Thus applying Lemma C.1, we obtain that as long as ε1 ≥ 1√

N
(which is implied by

Assumption 3.3)

ygt0+t(x2) ≥ Ω

(
‖x‖2

√
q3

√
ε1

)
(C.4)

On the other hand for rt0+t, by Lemma 4.1 and Lemma 4.3 we know that ‖W t0+t‖F = Õ(
√
d).

Let us define Dx1
to be the marginal distribution of x1. We know that x1 = αw? + β where w.h.p.

|α| = Õ(d−1/2) and β ∼ N (0, 1/d× (I − w?(w?)>)). Hence we have that w.h.p. over x1 ∼ Dx1 ,
‖W t0+tx1‖2 ≤ |α|‖W t0+t‖F + d−1/2‖β‖2‖W t0+t‖F ≤ Õ(d−1/2)‖W t0+t‖F ≤ Õ(1).

This implies that for x1 ∼ Dx1 , applying Lemma A.8 gives us

|rt0+t(x1)| = |NUt0+t
(u, Ut0+t;x1)| (C.5)

. |NUt0+t(u, U t0+t;x1)|+ εs
λ

+ τ0 log d (by Proposition A.5)

. ‖u‖2‖W t0+tx1‖2 +
εs
λ

+ τ0 log d = Õ(1) (by our choice of τ0, m)

Hence as long as ‖x2‖2 = Ω̃(
√
ε1/q3 log 1

ε1
), it holds that

y(rt0+t(x1) + gt0+t(x2)) = Ω̃(1)× log
1

ε1
(C.6)

This implies that `(rt0+t + gt0+t; (x, y)) ≤ ε1. Otherwise, when ‖x2‖2 = Õ
(√

ε1/q3
)

, we also

know that w.h.p. `(rt0+t + gt0+t; (x, y)) ≤ `(rt0+t; (x, y)) = Õ(1), since ygt0+t(x2) ≥ 0. On the
other hand by Lemma 4.4, we also know that

L̂M1
(rt0+t) = O(

√
ε1/q) (C.7)
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Moreover, applying Lemma A.6 on rt0+t with ‖Wt0+t‖2F ≤ ‖Wt0‖2F + ‖Wt0+t − Wt0‖2F .(
d log2 1

ε

)
by Lemma 4.2 and Lemma 4.3, we have that

E(x,y)∼D [`(rt0+t; (x, y)) | x1 6= 0] .
√
ε1/q + κ log

1

ε1
. κ log

1

ε1
(C.8)

where we used the fact that ε1 ≤ κ2p2q3.

It follows thats

E [`(rt0+t + gt0+t; (x, y))] (C.9)
≤ Pr[x2 = 0]E [`(rt0+t; (x, y))] + Pr[x2 6= 0]E [`(rt0+t + gt0+t; (x, y))] (C.10)

≤ E [`(rt0+t; (x, y)) | x1 6= 0] Pr[x2 = 0] + Õ(1) Pr
[
x2 6= 0, ‖x2‖2 = O

(√
ε1/q3

)]
+ ε1

(C.11)

≤ Õ
(√

ε1/q3
)

+ ε1 ≤ O
(
pκ log

1

ε1

)
(C.12)

Here the last step uses the definition of ε1 that ε1 ≤ κ2p2q3.

C.2 Proof of Theorem 3.5

We will prove Theorem 3.5 using Lemma 5.3 by roughly arguing that the predictions made by rt will
be heavily influenced by a vector α in the low rank span of examples from M̄2. With high probability,
this vector α will be noisy and not align well with the ground truth w?, leading to mispredictions.

Proof of Theorem 3.5. Recall that ε′2 denotes the stopping criterion used in Theorem 3.5 and ε3 =
d−1/32 1

ε′22
. Using Lemma 5.3, we know that w.h.p.

rt(x1)− rt(−x1) = 2〈α, x1〉 ± Õ (ε3) (C.13)

Consider the matrix M = (x
(i)
1 )i∈M̄2

∈ Rd×Np. By definition, we know that M = M0 +M1 where
M0 = w?β> where βi ∈ {−d−1/2, d−1/2} and M1 is a Gaussian random matrix with each entry
i.i.d. N (0, 1/d).

By Lemma G.2 we know that w.h.p. over the randomness of x(i)
1 ’s, for α ∈ span{x(i)

1 }i∈M̄2
we

have as long as Np ≤ d/2: 〈α,w?〉
‖α‖2‖w?‖2 ≤ 0.9. For every randomly chosen x1, we can also write

x1 = γw? + β where β⊥w? so β is independent of γ, hence

〈α, x1〉 = γ〈α,w?〉+ 〈α, β〉 (C.14)

Note that 〈α, β〉 ∼ N (0, σ2‖α‖22/d) with σ ≥ 0.1, and with probability at least 0.1, γ ≤ 2‖α‖2/
√
d.

This implies that with probability at least Ω(1) over a randomly chosen x1 we can have:

〈w?, x1〉 = γ < 0, |γ| ≤ 2‖α‖2/
√
d (C.15)

For β, we know that with probability at least Ω(1), we have:

〈α, β〉 ≥ 3‖α‖2/
√
d (C.16)

Moreover, since β is independent of γ, we know that with probability Ω(1) both events can happen,
in which case:

〈w?, x1〉 < 0, 〈α, x1〉 = γ〈α,w?〉+ 〈α, β〉 ≥ ‖α‖2/
√
d (C.17)

Thus, since ‖α‖2 = Ω(
√
Np) by Lemma 5.3, we know that as long as

√
p

κ
=

√
Np√
d

= Ω̃ (ε3) (C.18)
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which is implied by ε3 = Õ
(√

p

κ

)
, it holds that 〈α, x1〉 ≥ Ω̃ (ε3). This implies that

rt(x1) = rt(−x1) + 2〈α, x1〉 ± Õ (ε3) (C.19)
≥ rt(−x1) (C.20)

However, since 〈w?, x1〉 < 0, we know that either rt(x1) < 0, which results in rt(−x1) < 0 but
〈w?,−x1〉 > 0. So when x2 = 0, the network classifies (−x1, 0) incorrectly. On the other hand,
we have when rt(x1) > 0 the network will classify (x1, 0) incorrectly. Since 〈w?, x1〉 < 0 and
rt(x1) ≥ rt(−x1) holds with probability Ω(1), this shows that the test error is at least Ω(p).

D Proofs for Large Learning Rate Lemmas

D.1 Proofs for Lemma 4.1

To prove Lemma 4.1, we will show that the network will learn all examples with P component while
the learning rate is large. The key to the proof is that although the large learning rate noise only
allows the network to search over coarse kernels, P is still learnable by these kernels because of its
linearly-separable structure. To make this precise, we decompose the weights Ut Into the signal and
noise components, and show that there exists a fixed “target” signal matrix which will classify P
correctly no matter the noise matrix.

Recall our definitions of ft(B;x), Kt(B) in (B.1) and (B.2), and that

Lt = L̂(Ut) = Kt(U t) (D.1)

∇U L̂(Ut) = ∇Kt(U t) (D.2)

Recall that Lemma B.1 leverages the linearly-separable structure of P to find a “target” signal matrix
that correctly classifies P w.h.p over the noise matrix. We state its proof below.

Proof of Lemma B.1. By proposition A.3, ‖U t‖F ≤ O
(

1
λ

)
. We apply Lemma A.8 as follows: by

Proposition A.7, Ũt’s entry has marginal distribution N (0, τ2
0 ) and therefore the column of Ũt has

distribution N (0, τ2
0 Im×m). Since w.h.p. ‖x‖2 .

√
log d, the coupling Lemma A.8 gives

‖1(Utx)− 1(Ũtx)‖0 ≤ εsm (D.3)

On the other hand, we also have by Proposition A.5, using the fact that maxi ‖[U i]‖2 . 1√
mλ

, w.h.p.∣∣∣NUt(u, Ũt;x)
∣∣∣ . τ0 log d+

εs
λ

. τ0 log d (D.4)

Here in the last inequality we used the fact that the network is sufficiently over-parameterized so that
εs = Õ(τ0λ).

Using (D.4), noting that our choice of m,λ, τ0 satisfies τ0 log d = o(ε1), we conclude∣∣∣NUt(u, Ũt;x)
∣∣∣ ≤ ε1/20 (D.5)

Now, let us consider U∗ = (W ∗, V ∗) given by V ∗ = 0 and an W ∗ ∈ Rm×d defined as: for
all i ∈ [m], W ∗i = 20wi

√
dw? log 1

ε1
∈ Rd. We will have ‖U∗‖2F = O

(
d2 log 1

ε1

)
. We first

decompose ft(U∗;x) into

ft(U
∗, x) = NUt

(u, U∗ + Ũt;x) (D.6)

= NUt
(u, Ũt;x) +NUt

(u, U∗;x) (D.7)

For the term NUt
(u, U∗;x), we know that

NUt(u, U
∗;x) = NWt(w,W

∗;x) = 20〈w?, x1〉
√
d log

1

ε1
×
m/2∑
i=1

w2
i 1([Wt]ix1) (D.8)

= 20〈w?, x1〉
√
d log

1

ε1
× 1

m
‖1(Wtx1)‖1 (D.9)
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By Lemma A.8, we know that
∣∣∣1(Wtx)− 1(W̃tx)

∣∣∣
1
≤ O (εsm) and that 20〈w?, x1〉

√
d log 1

ε1
.

√
d log d, which implies that

NUt(u, U
∗;x) = 20〈w?, x1〉

√
d log

1

ε1
× 1

m
‖1(W̃tx1)‖1 ±O

(√
dεs log d

)
(D.10)

Note that entries of W̃tx1 are i.i.d. random Bernoulli(1/2), thus we know that w.h.p.
2

m
‖1(W̃tx1)‖1 =

1

2
±O(m−1/2

√
log d) =

1

2
±O(m−1/3) (D.11)

Thus, by our choice that m−1/3 = O(ε1) and
√
dεs = O(ε1),∣∣∣∣NUt(u, U

∗;x)− 5〈w?, x1〉 log
1

ε1

∣∣∣∣ ≤ ε1

20
(D.12)

By (D.5), this also implies that∣∣∣∣NUt(u, Ũt + U∗;x)− 5〈w?, x1〉 log
1

ε1

∣∣∣∣ ≤ ε1

10
(D.13)

By definition of w?, we know that

1

N

N∑
i=1

`

(
5〈w?, x(i)

1 〉 log
1

ε1
; (x(i), y(i))

)
≤ q log 2 + ε1/5 (D.14)

Thus, from the fact that ` is 1-Lipschitz, it follows that
Kt(U

∗) ≤ q log 2 + ε1/2 (D.15)

Now we wish to argue that even though the noise matrix is changing, gradient descent will still find
the fixed target signal matrix U?. This leverages the fact that once we fix the activation patterns, we
can view each step of the optimization as gradient descent with respect to a convex, but changing,
function. Below we provide a proof of Theorem B.2, which allows for optimization of this changing
function.

Proof of Theorem B.2. For the sake of contradiction, we assume that Kt(zt) ≥ c? + µ for all t ≤ T .
Using the definition of Kλ

t , we have that the update rule of zt can be written as
zt+1 = zt − η∇Kt(zt)− ηλzt (D.16)

= (1− ηλ)zt − η∇Kt(zt) (D.17)
It follows that
‖zt+1 − z?‖22 = ‖(1− ηλ)(zt − z?)− η(λz? +∇Kt)‖22 (D.18)

= ‖(1− ηλ)(zt − z?)‖22 + ‖η(λz? +∇Kt)‖22 − 2η(1− ηλ)〈∇Kt(zt), zt − z?〉
− 2ηλ(1− ηλ)〈zt − z?, z?〉 (expanding)

≤ ‖(1− ηλ)(zt − z?)‖22 + 2η2(λ2R2 + L2)− 2η(1− ηλ)(Kt(zt)−Kt(z
?))

(by convexity of Kt)

+ 2ηλ(1− ηλ)‖zt‖R+ 2ηλ(1− ηλ)R2 (D.19)

Assuming that ‖zt − z?‖2 ≤ R, we have that as long as λR2 ≤ 1
100µ and η ≤ µ

100(λ2R2+L2) , we
have:

‖zt+1 − z?‖22 ≤ ‖(zt − z?)‖22 + 2η2(λ2R2 + L2)− 2η(1− ηλ)µ+ 6ηλR2 (D.20)

≤ ‖(zt − z?)‖22 − ηµ (D.21)

Therefore, by induction,
‖zT − z?‖22 ≤ ‖(z0 − z?)‖22 − Tηµ ≤ R2 − Tηµ < 0 (D.22)

which is a contradiction.
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D.2 Proof of Lemma 4.2

We define g̃t to be the neural network operating on x2 with activation pattern computed from Ṽt and
and weights using V t:

g̃t(x) = g̃t(x2) = NṼt
(v, V t;x) (D.23)

In the full proof of Lemma 4.2 at the end of the section, we will show that g̃t is very close to gt and
therefore we focus on g̃t in most parts of the section, and show that it satisfies the almost-linearity
condition in Lemma 4.2.

In this section, we will often consider the activation patterns on the inputs z, z − ζ, z + ζ at various
time steps. For convenience, we have the following definition:

Definition D.1. For any s, and vector w, let Ews , {i ∈ [m] : [Ṽs]iw ≥ 0} denote the set of neurons
that have positive pre-activation on the input w (with weights Ṽs), and Ēws , {i ∈ [m] : [Ṽs]iw < 0}
be the set of neurons with negative pre-activations on the input w. (We will mostly be interested in the
quantities Ez−ζ , Ēz−ζ , Ez+ζ , Ēz+ζ and their intersections.)

For a set E ⊂ [m], we will use 1(E) ∈ {0, 1}m to denote the indicator vector for the set E . With this
notation, we have that

1(Exs ) = 1(Ṽsx) (D.24)

We start by providing a decomposition of g̃t(z − ζ) + g̃t(z + ζ)− 2g̃t(z), and a bound based on how
much the activation of z, z − ζ, z + ζ differs.

Lemma D.2. Let Qt , diag(v)V t. Then, we have that

g̃t(z − ζ) + g̃t(z + ζ)− 2g̃t(z)

= (1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>Qtz + (1(Ez+ζt )− 1(Ez−ζt ))>Qtζ (D.25)

Proof. We fix t and drop the subscript of t throughout the proof. Recall the definition of g̃t in
equation (D.23), we have

g̃(x) := NṼ (v, V ;x) = v>
(
1(Ṽ x)� V x

)
= 1(Ṽ x)

>
Qx (by the definition of Q = diag(v)V )

Therefore,

g̃(z − ζ) + g̃(z + ζ)− 2g̃(z) = 1(Ez−ζ)>Q(z − ζ) + 1(Ez+ζ)>Q(z + ζ)− 21(Ez)>Qz
= (1(Ez−ζ) + 1(Ez+ζ)− 21(Ez))>Qz + (1(Ez+ζ)− 1(Ez−ζ))>Qζ

Towards bounding the terms in equation (D.25), we will need to reason about the activations patterns
of z, z − ζ, z + ζ at various time steps. We first show that the activation patterns of z − ζ and z + ζ
have to agree in most of neurons except an ≈ r fraction of them. This will be useful to show that the
second term of the RHS of equation (D.25) is small.
Proposition D.3. In the setting of Lemma D.2, w.h.p over the randomness of the initialization and
all the randomness in the algorithm, for every t ≤ poly(d), i ∈ [m], i ∈ Ez−ζt ⊕ Ez+ζt implies that
|[Ṽt]iz| . τ0r

√
log d. Moreover, the size of the set Ez−ζt ⊕ Ez+ζt is bounded by

|Ez−ζt ⊕ Ez+ζt | . rm
√

log d (D.26)

Proof. Recall that [Ṽt]i ∈ R1×d denote the i-th row of the matrix Ṽt. Recall that i ∈ Ez−ζt ⊕ Ez+ζt

means that [Ṽt]i(z − ζ) and [Ṽt]i(z + ζ) have different signs, which in turn implies that

|[Ṽt]iz| ≤ |[Ṽt]iζ| (D.27)
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Recall that ‖ζ‖2 = r and by Proposition A.7 [Ṽt]i has distribution N (0, τ2
0 Id×d). Therefore, by

standard Gaussian concentration and union bound, with high probability over the randomness of the
initialization and the algorithm, for all t ≤ poly(d),

|[Ṽt]iζ| . τ0‖ζ‖2
√

log d = τ0r
√

log d . (D.28)
This proves the first part of the lemma.

Moreover, note that Pr
[
[|Ṽt]iz| ≤ τ0r

√
log d

]
. r
√

log d. By the independence between [Ṽt]i’s and
standard concentration inequalities (Bernstein inequality), we have that with high probability, there
are at most rm

√
log d + log d entries i ∈ [m] satisfying |[Ṽt]iz| ≤ τ0r

√
log d. Together with the

first part of the lemma, and that m is sufficiently large so that rm
√

log d+ log d . rm
√

log d, we
complete the proof of equation (D.26).

We use the lemma above to conclude that the second term in the decomposition (D.25) is at most on
the order of r2/λ.
Proposition D.4. In the setting of Lemma D.2, we have that

‖(1(Ez+ζt )− 1(Ez−ζt ))>Qtζ‖2 .
r2
√

log d

λ
. (D.29)

Proof.

|(1(Ez+ζt )− 1(Ez−ζt ))>Qtζ| ≤ ‖(1(Ez+ζt )− 1(Ez−ζt ))>Qt‖2‖ζ‖2 (D.30)
By the definition of our algorithm, before annealing the learning rate, we have

[Qt]i = vi · [V t]i = vi

t∑
s=1

η1(1− η1λ)t−s[∇V L̂(Us−1)]i . (D.31)

Using Proposition A.3 and that |vi| = 1√
m

, we have that ‖[Qt]i‖2 . 1
λm . It follows that

‖(1(Ez+ζt )− 1(Ez−ζt ))>Qt‖2 ≤ |Ez−ζt ⊕ Ez+ζt | ·max
i
‖[Qt]i‖2 .

r
√

log d

λ
. (D.32)

Equation above and equation (D.30) complete the proof.

Next we will reason about the first term of the RHS of equation (D.25). Note that this is less obvious
than the bound for the second term of RHS because both Q and z don’t depend on the scale of r,
whereas the norm of 1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ) only linearly depends on r. However, it is still
the case that the first term of RHS of (D.25) scales in r2 because of the subtle interactions between
1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ) and Qt, as demonstrated in the proofs below.

The following lemma decomposes Q into a sum of the contribution of the gradient from all the
previous steps.

Proposition D.5. In the setting of Lemma D.2, let ∆Qt , diag(v)∇V L̂(Ut). (∆Qt can be viewed
as the raw change of Qt at the time step t without considering the effect of the regularizer.) We have
that

|(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>Qtz| ≤ η1

t∑
s=1

‖(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>∆Qs−1‖2

Proof. Denote a = 1(Ez−ζt ) + 1(Ez+ζt ) − 21(Ezt ) for notational simplicity. By definition of our
algorithm, we have

a>Qt = a> diag(v)

t∑
s=1

η1(1− η1λ)t−s∇V L̂(Us−1) = a>
t∑

s=1

η1(1− η1λ)t−s∆Qs−1 (D.33)

It follows that

‖a>Qt‖2 ≤ η
t∑

s=1

‖a>∆Qs−1‖2 .

Using the fact that ‖z‖2 ≤ 1 we complete the proof.
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In the sequel, we will bound from above the quantity ‖(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>∆Qs−1‖2
for every s. One important fact is that the following proposition which shows that ∆Qs has a lot
of repetitive rows that enable additional cancellation in addition to the cancellation in 1(Ez−ζt ) +

1(Ez+ζt )− 21(Ezt ).

Proposition D.6. Define the analog of Ews with Vt to compute the activation pattern: for any s, and
vector w, let Gws , {i ∈ [m] : [Vs]iw ≥ 0} and define Ḡws , {i ∈ [m] : [Vs]iw < 0} similarly.

Suppose at some iteration s, z − ζ and z + ζ have the same activation pattern at neuron i and j in
the sense that i, j ∈ Gz−ζs ∩ Gz+ζs , or i, j ∈ Ḡz−ζs ∩ Ḡz+ζs . Then the corresponding gradient update
at that iteration for the weight vectors associated with i and j are the same up to a potential sign flip:

[∆Qs]i = vi[∇V L̂(Us)]i = vj [∇V L̂(Us)]j = [∆Qs]j (D.34)

Moreover, suppose we have that i, j satisfy that [Ṽs]ix & τ0r
√

log d and [Ṽs]jx & τ0r
√

log d (or
[Ṽs]ix . −τ0r

√
log d and [Ṽs]jx . −τ0r

√
log d) for x ∈ {z − ζ, z + ζ}, then the same conclusion

holds for i and j.

Proof. Note that by definition, [∆Qs]i = vi[∇V L̂(Us)]i, and thus it suffices to prove that
vi[∇V L̂(Us)]i = vj [∇V L̂(Us)]j . By Proposition A.1, we have that

[∇V L̂(Us)]i = Ê [`′(f(u, Us; (x, y)))vi1([Vs]ix2)x2] (D.35)

Note that x2 can only take (a positive scaling of) four values z − ζ, z, z + ζ, 0. We claim that for
every choice of these four values, for the i, j satisfying the condition of the lemma, we have

`′(f(u, Us; (x, y)))1([Vs]ix2)x2 = `′(f(u, Us; (x, y)))1([Vs]jx2)x2 (D.36)

Note that the equation above together with v2
i = v2

j = 1 suffices to complete the proof.

Equation (D.36) is true for x2 = 0. Suppose without loss of generality, i, j ∈ Gz−ζs ∩ Gz+ζs . Then
we know that i, j ∈ Gzs because [Vs]i(z − ζ) + [Vs]i(z + ζ) = 2[Vs]iz. Therefore 1([Vs]ix2) =
1([Vs]jx2) = 1 for all x2 ∈ {z − ζ, z, z + ζ}. Thus we proved equation (D.36) and complete the
proof of the first part of the lemma.

Now to prove the second part of the lemma, suppose i, j satisfy that [Ṽs]ix & τ0r
√

log d and
[Ṽs]jx & τ0r

√
log d for x ∈ {z − ζ, z + ζ}. Using ‖[Ṽs]i‖2 ≤ 1

λ
√
m

from Proposition A.3, we have

that [Vs]iz ≥ [Ṽs]iz − |[V s]iz| & τ0r
√

log d− O( 1
λ
√
m

) ≥ τ0r
√

log d where used the assumption
that 1/λ = poly(d) and m = poly(d/τ0). Therefore, we conclude that i, j ∈ Gz−ζs ∩ Gz+ζs . Now by
the first lemma of the lemma we complete the proof.

Now we are ready to bound the first term on the RHS of equation D.25, which is the crux of the
proofs in this section. The key here is to get a bound that scales quadratically in r.

Proposition D.7. In the setting of Lemma D.2, let ∆Qs be defined in Proposition D.5. Then, we
have that

‖(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>∆Qs‖2 .
r2
√

log d√
λη1(s− t)

(D.37)

As a direct corollary of the equation above and Proposition D.5, we have that

|(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>Qtz| .
r2
√

log d

λ
(D.38)

Proof. By the set operations and the facts that Ez−ζt ∩ Ez+ζt ⊂ Ezt and that Ezt ⊂ E
z−ζ
t ∪ Ez+ζt , we

have that

1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ) =
(
1(Ez−ζt \Ezt )− 1(Ez\Ez+ζt )

)
+
(
1(Ez+ζt \Ezt )− 1(Ezt \E

z−ζ
t )

)
(D.39)
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Define

F+
s = {i ∈ [m] : [Ṽs]iz & τ0r

√
log d}

F−s = {i ∈ [m] : [Ṽs]iz . −τ0r
√

log d}

Fcs = {i ∈ [m] : |[Ṽs]iz| . τ0r
√

log d} (D.40)

where the .,& notations hide universal constants that make the first conclusion of Proposition D.3
true. By the second part of Proposition D.3 (or more directly equation (D.28)), we have that
F+
s ⊂ Ez−ζs ∩ Ez+ζs , and F−s ⊂ Ēz−ζs ∩ Ēz+ζs . By Proposition D.6, we have that for any i, j ∈ F−s ,

[∆Qs]i = [∆Qs]j . For notational simplicity, let A = Ez+ζt \Ezt and B = Ezt \E
z−ζ
t . Therefore it

follows that∥∥∥∥(1(Ez+ζt \Ezt )− 1(Ezt \E
z−ζ
t )

)>
∆Qs

∥∥∥∥
2

=

∥∥∥∥∥∑
i∈A

[∆Qs]i −
∑
i∈B

[∆Qs]i

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈A∩F+
s

[∆Qs]i −
∑

i∈B∩F+
s

[∆Qs]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩F−s

[∆Qs]i −
∑

i∈B∩F−s

[∆Qs]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩Fc
s

[∆Qs]i −
∑

i∈B∩Fc
s

[∆Qs]i

∥∥∥∥∥∥
2

≤ 1

m

(∣∣|A ∩ F+
s | − |B ∩ F+

s |
∣∣+
∣∣|A ∩ F−s | − |B ∩ F−s |∣∣+ |A ∩ Fcs |+ |B ∩ Fcs |

)
(D.41)

where in the last inequality we use that for any i, j ∈ F−s , [∆Qs]i = [∆Qs]j , and the fact that
‖[∆Qs]i‖2 = 1√

m
‖[∇V L̂(Us)]i‖2 ≤ 1/m (by Proposition A.2.)

Next, we first bound

|A ∩ F+
s | − |B ∩ F+

s | =
∑
i∈[m]

1(i ∈ Ez+ζt , i /∈ Ezt , i ∈ F+
s )− 1(i ∈ Ezt , i /∈ E

z−ζ
t , i ∈ F+

s ).

(D.42)

Note that the distribution of ([Ṽs]i, [Ṽt]i’s are independent across the choice of i. Thus we will
compute Pr[i ∈ Ez+ζt , i /∈ Ezt , i ∈ F+

s ]−Pr[i ∈ Ezt , i /∈ E
z−ζ
t , i ∈ F+

s ] and then apply concentration
concentration inequality for the sum. Note that the event here depends on three quantities [Ṽs]iz,
[Ṽt]iz, and [Ṽt]iζ. First of all, [Ṽt]iζ is independent of these other two because ζ is orthogonal to z
and [Ṽt]i and [Ṽs]i have spherical covariance matrices.

By the definition of Ṽs, Ṽt, we can express their relationship by writing [Ṽt]iz = (1−η1λ)t−s[Ṽs]iz+
[Ξt,s]iz, where Ξt,s = η1

∑
j∈[t−s](1 − η1λ)t−s−jξs+j . Recall that by proposition A.7, we have

[Ṽs]iz ∼ N (0, τ2
0 ) and [Ξt,s]iz are two independent Gaussians. Let σt,s be the variance of [Ξt,s]iz.

We compute σt,s by observing that

τ2
0 = Var([Ṽt]iz) = Var((1− η1λ)t−s[Ṽs]iz) + Var([Ξt,s]iz) = (1− η1λ)2(t−s)τ2

0 + σ2
s,t

Solving the equation we obtain that

σs,t =
√
τ2
0 (1− (1− η1λ)2(t−s)) ≥ τ0

√
λη1(s− t) (D.43)

Note that ζ>z = 0, thus [Ṽs]iz is independent of [Ṽt]iζ conditioned on [Ṽt]iz, for every s ≤ t .
For notational simplicity, let Y1 = [Ṽs]iz, Y2 = [Ṽt]iz, and Y3 = [Ṽt]iζ, and κ = O(τ0r

√
log d)

where the big O notation hide the same constant factor used in defining F+
s in equation (D.40). Let

Y4 = [Ξt,s]iz = Y1 − βY2 where β = η1(1− η1λ)t−s & 1 (because t ≤ 1/(η1λ)). Note that by the
calculation above, Y4 has standard deviation σs,t which is bounded from below by τ0

√
λη1(s− t).
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Then, we have that

Pr[i ∈ Ez+ζt , i /∈ Ezt , i ∈ F+
s ] = Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, Y1 ≥ κ] (D.44)

= Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, Y4 ≥ κ− βY2] (D.45)
= E
Y2

[Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, Y4 ≥ κ− βY2 | Y2]]

(by the law of total expecation)
= E
Y2

[1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2] · Pr [Y4 ≥ κ− βY2 | Y2]]

(because Y1, Y3, Y4 are independent conditioned on Y2.)

Similarly, we have that

Pr[i ∈ Ezt , i /∈ E
z−ζ
t , i ∈ F+

s ] = Pr [Y2 ≥ 0, Y2 − Y3 ≤ 0, Y1 ≥ κ]

= Pr [−Y2 ≥ 0,−Y2 − Y3 ≤ 0,−Y1 ≥ κ]
((Y1, Y2, Y3) has the same distribution as (−Y1,−Y2, Y3)))

= E
Y2

[1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2] · Pr [Y4 ≤ −κ− βY2 | Y2]]

(because Y1, Y3, Y4 are independent conditioned on Y2.)
= E
Y2

[1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2] · Pr [Y4 ≥ κ+ βY2 | Y2]]

(because (Y4, Y2) has the same distribution as (−Y4, Y2).)

Therefore, we have that

∣∣∣Pr[i ∈ Ez+ζt , i /∈ Ezt , i ∈ F+
s ]− Pr[i ∈ Ezt , i /∈ E

z−ζ
t , i ∈ F+

s ]
∣∣∣ (D.46)

= E
Y2

[1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2] Pr [κ− βY2 ≤ Y4 ≤ κ+ βY2 | Y2]] (D.47)

. E
Y2

[
1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2]

|Y2|
σs,t

]
(because the density of Y4 is bounded by O(1/σs,t))

. E
Y2

[
1(Y2 ≤ 0) exp(−|Y2|2/2(r2τ2

0 ))
|Y2|
σs,t

]
(because Y3 has variance r2τ2

0 )

.
∫ 0

−∞
1/τ0 · exp(−z2/(2r2τ2

0 )) exp(−z2/τ2
0 )|z|/σs,tdz . r2τ0/σs,t

.
r2√

λη1(s− t)
(D.48)

Now by equation (D.42) and standard concentration inequality, and the fact that m is sufficiently
large, we have that with high probability,

∣∣|A ∩ F+
s | − |B ∩ F+

s |
∣∣ . r2m√

λη1(s− t)
+ log d .

r2m√
λη1(s− t)

(D.49)

Similarly, we can prove that

∣∣|A ∩ F−s | − |B ∩ F−s |∣∣ . r2m√
λη1(s− t)

(D.50)

25



Finally, we have that

Pr[i ∈ Ez+ζt , i /∈ Ezt , i ∈ Fcs ] = Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, |Y1| ≤ κ] (D.51)
= E [Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, |Y4 − βY2| ≤ κ]]

(by the law of total expecation)
= E
Y2

[1(Y2 ≤ 0) Pr [Y3 ≥ −Y2 | Y2] · κ/σs,t]

(because the density of Y4 is bounded by O(1/σs,t))

. E
Y2

[
1(Y2 ≤ 0) exp(−|Y2|2/2(r2τ2

0 ))
κ

σs,t

]
(because Y3 has variance r2τ2

0 )

. κrτ0/σs,t .
r2
√

log d√
λη1(s− t)

(D.52)

Using standard concentration inequality and the fact that m is sufficiently large, we have that with
high probability,

|A ∩ Fcs | .
r2m
√

log d√
λη1(s− t)

+ log d .
r2m
√

log d√
λη1(s− t)

(D.53)

We can also prove the same bound for |B ∩ Fcs | analogously. Using equation (D.41) and the several
equations above, we conclude that∥∥∥∥(1(Ez+ζt \Ezt )− 1(Ezt \E

z−ζ
t )

)>
∆Qs

∥∥∥∥
2

.
r2
√

log d√
λη1(s− t)

(D.54)

Thus equation (D.37) follows from equation (D.39) and proving a bound for(
1(Ez+ζt \Ezt )− 1(Ezt \E

z−ζ
t )

)>
∆Qs similarly to the equation above. To prove equation (D.38),

we use Proposition D.5, and equation (D.37) to obtain that

|(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>Qtz| ≤ η1

t∑
s=1

‖(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>∆Qs−1‖2

. η1

t∑
s=1

r2
√

log d√
λη1(s− t)

. r2
√

log d
√
tη1/λ (D.55)

. r2
√

log d/λ (D.56)
where the last step uses that the condition that t ≤ 1/(η1λ).

Now combining the Propositions above we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Using triangle inequality, Proposition A.8, and equation (A.6) of Proposi-
tion A.5, we have that for any x of norm O(1),

|gt(x)− g̃t(x)| ≤ |NVt(v, V t;x)−NṼt
(v, V t;x)|+ |NVt(v, Ṽt;x)| (D.57)

≤ ‖V t‖F τ−2
0 m−1/6 + ‖V t‖5/3F τ

−2/3
0 m−1/6 + τ0 log d

(by Proposition A.8, and equation (A.6) of Proposition A.5)
≤ 1/poly(d)

(because τ0 = 1/poly
(
d
ε

)
and m ≥ poly

(
d
ετ0

)
and ‖V t‖ . 1/λ by Proposition A.3.)

Thus we can only focus on g̃t. Using Lemma D.2, we have that
|g̃t(z − ζ) + g̃t(z + ζ)− 2g̃t(z)|
≤ |(1(Ez−ζt ) + 1(Ez+ζt )− 21(Ezt ))>Qtz|+ |(1(Ez+ζt )− 1(Ez−ζt ))>Qtζ| (D.58)

.
r2
√

log d

λ
+
r2
√

log d

λ
(by equation (D.38) of Proposition D.7 and Proposition D.4)

which completes the proof.
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D.3 Proof of Lemma B.3

The proof of Lemma B.3 relies on the fact that a smaller learning rate preserves the noise generated
from the timestep before annealing. This allows us to reason that the new activations are similar to
the original before reducing the learning rate.

Proof of Lemma B.3. By definition, we have that

[Ut0 ]i = [U t0 ]i + [Ũt0 ]i

[Ut0+t]i = [U t0+t]i + [Ũt0+t]i = [U t0+t]i + (1− η2λ)t[Ũt0 ]i + [Ξt]i (D.59)

where Ξt := η2

∑
j≤t(1− λη2)t−jξt0+j .

By properties of a sum of Independent Gaussians, we have [Ξt]i ∼ N (0, σ2
t I) where σt is the

standard deviation of each entry of Ξt. We also have that Ξt is independent of Ũt0 . Moreover, for
every t ≤ 1

η2λ
, the standard deviation σt can be bounded by

σ2
t = η2

2

∑
j≤t

(1− λη2)2(t−j)τ2
ξ ≤ η2

2τ
2
ξ t

=
η2

2(τ2
0 − (1− η1λ)2τ2

0 )

η2
1

t ≤ 2η2
2λτ

2
0 t

η1
≤ 2η2τ

2
0

η1
(D.60)

(Note that since η2 � η1, we should expect that the standard deviations satisfy σt � σ0. That is, the
additional randomness introduced in the pre-activation is small.)

On the other hand, for every t ≤ 1
η2λ

, the contribution of Ũt0 to Ut+t0 is still present because the

entry of (1 − η2λ)t[Ũt0 ]i has variance at least on the order of the variance of the entries of [Ũt0 ]i,
which is & τ2

0 . This also implies that the variance of the entries of Ũt0+t is lower bounded by the
variance of (1− η2λ)t[Ũt0 ]i. This in turn is lower bounded by τ2

0 up to constant factor.

Therefore, using the decomposition (D.59) and the bounds above, we should expect that the sign
of Ut0+t strongly correlates with the the sign of Ut0 , which will be formally shown below. Using
Lemma A.8, we have that the activation pattern is mostly decided by the noise part (Ũt+t0 and Ũt0 ),
in the sense that for every x,

‖1(Ut0x)− 1(Ũt0x)‖1 . ‖U t0‖
4/3
F τ

−4/3
0 m2/3 ≤ εsm (D.61)

This can obtained by setting Ũ = Ũt0 , U = U t0 , τ = τ0 in Lemma A.8, and using ‖U t0‖F ≤ 1/λ

from Proposition A.3. Similarly, setting Ũ = Ũt0+t, U = U t0+t, and letting τ be the standard
deviation of entries of Ũt0+t (which has been shown to be & τ0), we get

‖1(Ut0+tx)− 1(Ũt0+tx)‖1 . ‖U t0+t‖4/3F τ−4/3m2/3 ≤ εsm (D.62)

Fixing x, we can decompose our target to

‖1(Ut0+tx)− 1(Ut0x)‖1 ≤ (D.63)

‖1(Ut0+tx)− 1(Ũt0+tx)‖1 + ‖1(Ũt0+tx)− 1(Ũt0x)‖1 + ‖1(Ũt0x)− 1(Ut0x)‖1 (D.64)

We’ve bounded the first and third term on the RHS of the equation above. For the middle term,
let αi = (1 − η2λ)t[Ũt0 ]ix and βi = [Ξt+t0 ]ix. Note that [Ũt+t0 ]ix = αi + βi and that αi and
βi are zero-mean independent Gaussian random variables with variance & τ2

0 ‖x‖2 and variance
. η2τ

2
0 ‖x‖2/η1, respectively. The basic property of Gaussian random variable implies that

Pr [1(αi + βi) 6= 1(βi)] .

√
η2τ2

0 ‖x‖2/η1

τ2
0 ‖x‖2

=
√
η2/η1 (D.65)

Since αi, βi’s are independent, by basic concentration inequality (e.g., Bernstein inequality or
Hoeffding inequality), we have that with high probability

‖1(Ũtx)− 1(Ũt0x)‖1 .
√
η2/η1m+

√
m log d .

√
η2/η1m+m2/3 (D.66)
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Combining the equation above with equation (D.61), (D.62),and (D.64) completes the proof for the
first part.

For the second part, we can bound∣∣NUt0+t(u, Ut0+t;x)−NUt0
(u, U t0+t;x)

∣∣ (D.67)

≤
∣∣NUt0+t

(u, Ut0+t;x)−NUt0+t
(u, U t0+t;x)

∣∣+
∣∣NUt0+t

(u, U t0+t;x)−NUt0
(u, U t0+t;x)

∣∣
(D.68)

.
∣∣∣NUt0+t

(u, Ũt0+t;x)
∣∣∣ (D.69)

+
1√
m
‖1([Ut0+t]x)− 1([Ut0 ]x)‖1 max

i
‖[U t0+t]i‖2 (D.70)

.

(√
η2

η1
+ εs

)
× 1

λ
+ τ0 log d (D.71)

where the last inequality is due to maxi ‖[U t0+t]i‖2 = O(1/
√
mλ) by Proposition A.3, and bounding∣∣∣NUt0+t(u, Ũt0+t;x)

∣∣∣ . εs
λ + τ0 log d by Proposition A.5.

We note that this lemma also applies to the setting when t0 = 0, i.e. we start with an initial small
learning rate and compare to the random initialization. This is useful for the proofs in the small initial
learning rate setting.

D.4 Proof of Lemma 4.3

We will now show that the network learns patterns from Q once the learning rate is annealed by
constructing a common target for the network at every subsequent time step. We will then use
Theorem B.2 to show that the optimization finds this target. Let us define

ε0 :=
1

N

∑
i∈M1

`(rt0 ; (x(i), y(i))) (D.72)

Formally, we first show the following proposition, which proves the existence of a target solution that
has good accuracy on M̄1 and does not unlearn the network’s progress onM1:
Lemma D.8. In the setting of Lemma 4.3, let Kt(B) be defined in equation (B.2). Then, there exists

a solution U∗ satisfying ‖U∗‖2F = Õ
(

1
ε21r

)
and

Kt0+t(U t0 + U∗) ≤ ε0 + ε1 (D.73)

To prove this proposition, we need the following lemma:
Proposition D.9. Suppose gt satisfies that |gt(z + ζ) + gt(z − ζ)− 2gt(z)| ≤ δ for some δ . 1.
Then, we have that

L̂M̄1
(u, U) ≥ log 2−O(δ)−O(log d/

√
qN) (D.74)

And moreover, if L̂M̄1
(u, U) ≤ log 2 + O(δ′) for some δ′ ≥ δ, then the prediction of gt on

z − ζ, z, z + ζ satisfies |gt(z − ζ)|, |gt(z + ζ)|, |gt(z)| = O(
√
δ′ + log d/

√
qN).

Proof. For convenience, let us denote gt(z + δ) = u, gt(z − δ) = v, gt(z) = (u+ v)/2 + γ. By our
assumption, we have that |γ| ≤ δ.

Let h(z) := − log 1
1+e−z . We have that w.h.p, for c = O(log d/

√
qN),

4LM̄1
(u, U) ≥ [h(−u) + h(−v) + 2h((u+ v)/2 + γ)] · (1− c) (D.75)

= [∆ + 2h(−(u+ v)/2) + 2h((u+ v)/2 + γ)] · (1− c) (D.76)

where ∆ is defined as

∆ = h(−u) + h(−v)− 2h(−(u+ v)/2) ≥ 0 (by convexity of h)
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and the factor of 1− c comes from the fact that the fraction of examples that are z − ζ, z + ζ, z will
be 1/4±O(log d/

√
qN), 1/4±O(log d/

√
qN), 1/2±O(log d/

√
qN), respectively, w.h.p. Since

the function h(z) is a 2-Lip function, we know that

|h((u+ v)/2 + γ)− h((u+ v)/2)| ≤ 2γ (D.77)

It follows that

4LM̄1
(u, U) ≥ (∆ + 2h(−(u+ v)/2) + 2h((u+ v)/2 + γ))(1− c)

≥ (2h(−(u+ v)/2) + 2h((u+ v)/2)− 4γ)(1− c)
(because ∆ ≥ 0 and equation (D.77))

≥ 4 log 2− 4γ −O(log d/
√
qN) (by convexity of h)

≥ 4 log 2−O(δ)−O(log d/
√
qN)

The equation above together with the assumption L̂M̄1
(u, U) ≤ log 2 +O(δ′) implies that

4 log 2 +O(δ′) ≥ 4LM̄1
(u, U) ≥ (∆ + 2h((u+ v)/2) + 2h(−(u+ v)/2)−O(δ))(1− c)

(D.78)

which implies that h((u + v)/2) + h(−(u + v)/2) − 2h(0) + ∆ ≤ O(δ′) + O(c). It follows that
h((u+ v)/2) +h(−(u+ v)/2)− 2h(0) ≤ O(δ′) +O(c) and ∆ ≤ O(δ′) +O(c). Now we note that
By the strict convexity of h(z), we
can easily conclude that |u|, |v| ≤ O(

√
δ′ + c).

Next, we will bound ε0 and the value of gt0 . This allows us to conclude that gt0 is small, so that it is
easy to “unlearn” once the learning rate is annealed.
Lemma D.10. Suppose the condition in Lemma 4.1 holds. Then

|gt0(z)|, |gt0(z + ζ)|, |gt0(z − ζ)| ≤ O(
√
ε1/q) (D.79)

ε0 = O(
√
ε1/q) (D.80)

Proof of Lemma D.10. Since Lt0 ≤ q log 2 + ε1, we know that L̂M̄1
(u, Ut0) ≤ log 2 + 2ε1/q.

Applying Proposition D.9 with δ′ = ε1 and δ = O(r2/λ) = O(ε1), we have that |gt0(z)|, |gt0(z +

ζ)|, |gt0(z − ζ)| ≤ O(
√
ε1/q) and L̂M̄1

(u, Ut0) ≥ log 2− ε1.

Hence we have that (since ` is 2-Lipschitz)

ε0 =
1

N

∑
i∈M1

`(rt0 ; (x(i), y(i))) (D.81)

≤ 1

N

∑
i∈M1

`(rt0 + gt0 ; (x(i), y(i))) +
2

N

∑
i∈M1

|gt0(x(i))2| (D.82)

≤
(
Lt0 − qL̂M̄1

(u, Ut0)
)

+O(
√
ε1/q) (D.83)

≤ O(
√
ε1/q) (D.84)

Now we will complete the proof of Proposition D.8.

Proof of Proposition D.8. Let us define sets E1, E2, E3 as the following:

E1 = {i ∈ [m] | 〈[Vt0 ]i, z − ζ〉 ≥ 0, 〈[Vt0 ]i, z〉 ≥ 0, 〈[Vt0 ]i, z + ζ〉 < 0} (D.85)
E2 = {i ∈ [m] | 〈[Vt0 ]i, z − ζ〉 ≥ 0, 〈[Vt0 ]i, z〉 < 0, 〈[Vt0 ]i, z + ζ〉 < 0} (D.86)
E3 = {i ∈ [m] | 〈[Vt0 ]i, z − ζ〉 < 0, 〈[Vt0 ]i, z〉 < 0, 〈[Vt0 ]i, z + ζ〉 ≥ 0} (D.87)
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Let us define weight matrix V ∗ ∈ Rm×d as:

V ∗i =


20c log(1/ε1)

rε1
viz if i ∈ E1;

− 40c log(1/ε1)
rε1

viz if i ∈ E2;

− 20c log log(1/ε1)
rε1

viz if i ∈ E3;
0 otherwise.

(D.88)

for some sufficiently large universal constant c.

Note that the random noise vector [Ṽt0 ]i will satisfy the condition for set Ei with probability propor-
tional to the angle between z−ζ and z, which is r±O(r2) by Taylor approximation of arcsin. Thus, as
Vt0 and Ṽt0 differ in at most εsm activations, w.h.p., |E1|, |E2|, |E3| = 1

2π rm±Õ
(
r2m+

√
m
)
±εsm.

This implies that

‖V ∗‖2F = Õ

(
1

rε2
1

)
(D.89)

Now, for x2 = z − ζ, we have that

NVt0
(v, V ∗, z − ζ) =

1

m

(
|E1|

20c log(1/ε1)

rε1
− 40c log(1/ε1)

rε1
|E2|
)
≤ −2c log(1/ε1)/ε1

(D.90)

and for x2 = z + ζ, we have that

NVt0
(v, V ∗, z + ζ) = − 1

m
|E3|

20c log(1/ε1)

rε1
≤ −2c log(1/ε1)/ε1 (D.91)

Now, for x2 = z, we have that

NVt0
(v, V ∗, z) =

1

m
|E1|

20c log(1/ε1)

rε1
≥ 2c log(1/ε1)/ε1 (D.92)

Hence we can also easily conclude that for every x2 ∈ {α(z − ζ), αz, α(z + ζ)},

yNVt0
(v, V ∗, x2) ≥ 2c log(1/ε1)‖x2‖2

ε1
(D.93)

Note that for every i ∈ [m],

|〈V ∗i , x2〉| ≤
1√
m
Õ

(
1

ε1r

)
(D.94)

Now applying Lemma B.3, with η2 = O(η1λ
2(ε1r)

2) , we have that for every x2, w.h.p.
‖1([Vt0+t]x2) − 1([Vt0 ]x2)‖1 . λε1rm. This implies that for every t ≤ 1

η2λ
and every

x2 ∈ {z − δ, z + δ, z}, w.h.p.∣∣∣∣∣∣
∑
i∈[m]

vi〈V ∗i , x2〉 [1([Vt0+t]ix2)− 1([Vt0 ]ix2)]

∣∣∣∣∣∣ ≤ 1

m
Õ

(
1

ε1r

)
×O(λε1rm) ≤ 1 (D.95)

Combining with (D.93), this gives us

yNVt0+t(v, V
∗;x2) = y

∑
i∈[m]

vi〈V ∗i , x2〉1([Vt0+t]ix2)

 ≥ c‖x2‖2
ε1

log
1

ε1
(D.96)

On the other hand we have that by Lemma D.10, it holds that

|NVt0
(v, V t0 ;x2)| ≤ |gt0(x2)|+ |NVt0

(v, V t0 ;x2)−NVt0
(v, Vt0 ;x2)| (D.97)

≤ |gt0(x2)|+ |NVt0
(v, Ṽt0 ;x2)| (D.98)

. |gt0(x2)|+ εs
λ

+ τ0 log d ≤ O(1) (applying Proposition A.5)
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Thus, we also have

|yNVt0+t
(v, V t0 ;x2)| =

∣∣∣∣∣∣
∑
i∈[m]

vi〈[V t0 ]i, x2〉1([Vt0+t]ix2)

∣∣∣∣∣∣ (D.99)

≤

∣∣∣∣∣∣
∑
i∈[m]

vi〈[V t0 ]i, x2〉1([Vt0 ]ix2)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈[m]

vi〈[V t0 ]i, x2〉 [1([Vt0+t]ix2)− 1([Vt0 ]ix2)]

∣∣∣∣∣∣
(D.100)

Now the first term equals |NVt0
(v, V t0 ;x2)| = O(1), and the second term is bounded by∣∣∣∣∣∣

∑
i∈[m]

vi〈[V t0 ]i, x2〉 [1([Vt0+t]ix2)− 1([Vt0 ]ix2)]

∣∣∣∣∣∣ ≤ 1

m
O

(
1

λ

)
×O(λε1rm)

using Proposition A.3 to upper bound ‖[V t0 ]i‖2. Thus, it follows that |yNVt0+t
(v, V t0 ;x2)| = O(1).

It follows that for every x2 ∈ {z − ζ, z, z + ζ} and its corresponding label y, as long as ‖x2‖2 ≥ ε1,

yNVt0+t(v, V t0 + V ∗;x2) ≥ yNVt0+t(v, V
∗;x2)−

∣∣yNVt0+t(v, V t0 ;x2)
∣∣ (D.101)

≥ c log(1/ε1)−
∣∣yNVt0+t

(v, V t0 ;x2)
∣∣ (D.102)

≥ 3 log(1/ε1) (choosing c sufficiently large)

Now we can compute

∣∣NWt0+t
(w,W t0 , x1)− rt0(x1)

∣∣ (D.103)

≤
∣∣NWt0+t

(w,W t0 , x1)−NWt0
(w,W t0 , x1)

∣∣+
∣∣∣NWt0

(w, W̃t0 , x1)
∣∣∣ (D.104)

≤ 1√
m
‖1(Wt0+tx1)− 1(Wt0x1)‖1 max

i
‖[W t0 ]i‖2‖x1‖2 +

∣∣∣NWt0
(w, W̃t0 , x1)

∣∣∣
(by Lemma B.3 and ‖[W t0 ]i‖2 = O

(
1√
m

1
λ

)
from Proposition A.2)

.
εs
λ

+ τ0 log d ≤ qε1 (D.105)

The last inequality follows from our choice of parameters such that τ0 log d ≤ qε1. Putting together
Eq (D.101) and (D.103) and defining U∗ = (0, V ∗), we have that

Kt0+t(U t0 + U∗) = Kt0+t((W t0 , V t0 + V ∗)) (D.106)

≤ |M1|
N

L̂M1
(rt0) +O(qε1) +

|M̄1|
N

L̂M̄1
(NVt0+t

(v, V t0 + V ∗; ∗))
(by definition ofM1 and Lipschitz-ness of `)

≤ ε0 + ε1 (D.107)

This completes the proof.

Proof of Lemma 4.3. By proposition D.8, there exists V ∗ with ‖V ∗‖2F ≤ Õ
(

1
rε21

)
such that for

every t ≤ 1
η2λ

,

Kt0+t((W t0 , V t0 + V ∗)) ≤ ε0 + ε1 (D.108)

By Theorem B.2, with z∗ = (W t0 , V
∗), starting from z0 = (W t0 , V t0), we can take R2 = Õ

(
1
rε21

)
,

L = 1, µ = ε1 to conclude that the algorithm converges to ε0+2ε1 in Õ
(

1
η2rε31

)
iterations. Applying

Lemma D.10 to bound ε0 completes the proof.
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D.5 Proof of Lemma 4.4

By the 1-Lipschitzness of logistic loss, we know that∣∣∣L̂M1
(rt0)− L̂M1

(rt0+t)
∣∣∣ (D.109)

=

∣∣∣∣∣ 1

|M1|
∑
i∈M1

(
`(rt0 ; (x(i), y(i)))− `(rt0+t; (x(i), y(i)))

)∣∣∣∣∣ (D.110)

≤ 1

|M1|
∑
i∈M1

∣∣∣rt0(x
(i)
1 )− rt0+t(x

(i)
1 )
∣∣∣ (D.111)

To bound this term, we can directly use Cauchy-Shwartz and obtain that:∑
i∈M1

∣∣∣rt0+t(x
(i)
1 )− rt0(x

(i)
1 )
∣∣∣ (D.112)

≤
√
N

√∑
i∈M1

(
rt0+t(x

(i)
1 )− rt0(x

(i)
1 )
)2

(D.113)

We can further bound rt0+t(x
(i)
1 )− rt0(x

(i)
1 ) by applying Lemma B.3, as from our choice of parame-

ters η2 ≤ η1ε
4
1λ

2, εs/λ ≤ ε2
1, τ0 log d ≤ ε2

1:∣∣∣rt0+t(x
(i)
1 )− rt0(x

(i)
1 )
∣∣∣ (D.114)

≤
∣∣∣NWt0+t

(w,Wt0+t, x
(i)
1 )−NWt0

(w,W t0+t, x
(i)
1 )
∣∣∣+ (D.115)∣∣∣NWt0

(w,W t0+t, x
(i)
1 )−NWt0

(w,W t0 , x
(i)
1 )
∣∣∣+
∣∣∣NWt0

(w, W̃t0 , x
(i)
1 )
∣∣∣ (D.116)

≤
∣∣∣NWt0

(w,W t0+t, x
(i)
1 )−NWt0

(w,W t0 , x
(i)
1 )
∣∣∣+O

(
1

λ
×
(√

η2

η1
+ εs

)
+ τ0 log d

)
(by Lemma B.3 and Proposition A.5)

≤
∣∣∣NWt0

(w,W t0+t, x
(i)
1 )−NWt0

(w,W t0 , x
(i)
1 )
∣∣∣+ ε2

1 (D.117)

Now, let us denote X = (x(i))i∈[N ] as the data matrix. By the standard Gaussian matrix spectral
norm bound we know that w.h.p. ‖X‖22 ≤ 10Nd .

This gives us:

√
N

√∑
i∈M1

(
NWt0

(w,W t0+t, x
(i)
1 )−NWt0

(w,W t0 , x
(i)
1 )
)2

≤
√
N
√
‖W t0+t −W t0‖2F ‖X‖22 (expanding the expression of NWt0

(w,Wt0+t, x
(i)
1 ))

≤
√
N

√
10
(∥∥W t0+t −W t0

∥∥2

F

) N
d

(D.118)

≤ NÕ
(

1√
drε1

)
≤ Nε1 (D.119)

Here in (D.119), we use the assumption dr ≥ Ω̃
(

1
ε41

)
in Theorem 3.4 along with the fact that by

Lemma 4.3, we have that ∥∥W t0+t −W t0

∥∥2

F
≤ Õ

(
1

rε2
1

)
(D.120)
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Thus, using (D.119), it follows that∑
i∈M1

∣∣∣rt0+t(x
(i)
1 )− rt0(x

(i)
1 )
∣∣∣

.
√
N

√∑
i∈M1

(
NWt0

(w,W t0+t, x
(i)
1 )−NWt0

(w,W t0 , x
(i)
1 )
)2

+Nε2
1 ≤ Nε1

By (D.109) and our definition of ε0 as

ε0 :=
|M1|
N

L̂M1(rt0) = (1− q)L̂M1(rt0) (D.121)

we must have ∣∣∣∣L̂M1
(rt0+t)−

ε0

1− q

∣∣∣∣ ≤ ε1/2 (D.122)

Using the bound on ε0 that ε0 = O(
√
ε1/q) by Lemma D.10, we conclude the bound on L̂M1

(rt0+t).

In the end, by L̂M̄1
(gt0+t) ≤ L̂t0+t and the assumption that L̂t0+t ≤ O(

√
ε1/q) , it must hold that

(since |M̄1| = qN )

L̂M̄1
(gt0+t) .

√
ε1

q3
(D.123)

so we can complete the proof.

E Proofs for Small Learning Rate

E.1 Proof of Lemma 5.1

We first show the following Lemma:
Lemma E.1. In the setting of theorem 3.5, there exists a solution U? satisfying a) ‖U?‖2F ≤
Õ( 1

ε′22 r
+Np) and b) for every t ≤ 1

η2λ
,

Kt(U
?) ≤ ε′2 (E.1)

Proof of Lemma E.1. We can construct the matrix U? as follows: let X = (xi1)i∈M̄2
∈ Rd×Np and

Y = (y(i))i∈M̄2
∈ R1×Np. If we define s = X(X>X)−1y> ∈ Rd×1, we know that s>X = y with

‖s‖2 = O
(√
Np
)

. Thus, we can define V ∗ as in Lemma 4.3 with t0 = 0, and W ∗i = 10 log 1
ε′2
swi,

and we can see that for every t ≤ 1
η2λ

, it holds that

Kt((W
∗, V ∗)) ≤ ε′2 (E.2)

To prove Lemma 5.1, we can apply an identical analysis as 4.3 to show that for t′ = Õ
(

1
η2ε′32 r

)
,

L̂M2
(Ut′) ≤ ε′2. The rest of the proof follows from combining Theorem B.2 and Lemma E.1.

E.2 Proof of Lemma 5.2

We will use the following Lemma from [6].
Lemma E.2 (Lemma 6.3 of [6]). For every v1, v2, v3, let g ∼ N (0, I) in Rd, then we have:

Eg
[
‖v11(〈g, z − ζ〉)(z − ζ) + v21(〈g, z + ζ〉)(z + ζ) + v31(〈g, z〉)z‖22

]
(E.3)

& r
(
v2

1 + v2
2 + v2

3

)
(E.4)
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Recall the expression ρt defined in (B.10). We first prove Lemma B.4 here, which says that if ρt is
large (which means the loss is large as well), then the total gradient norm has to be big.

Proof of Lemma B.4. For notation simplicity, let’s fix t and let

Qj = `′j,t (E.5)

The gradient with respect to V can be computed by

∇[V ]k L̂(Ut) =
1

N

∑
j∈M2

Qjvk1(〈[Vt]k, x(j)
2 〉)x

(j)
2 (E.6)

Let us denote the set S(α0)
2,1 ,S(α0)

2,2 ,S(α0)
2,3 as:

S(α0)
2,1 =

{
j ∈ [m] | x(j)

2 = αj(z − ζ) for some αj ≥ α0

}
(E.7)

S(α0)
2,2 =

{
j ∈ [m] | x(j)

2 = αj(z + ζ) for some αj ≥ α0

}
(E.8)

S(α0)
2,3 =

{
j ∈ [m] | x(j)

2 = αjz for some αj ≥ α0

}
(E.9)

We then have that

Nmvk∇[V ]kLt (E.10)

=
∑
j∈S(0)

2,1

αjQj1(〈[Vt]k, z − ζ〉)(z − ζ) +
∑
j∈S(0)

2,2

αjQj1(〈[Vt]k, z + ζ〉)(z + ζ) (E.11)

+
∑
j∈S(0)

2,3

αjQj1(〈[Vt]k, z〉)z (E.12)

For each k ∈ [m], let us define

L̃k ,
∑
j∈S(0)

2,1

αjQj1(〈[Ṽt]k, z − ζ〉)(z − ζ) +
∑
j∈S(0)

2,2

αjQj1(〈[Ṽt]k, z + ζ〉)(z + ζ) (E.13)

+
∑
j∈S(0)

2,3

αjQj1(〈[Ṽt]k, z〉)z (E.14)

i.e., the loss gradient using activations computed by the noise component of Vt scaled by a factor of
Nmvk.

By the Geometry of ReLU Lemma E.2, we have that w.h.p.

E[Ṽt]k

[∥∥∥L̃k∥∥∥2

2

]
≥ rΩ


 ∑
j∈S(0)

2,1

αjQj


2

+

 ∑
j∈S(0)

2,2

αjQj


2

+

 ∑
j∈S(0)

2,3

αjQj


2 (E.15)

≥ rΩ


 ∑
j∈M2

αj |Qj |

2
 (E.16)

Where the last inequality is obtained since for every j ∈ S(0)
2,j′ , Qj has the same sign.

Since each [Ṽt]k are independent and |αjQj |, ‖z‖2, ‖ζ‖2 = O(1), by concentration, we know that
taking a union bound over all choices of Qj , w.h.p.

‖L̃‖2F ≥ mrΩ


∑

j

αj |Qj |

2
− Õ(m1/2N4) (E.17)
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where L̃ denotes the matrix where each L̃k is a row. By Coupling Lemma A.8, we note that as

1

N2m
‖L̃‖2F − ‖∇L̂(Ut)‖2F .

1

Nm

∑
k

∑
j

Q2
j |1(〈[Vt]k, x(j)

2 〉)− 1(〈[Ṽt]k, x(j)
2 〉)| . O(εs)

we therefore also have w.h.p.:

‖∇L̂(Ut)‖2F ≥
1

N2m
‖L̃‖2F −O (εs) (E.18)

≥ r

N2
Ω


∑

j

αj |Qj |

2
− Õ(m−1/2N2)−O (εs) (E.19)

Note that αj ∼ U(0, 1), and therefore for every fixed α0 ≥ 1√
N

, w.h.p. there are O(Nα0) many αj
such that αj ≤ α0. For each of them, we also know that |Qj | ≤ 1, which implies that

∑
j

αj |Qj |

2

≥ α2
0

 ∑
j:αj≥α0

|Qj |

2

(E.20)

≥ α2
0

∑
j

|Qj |

−O(Nα2
0)

2

(E.21)

≥ α2
0(N(ρt −O(α2

0)))2 (E.22)

Picking α0 = Θ(
√
ρt), we complete the proof by our choice of m ≥ N10 1

(λτ0)4 .

Now we prove Proposition B.5, which bounds the number of iterations in which ρt can be large.

Proof of Proposition B.5. Consider the function Fs(x) := NU0
(u, Us;x), and let us define

Gs+1(x) := NU0(u, Us− η2
1−η2λ∇L̂(Us);x). We have that since Us+1 = (1−η2λ)Us−η2∇L̂(Us),

L̂(Fs+1) = L̂((1− η2λ)Gs+1) ≤ (1 + η2λ)L̂(Gs+1) (E.23)

Here we use the fact that for logistic loss `, `((1− α)z) ≤ (1 + α)`(z) for every z ∈ R, α ∈ [0, 0.1].

Now, by standard gradient descent analysis, we have that (as the logistic loss has Lipschitz derivative
and the data have bounded norm):

L̂(Gs+1) ≤ L̂(Fs)−
η2

1− η2λ
〈∇L̂(Fs),∇L̂(Us)〉+ 2η2

2‖∇L̂(Us)‖2F (E.24)

≤ L̂(Fs)−
η2

1− η2λ
〈∇L̂(Fs),∇L̂(Us)〉+O(η2

2) (by Proposition A.2)

Next, we will bound ‖∇L̂(Us)−∇L̂(Fs)‖F . We can compute

‖∇L̂(Us)−∇L̂(Fs)‖2F (E.25)

≤ 1

N2m

∑
k∈[m]

∥∥∑
j

(
`′(−y(j)NUs

(u, Us;x
(j)))1([Us]kx

(j))− (E.26)

`′(−y(j)NU0
(u, Us;x

(j)))1([U0]kx
(j))
)
x(j)

∥∥2

2
(E.27)

≤ 1

Nm

∑
k∈[m]

∑
j

∥∥(`′(−y(j)NUs
(u, Us;x

(j)))1([Us]kx
(j))− (E.28)

`′(−y(j)NU0
(u, Us;x

(j)))1([U0]kx
(j))
)
x(j)

∥∥2

2
(E.29)
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where the last step followed via Cauchy-Schwarz. Now by the Lipschitzness of `′, we have the bound

`′(−y(j)NUs
(u, Us;x

(j)))1([Us]kx
(j))− `′(−y(j)NU0

(u, Us;x
(j)))1([U0]kx

(j)) .

|NUs(u, Us;x
(j)))−NU0(u, Us;x

(j))|+ |1([Us]kx
(j))− 1([U0]kx

(j))|

Plugging this back into (E.29), by the coupling Lemma B.3 we obtain the bound

‖∇L̂(Us)−∇L̂(Fs)‖2F .
1

λ
(εs +

√
η2/η1) + τ0 log d := ε2

c

This implies that for η2λ < 0.1,

L̂(Gs+1) ≤ L̂(Fs)−
1

2
η2‖∇L̂(Us)‖2F +O(η2

2 + η2εc) (E.30)

Hence, we have

L̂(Fs+1) ≤ (1 + η2λ)L̂(Fs)−
1

2
(1 + η2λ)η2‖∇L̂(Us)‖2F +O(η2

2 + η2εc) (E.31)

which implies that for every t ≤ 1
η2λ

, as long as η2, εc = O(λ) , we have:

η2

∑
s≤t

‖∇L̂(Us)‖2F . L̂(F0) . 1 (E.32)

By Lemma B.4, we have that if ρt ≥ ε′2
2
ε2

3, then ‖∇L̂(Us)‖2F ≥ rε′2
8
ε8

3. It follows that there will be
at most O( 1

rε′2
8ε83η2

) such t.

Finally, we complete the proof of Lemma 5.2 by noting that ρt cannot be large for very many
iterations, and therefore Wt will not obtain much signal from the P component of examples inM2.

Proof of Lemma 5.2. We have,∥∥∥∥∥∥
∑
j∈M2

∇W L̂j(Ut)

∥∥∥∥∥∥
2

2

=
∑
k∈[m]

∥∥∥∥∥∥
∑
j∈M2

`′j,twk1(〈[Wt]k, x
(j)
1 〉)x

(j)
1

∥∥∥∥∥∥
2

2

Now we note that the above can be reformulated as a matrix multiplication between the matrix of
data X and the vector with entry `′j,twk1(〈[Wt]k, x

(j)
1 〉) in the j-th coordinate for j ∈ M2 and 0

elsewhere. Thus,∥∥∥∥∥∥
∑
j∈M2

∇W L̂j(Ut)

∥∥∥∥∥∥
2

2

≤
∑
k∈[m]

‖X‖22

 ∑
j∈M2

(
`′j,twk1(〈[Wt]k, x

(j)
1 〉)

)2


(definition of spectral norm)

≤
∑
k∈[m]

‖X‖22

 ∑
j∈M2

(
`′j,twk

)2
= ‖X‖22

∑
j∈M2

(
`′j,t
)2

(because wk ∈ {±1/
√
m})

. ‖X‖22
∑
j∈M2

∣∣`′j,t∣∣ (because the ` is O(1)-Lipschitz)

. N/d ·Nρt (E.33)
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The last line followed from the spectral norm bound on matrix X . Let T be defined as in Proposi-
tion B.5. It follows that

∥∥∥W (2)

t

∥∥∥
F
≤ η2

∑
s≤t

∥∥∥∥∥∥
 1

N

∑
j∈M2

∇W `(fs; (x(j), y(j)))

∥∥∥∥∥∥
F

(E.34)

= η2

∑
s∈T

∥∥∥∥∥∥
 1

N

∑
j∈M2

∇W `(fs; (x(j), y(j)))

∥∥∥∥∥∥
F

+ (E.35)

η2

∑
s6∈T

∥∥∥∥∥∥
 1

N

∑
j∈M2

∇W `(fs; (x(j), y(j)))

∥∥∥∥∥∥
F

≤ η2

∑
s∈T

∥∥∥∥∥∥
 1

N

∑
j∈M2

∇W `(fs; (x(j), y(j)))

∥∥∥∥∥∥
F

+ η2tO

(
ε′2ε3√
d

)
(by definition of T and equation (E.33))

Note that we can additionally bound the first term by η2|T |O( 1√
d
) as ρt ≤ 1 by the Lipschitzness of

`. Thus, applying our bound on |T |, we get

∥∥∥W (2)

t

∥∥∥
F
≤ O

(
1

r
√
dε′82 ε

8
3

+
η2ε
′
2ε3t√
d

)
(E.36)

Now the conclusion of the lemma follows by the assumption that t = O(d/η2ε
′
2) and our choice of

η2 and 1
ε′82 ε

8
3r
≤ ε′2d in Theorem 3.5.

E.3 Proof of Lemma 5.3

We now prove the decomposition lemma of W t, Lemma B.6. Recall our definition of W
(2)

t as

W
(2)

t =
1

N
η2

∑
s≤t

(1− η2λ)t−s
∑
i∈M2

∇W L̂{i}(Us) (E.37)

Proof of Lemma B.6. For each step, we know that for every j ∈ [m],

∇Wj
L̂(Us) = wj

1

N

∑
i∈[N ]

`′i,s1([Ws]jx
(i)
1 )x

(i)
1

Thus, multiplying by η2(1− η2λ)t−s and summing, following our definition of W
(2)

t in (5.1), we get

[W t]j = [W
(2)

t ]j + wj
1

N
η2

∑
s≤t

(1− η2λ)t−s
∑
i∈M̄2

`′i,s1([Ws]jx
(i)
1 )x

(i)
1 (E.38)

= [W
(2)

t ]j+ (E.39)

wj
1

N
η2

∑
s≤t

(1− η2λ)t−s ·
( ∑
i∈M̄2

`′i,s1([W0]jx
(i)
1 )x

(i)
1 + (E.40)

∑
i∈M̄2

`′i,s

[
1([Ws]jx

(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

)
(E.41)
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Now we focus on bounding the bottom term. We can see that

∑
j∈[m]

∥∥∥∥∥∥wj 1

N

∑
i∈M̄2

`′i,s

[
1([Ws]jx

(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥∥∥∥
2

2

(E.42)

≤ 1

mN

∑
j∈[m]

∑
i∈M̄2

∥∥∥`′i,s [1([Ws]jx
(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥2

2

(since wj = ±1/
√
m and by Cauchy-Schwarz)

.
1

mN

∑
i∈M̄2

∑
j∈[m]

∥∥∥[1([Ws]jx
(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥2

2
(by Lipschitzness of `)

By Auxiliary Coupling Lemma B.3 with t0 = 0, we know that for s ≤ 1
η2λ

, w.h.p.∑
j∈[m]

∥∥∥[1([Ws]jx
(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥2

2
≤
∥∥∥1(Wsx

(i)
1 )− 1(W0x

(i)
1 )
∥∥∥

1
‖x(i)

1 ‖22 (E.43)

≤ Õ
(
εsm+

√
η2

η1
m

)
(E.44)

Thus, we have

∑
j∈[m]

∥∥∥∥∥∥wj 1

N

∑
i∈M̄2

`′i,s

[
1([Ws]jx

(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥∥∥∥
2

2

(E.45)

.
1

mN

∑
i∈M̄2

∑
j∈[m]

∥∥∥[1([Ws]jx
(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

∥∥∥2

2
(E.46)

≤ Õ
(
εs +

√
η2

η1

)
(E.47)

Now, we can express the weight

[W t]j = wj
∑
k∈M̄2

αkx
(k)
1 1([W0]jx

(k)
1 ) + [W

′
t]j (E.48)

for some real values {αk}k∈M̄2
with

αk = η2

∑
s≤t

(1− η2λ)t−s`′k,s (E.49)

and

[W
′
t]j = [W

(2)

t ]j + wj
1

N
η2

∑
s≤t

(1− η2λ)t−s
∑
i∈M̄2

`′i,s

[
1([Wt]jx

(i)
1 )− 1([W0]jx

(i)
1 )
]
x

(i)
1

(E.50)

By the above calculation, (E.47), and Lemma 5.2, we have:

‖W ′t‖F ≤ ‖W
(2)

t ‖F +
1

λ
Õ

(√
εs +

√
η2

η1

)
≤ Õ

(
ε3

√
d
)

(E.51)

where the last inequality followed by our choice of parameters.

Using the decomposition lemma, the conclusion of Lemma 5.3 now follows via computation.
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Proof of Lemma 5.3. We first show that the network output on x(i)
1 is close to that of some ker-

nel prediction function by applying Lemma B.6. We vector-multiply the equality [W̄t]j =

wj
∑
k∈M̄2

αkx
(k)
1 1([W0]jx

(k)
1 ) + [W̄ ′t ]j on both sides by wj1([W0]jx

(i)
1 ) and sum over all j to get:

∣∣∣∣∣∣
∑
j∈[m]

wj〈[W t]j , x
(i)
1 〉1([W0]jx

(i)
1 )− 1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x

(i)
1 〉1([W0]jx

(k)
1 )1([W0]jx

(i)
1 )

∣∣∣∣∣∣
(E.52)

=

∣∣∣∣∣∣
∑
j∈[m]

wj〈[W̄ ′t ]j , x
(i)
1 〉1([W0]jx

(i)
1 )

∣∣∣∣∣∣ (E.53)

≤
√∑
j∈[m]

〈[W̄ ′t ]j , x
(i)
1 〉2 (by Cauchy-Schwarz)

= ‖W ′tx
(i)
1 ‖2 (E.54)

Let us define the function U as:

U(x1) :=
1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x1〉1([W0]jx

(k)
1 )1(〈[W0]j , x1〉) (E.55)

Note that U is some kernel prediction function. Since each [W0]j is distributed as a vector of i.i.d.
spherical Gaussians, we know that for fixed x(k)

1 , x1:

E
[
1([W0]jx

(k)
1 )1(〈[W0]j , x1〉)

]
=

1

2π
arccos Θ(x

(k)
1 , x1) (E.56)

In the above equation Θ(x
(k)
1 , x

(i)
1 ) is the principle angle between x(k)

1 , x
(i)
1 . Since each [W0]j is

i.i.d., with basic concentration bounds, we know that w.h.p.

U(x
(i)
1 ) =

∑
k∈M̄2

αk〈x(k)
1 , x

(i)
1 〉

1

2π
arccos Θ(x

(k)
1 , x

(i)
1 )±O(m−1/6)

=
1

2
αi‖x(i)

1 ‖22

+
∑

k∈M̄2,k 6=i

αk〈x(k)
1 , x

(i)
1 〉

1

4

1− 1

2π

〈x(k)
1 , x

(i)
1 〉

‖x(k)
1 ‖2‖x

(i)
1 ‖2

±O

(
〈x(k)

1 , x
(i)
1 〉

‖x(k)
1 ‖2‖x

(i)
1 ‖2

)3


±O(m−1/6) (by Taylor expansion of arccos)

=
1

2
αi‖x(i)

1 ‖22 (E.57)

+
∑

k∈M̄2,k 6=i

αk〈x(k)
1 , x

(i)
1 〉

1

4

(
1− 1

2π

〈x(k)
1 , x

(i)
1 〉

‖x(k)
1 ‖2‖x

(i)
1 ‖2

± Õ
(
d−3/2

))
±O(m−1/6)

The last inequality uses the fact that w.h.p. for k 6= i, 〈x(k)
1 ,x

(i)
1 〉

‖x(k)
1 ‖2‖x

(i)
1 ‖2

= Õ(d−1/2).
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Let us define α = 1
4

∑
k∈M̄2

αkx
(k)
1 ; then∣∣∣∣∣∣

∑
k∈M̄2

αk〈x(k)
1 , x

(i)
1 〉

1

4

(
1− 1

2π

〈x(k)
1 , x

(i)
1 〉

‖x(k)
1 ‖2‖x

(i)
1 ‖2

)∣∣∣∣∣∣ (E.58)

≤ |〈α, x(i)
1 〉|+

1

8π

∑
k∈M̄2

|αk|
〈x(k)

1 , x
(i)
1 〉2

‖x(k)
1 ‖2‖x

(i)
1 ‖2

(E.59)

≤ |〈α, x(i)
1 〉|+ |αi〈x

(i)
1 , x

(i)
1 〉|+

1

d
Õ

 ∑
k∈M̄2,k 6=i

|αk|

 (E.60)

Since the training loss is at ε2 ≤ p/10, we know that 1
|M̄2|

∑
i∈M̄2

|U(x
(i)
1 )| ≥ 1 (or else the loss

would not be low).

Since |U(x
(i)
1 )| ≤ |〈α, x(i)

1 〉|+ 3
2 |αi|‖x

(i)
1 ‖22 + 1

d Õ
(∑

k∈M̄2,k 6=i |αk|
)

+O(m−1/6), we can get:

1

|M̄2|
∑
i∈M̄2

|〈α, x(i)
1 〉|+ |αi|+

1

d
Õ

 ∑
k∈M̄2,k 6=i

|αk|

 ≥ 1

2
(E.61)

Since Np ≤ d, this implies that

1

|M̄2|
∑
i∈M̄2

(
|〈α, x(i)

1 〉|+ Õ (|αi|)
)
≥ 1

2
(E.62)

Thus, either 1
|M̄2|

∑
i∈M̄2

|〈α, x(i)
1 〉| ≥ 1

4 , which implies that∥∥∥(x
(i)
1 )i∈M̄2

α
∥∥∥2

2
=
∑
i∈M̄2

|〈α, x(i)
1 〉|2 ≥

|M̄2|
16

(E.63)

Since w.h.p., ‖(x(i)
1 )i∈M̄2

‖2 ≤ O(1), we know that ‖α‖2 = Ω̃(
√
|M̄2|) = Ω̃(

√
Np).

The other possibility is that
∑
i∈M̄2

Õ (|αi|) ≥ |M̄2|/4, which also implies that ‖α‖2 =

Ω̃(
√
|M̄2|) = Ω̃(

√
Np) from Cauchy-Schwarz.

We now ready to conclude the proof: for randomly chosen x1, it holds that

NW0
(w,W t, x1) (E.64)

=
1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x1〉1([W0]jx

(k)
1 )1([W0]jx1)± ‖W ′tx1‖2 (E.65)

=
1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x1〉1([W0]jx

(k)
1 )1([W0]jx1)± Õ

(
‖W ′t‖F√

d

)
(E.66)

=
1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x1〉1([W0]jx

(k)
1 )1([W0]jx1)± Õ (ε3) (E.67)

Now using the same expansion of U as before gives

U(x1) :=
1

m

∑
j∈[m]

∑
k∈M̄2

αk〈x(k)
1 , x1〉1([W0]jx

(k)
1 )1([W0]jx1) (E.68)

=
∑
k∈M̄2

αk〈x(k)
1 , x1〉

arccos(Θ(x
(k)
1 , x1))

2π
±O(m−1/6) (E.69)
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Now we note that as the nonzero degrees in the polynomial expansion of arccos are all odd, we have

U(x1)− U(−x1) = 2〈α, x1〉 ±O(m−1/6) (E.70)

The end result is that by Lemma B.3, it will hold that:

rt(x1) = NW0(w,W t, x1)±O
(

1

λ
×
(
εs +

√
η2

η1

)
+ τ0 log d

)
(E.71)

= U(x1)± Õ (ε3) (by our choice of parameters)

This implies that

rt(x1)− rt(−x1) = 2〈α, x1〉 ± Õ (ε3) (E.72)

F General case

F.1 Mitigation strategy

Instead of using large learning rate and annealing to a small learning rate, the regularization effect
also exists if we use a small learning rate (η2) and large pre-activation noise and then decay the noise.
Hence the update is given as:

Ut+1 = Ut − η2∇U (L̂λ(u, Ut) + ξt) (F.1)

where ξt ∼ N(0, τ2
ξ Im×m ⊗ Id×d). However, the output of the network is given as:

ft(x) = u> (1(Utx+ Ξt)� (Utx+ Ξt)) (F.2)

Here Ξt ∼ N (0, τ2
t Im×m) is a (freshly random) gaussian variable at each iteration.

The following theorem holds:

Theorem F.1 (General case). The same conclusion as in Theorem 3.4 holds if we first use noise level
τt = τ0 and then anneal to τt = 0 after Õ

(
d

η1ε1

)
iterations.

F.2 Extension to two layer convolution network

We are also able to extend our results to convolutional networks. We consider a convolution network
with m

k channels, patch size d and stride d/k for some k ≤ d. Thus, the i-th patch consists of input
x(i) = (x(i−1)d/k+1, · · · , x(i−1)d/k+d). Hence for u ∈ Rm, U ∈ Rm

k ×d, where u = (u1, · · · , uk)

for each ui ∈ Rm
k , the network is given as:

NU (u, U ;x) =
∑
i∈[k]

u>i [Ux(i)]+ (F.3)

For every A ∈ Rm
k ×d, we also use the notation

NA(u, U ;x) =
∑
i∈[k]

u>i 1(Ax(i))Ux(i) (F.4)

NA(ui, U ;x) = u>i 1(Ax(i))Ux(i) (F.5)

We make a simplifying assumption that z, ζ are only supported on the last d/k coordinates. The main
theorem can be stated as the follows:

Theorem F.2 (General case). The same conclusions as in Theorem 3.4 and Theorem 3.5 hold if we
replace the value of r by r/k and d by dk in both the theorem and in Assumption 3.3.
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Following the notation, we still denote
gt(x) = gt(x(k)) = NUt

(u, Ut; (0, x(k))) (F.6)

rt(x) = rt(x(1)) = NUt(u, Ut; (x(1), 0)) (F.7)

We use this definition so that NUt(u, Ut;x) = gt(x) + rt(x) for every t ≥ 0.

We denote u = (u1, · · · , uk) for the weight of the second layer associated with each convolution.

The main difference between the convolution setting and the simple case is that there is only one
hidden weight that is shared across channels. However, since the output layers of these channels
have different weights, we can disentangle these channels and think of them as updating “separately”,
which is given as the following two lemmas.
Lemma F.3 (disentangle convolution 1). For every fixed x ∈ R2d and matrices U1, · · · , Uk : Rm

k ×d

that can depend on Ũt but not depend on u, with each ‖Ui‖F ≤ O
(

1
λ

)
, we have w.h.p. over the

randomness of u, Ũt:∣∣∣∣∣∣NUt
(u,
∑
i∈[k]

ui � Ui;x)−
∑
i∈[k]

NUt
(ui, ui � Ui;x)

∣∣∣∣∣∣ ≤ Õ
(
k2 ‖x‖2
λm1/2

+ kεs‖x‖2
)

(F.8)

Here ui � Ui = ((ui)j(Ui)j)j∈[ mk ].

Lemma F.4 (disentangle convolution 2). For every s, t, w.h.p. over the randomness of u, Ũt, Ũs,
every i, i′ ∈ [k] with i 6= i′, and every x, x′ ∈ Rd, if we define Ui = ui � 1([Us]x

′)x′>, then as long
as ‖Us‖F , ‖U t‖F = O

(
1
λ

)
, the following holds:

|NUt
(ui′ , Ui;x)| ≤ Õ

(
d2‖x‖2‖x′‖2

m1/2
+ ‖x′‖2‖x‖2

√
εs + ‖x‖2εs

)
(F.9)

To apply this lemma, we can see that ui � 1([Us]x
′)x′> is (a scaling of) the gradient coming from

channel i on input x′ at iteration s. This lemma says that it will have negligible effect on the output
of channel i′ 6= i for (any) later iterations t. Hence at each iteration, every channel is updating almost
separately.

Proof of Lemma F.3. By Lemma A.8, we know that∣∣∣∣∣∣NUt
(u,
∑
i∈[k]

ui � Ui;x)−
∑
i∈[k]

NUt
(u, ui � Ui;x)

∣∣∣∣∣∣ (F.10)

≤

∣∣∣∣∣∣NŨt
(u,
∑
i∈[k]

ui � Ui;x)−
∑
i∈[k]

NŨt
(ui, ui � Ui;x)

∣∣∣∣∣∣+O (kεs‖x‖2) (F.11)

Now, we can directly decompose

NŨt
(u,
∑
i∈[k]

ui � Ui;x) =
∑
i∈[k]

NŨt
(ui, ui � Ui;x) (F.12)

+
∑
i∈[k]

∑
i′∈[k],i′ 6=i

NŨt
(ui′ , ui � Ui;x) (F.13)

Since Ui does not depend on the randomness of ui′ but only Ũt, fixing Ũt, Ui we know that since
each entry of ui′ i.i.d. mean zero, we have:

Eui′

[
NŨt

(ui′ , ui � Ui;x)
]

= 0 (F.14)

Applying basic concentration bounds on NŨt
(ui′ , ui � Ui;x), it holds that w.h.p. |NŨt

(ui′ , ui �
Ui;x)| ≤ Õ

(
‖x‖2
λm

)
. Putting this back into Eq (F.12), we complete the proof.
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Proof of Lemma F.4. By Lemma A.8, we know that

|NUt
(ui′ , Ui;x)| ≤

∣∣∣NŨt
(ui′ , Ui;x)

∣∣∣+O(εs) (F.15)

Hence, by definition, we have that

NŨt
(ui′ , Ui;x) = NŨt

(ui′ , ui � 1([Us]x
′)x′>;x) (F.16)

Again by Lemma A.8, we know that ‖1([Us])− 1(Ũs)‖1 ≤ εsm, hence we have since the absolute
value of each entry of ui is m−1/2:∣∣∣NŨt

(ui′ , ui � 1([Us]x
′)x′>;x)

∣∣∣ ≤ ∣∣∣NŨt
(ui′ , ui � 1([Ũs]x

′)x′>;x)
∣∣∣+ ‖x′‖2‖x‖2

√
εs (F.17)

Now for fixed x′, x, for
∣∣∣NŨt

(ui′ , ui � 1([Ũs]x
′)x′>;x)

∣∣∣, since 1([Ũs]x
′)x′> does not depend on the

randomness of ui′ , following the previous lemma we can show that with probability at least 1− e−d2 ,∣∣∣NŨt
(ui′ , ui � 1([Ũs]x

′)x′>;x)
∣∣∣ ≤ Õ

(
‖x‖2‖x′‖2d2

λm

)
. Now, taking union bound over an epsilon-

net of x′, x ∈ Rd we conclude that for every x, x′, w.h.p.
∣∣∣NŨt

(ui′ , ui � 1([Ũs]x
′)x′>;x)

∣∣∣ ≤
Õ
(
‖x‖2‖x′‖2d2

λm

)
. Putting this back to Eq (F.17) we complete the proof.

We set εc = Õ
(
kd4 1

λm1/2

)
, and with this lemma, we can restate Lemma B.1, Lemma D.8 and

Lemma E.1 in the following way: Suppose εc ≤ min{ε1/10, ε′2/10} for every x in the training set.
Then the following lemmas hold by directly applying Lemma F.3.
Corollary F.5. In the setting of Theorem F.2, there exists a solution U? satisfying a) ‖U?‖2F ≤
O(dk log2(1/ε)) and b) for every t ≥ 0:

Kt(U
?) ≤ q log 2 + ε1/2 (F.18)

Corollary F.6. In the setting of Theorem F.2, there exists a solution U∗ satisfying ‖U∗‖2F = Õ
(

k
ε21r

)
and for every t ≤ 1

η2λ
:

Kt0+t(U t0 + U∗) ≤ ε0 + ε1 (F.19)

Corollary F.7. In the setting of Theorem F.2, there exists a solution U? satisfying a) ‖U?‖2F ≤
Õ
(

k
ε′22 r

+Npk
)

and b) for every t ≤ 1
η2λ

,

Kt(U
?) ≤ ε′2 (F.20)

To prove these Lemmas, we can simply define U∗ =
√
kW ∗ +

√
kV ∗ for W ∗, V ∗ given in the

original proof and apply Lemma F.3. The reason we need k here is because there are m
k channels

instead of m, so the square norm scales up by a factor of k.

Now the next two convergence theorems follow directly from Lemma 4.1 and Lemma 4.3 and apply
with initial learning rate η1.
Corollary F.8. In the setting of Theorem F.2 with initial learning rate η1, at some step t0 ≤
Õ
(

dk
η1ε1

)
, the training loss L̂(u, Ut0) becomes smaller than q log 2 + ε1. Moreover, we have

‖U t0‖2F = O
(
dk log2(1/ε1)

)
.

Corollary F.9. In the setting of Theorem F.2, with initial learning rate η1, there exists t = Õ
(

k
ε31η2r

)
, such that after t0 + t iterations we have that

Lt0+t = O
(√

ε1/q
)

(F.21)

Moreover, ‖U t0+t − U t0‖2F ≤ Õ
(

k
ε21r

)
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The following statement applies when we use a small initial learning rate and follows from the proof
of Lemma 5.1.
Corollary F.10. In the setting of Theorem F.2, with initial learning rate η2, there exists t with

t = Õ

(
k

η2ε′32 r
+
Npk

η2ε′2

)
(F.22)

such that Lt ≤ ε′2 after t iterations. Moreover, we have that ‖U t‖2F ≤ Õ
(

k
ε′22 r

+Npk
)

Now, the following lemma directly adapts from Lemma 4.2 by applying Lemma F.4:
Lemma F.11. In the setting of Theorem F.2 with initial learning rate η1, w.h.p., for every t ≤ 1

η1λ
,

|gt(z + ζ) + gt(z − ζ)− 2gt(z)| ≤ Õ
(
r2

λ

)
(F.23)

With these lemmas, we can directly conclude the following:
Corollary F.12. In the setting of Lemma F.9 with initial learning rate η1, the following holds:

L̂M1
(rt0+t) = O(

√
ε1/q) (F.24)

L̂M̄1
(gt0+t) = O(

√
ε1/q3) (F.25)

Corollary F.13. In the setting with initial learning rate η2, for every ε3 > 0 such that 1
ε′82 ε

8
3r
≤ ε′2dk,

there exists α ∈ Rd such that α ∈ span{x(i),(j)
1 }i∈M̄2,j∈[k] and α = Ω̃(

√
Np) such that w.h.p. over

a randomly chosen x1 ∼ N (0, I/d), we have that

rt(x1)− rt(−x1) = 2〈α, x1〉 ± Õ
(
ε3 +

Npk

d3/2

)
(F.26)

Here x(i),(j)
1 = ([x

(i)
1 ]s)s∈{(j−1)d/k+1,(j−1)d/k+2,··· ,d}

The final proof of Theorem F.2 follows directly from the proof of Theorem 3.4 and Theorem 3.5.

G Toolbox

Lemma G.1. Let X1, X2 ∼ N (0, 1) and a, b > 0 such that a2 + b2 = 1. Then for every γ1, γ2 ∈ R,
we have that

|Pr [X1 ≥ γ1 | aX1 + bX2 = γ2]− Pr [X1 ≥ γ1 | aX1 + bX2 = 0]| . a|γ2|
b

(G.1)

Pr [|X1| ≤ γ1 | aX1 + bX2 = γ2] .
|γ1|
b

(G.2)

Proof of Lemma G.1. Without loss of generality, we assume aγ2/b ≥ 0. Let Y1 = aX1 + bX2 and
Y2 = bX1 − aX2. We have that Y1, Y2 are independent random Gaussian variables with marginal
distribution N (0, 1). Moreover, X1 = aY1 + bY2. Thus, X1 | aX1 + bX2 = γ2 is the same as
aY1 + bY2 | Y1 = γ2, which has distribution N (aγ2, b

2). Let Z be a standard Gaussian, then

|Pr [X1 ≥ γ1 | aX1 + bX2 = γ2]− Pr [X1 ≥ γ1 | aX1 + bX2 = 0]|

= |Pr [bZ + aγ2 ≥ γ1]− Pr [bZ ≥ γ1]| =
∣∣∣Pr
[γ1

b
≥ Z ≥ γ1

b
− aγ2

b

]∣∣∣
.
∣∣∣aγ2

b

∣∣∣ (beacuse the density of N (0, 1) is bounded by O(1))

Moreover,

Pr [|X1| ≤ γ1 | aX1 + bX2 = γ2] = Pr [|bZ + aγ2| ≤ γ1] . |γ1|/b (G.3)
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Table 1: Validation accuracies for WideResNet16 trained and tested on original CIFAR-10 images
without data augmentation.

Method Val. Acc
Large LR + anneal 90.41%
Small LR + noise 89.65%

Small LR 84.93%

Lemma G.2. Let M = M0 +M1 where M1 ∈ Rd,d′ with d′ ≤ d is a matrix with each entry i.i.d.
N (0, 1/d) and M0 = w?β> where ‖β‖2 ≤ 1 can depend on M1. Then for every vector z ∈ Rd′ we
have that:

〈w?,Mz〉
‖Mz‖2

≤ 0.9 (G.4)

Proof of Lemma G.2. Note that Mz = w?〈β, z〉+M1z. Since M1 is a random gaussian matrix and
d′ ≤ d, we know that w.h.p. for every z we have 〈w

?M1z〉
‖M1z‖2 ≤

√
2

2 .

This implies that

‖Mz‖22 = |〈β, z〉|2 + ‖M1z‖22 + 2〈β, z〉〈w?,M1z〉 (G.5)

≥ |〈β, z〉|2 + 〈w?M1z〉2 + 2〈β, z〉〈w?,M1z〉+
1

2
‖M1z‖22 (G.6)

= (〈β, z〉+ 〈w?,M1z〉)2 +
1

2
‖M1z‖22 (G.7)

= 〈w?,Mz〉2 +
1

2
‖M1z‖22 (G.8)

This completes the proof.

H Additional Details for Experiments

In this section we provide additional details on the experimental results of Section 6. All of our models
were trained using a single NVIDIA TitanXp GPU and our code is implemented via PyTorch. We note
that for all our experiments, the mean pixel is subtracted from the CIFAR image and then the image
is divided by the standard deviation pixel. We use mean and standard deviation values in the PyTorch
WideResNet implementation: https://github.com/xternalz/WideResNet-pytorch.

H.1 Additional Details for Noise Mitigation Strategy

In this section, we provide additional details for the mitigation strategy for a small learning rate
described in Section 6. In Table 1, we demonstrate on CIFAR-10 images without data augmentation
that this regularization can indeed counteract the negative effects of small learning rate, as we report
a 4.72% increase in validation accuracy when adding noise to a small learning rate.

We train for all models for 200 epochs, annealing the learning rates by a factor of 0.2 at the 60th,
120th, and 150th epoch for all models. The large learning rate model uses an initial learning rate
of 0.1, whereas the small learning rate model uses initial learning rate of 0.01. The large learning
rate is a standard hyperparameter setting for the WideResNet16 architecture, and we chose the small
learning rate by scaling this value down. The other hyperparameter settings are standard. We remove
data augmentation from the training set to isolate the effect of adding noise.

We add noise before every time we apply the relu activation. As it is costly to add i.i.d. noise that
is the size of the entire hidden layer, we sample Gaussian noise that has shape equal to the last two
dimensions of the 4 dimensional hidden layer, where the first two dimensions are batch size and
number of channels, and duplicate this over the first 2 dimensions. We sample different noise for
every batch.
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Figure 4: Visualizations of CIFAR-10 images with patches added.

Our annealing schedule simply multiplies the noise level by a constant factor at every iteration. We
tune the standard deviation of the noise to 0.2 and the annealing rate to 0.995 every iteration. We
show results from a single trial as the small LR with noise algorithm already shows substantial
improvement over vanilla small LR.

H.2 Additional Details on Patch-Augmented CIFAR-10

We first describe in greater detail our method for producing the patch. First, the split of our data
is the following: of the 50000 CIFAR-10 training images, 10000 will contain no patch and 40000
will have a patch. We generate this split randomly before training and keep it fixed. During a single
epoch, we iterate through all images, loading the 10000 clean images the same way each time. For
the remaining 40000 examples, we use a patch-only image with probability 0.2 and a patch mixed
with CIFAR image with probability 0.8. Thus, 20% of the updates are on clean images, 16% of
updates are on patches only, and 64% of updates are on mixed images, but the actual split of the data
is slightly different because of our implementation.

The patch will be located in the center of the image. We visualize the patches in Figure 4. We generate
the patch as follows: before training begins, we sample a random vector z with i.i.d entries from
N (0, σ2

z) as well as ζi ∼ [−β, β] for classes i = 1, . . . , 10. Then to generate patch-only images, we
add a scalar multiple of ζi to z if the example belongs to class i. This scalar multiple is in the range
[−α, α] for some α we tune. We set coordinates not in the patch to 0. To generate images that contain
both patch and a CIFAR example, we simply add z ± ζi. In all, the hyperparameters we tune are
σz, β, α.

We must choose σ, β, α on the correct scale so that large and small learning rates don’t both ignore
the patch or overfit to the patch. For the experiment shown, σz = 1.25, β = 0.1, α = 1.75.

Our large initial learning rate model trains with learning rate 0.1, annealing to 0.004 at the 30th epoch.
and the small LR model trains with fixed learning rate 0.004. Our small LR with noise model trains
with fixed learning rate 0.004, initial noise 0.4, and decays the noise to 4e-6 after the 30th epoch. We
train all models for 60 epochs total, starting from the same dataset and choice of patches. Table 2
demonstrates the final validation accuracy numbers on patch-augmented and clean data.

Now we provide additional evidence that the generalization disparity is indeed due to the learning
order effect and not simply because the large learning rate model can already generalize better on
clean CIFAR-10 images. To see this, we consider the generalization error of models trained on 10000
clean CIFAR images: the small LR model achieves 65% validation accuracy, and the large LR model
achieves 76% validation accuracy. For comparison, on the full clean dataset the small LR model
achieves 83% validation accuracy whereas the large LR model achieves 90% accuracy.

We note that the final number of 69.89% clean image accuracy for the small LR model trained on
the patch dataset is much closer to 65% than 83%, suggesting that it is indeed using a fraction of the
available CIFAR samples because of learning order. On the other hand, the large LR model achieves
final clean validation accuracy of 87.61% when trained on the patch dataset, which is very close to
the 90% that is achievable training on the full clean dataset. This indicates that the large LR model is
still using the majority of the images to learn CIFAR examples before annealing, as it has not yet
memorized the patches.
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Table 2: Validation accuracies for CIFAR-10 training dataset modified with patch. The mixed
validation set similarly contains patches, but the clean set does not.

Method Mixed Val. Acc. Clean Val. Acc.
Large LR + anneal 95.35% 87.61%

Small LR 92.83% 69.89%
Small LR + noise 94.43% 81.36%
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