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1 Debiasing inference with a generalized propensity score approach

When realized treatment exposures are correlated with potential outcomes, the dose-response liter-
ature has suggested generalizations of the propensity score to de-bias inference. Hirano and Imbens
(2004) define the generalized propensity score function r : (e,X) 7→ r(e,X) as the density of
the conditional distribution of outcome unit i’s treatment exposure given its covariates Xi. They
suggest learning the generalized propensity score function r(·, ·) as well as the conditional outcome
distribution β : (e′, r′) 7→ E[Yi|ei = e′, r(e′,Xi) = r′], conditioned on treatment exposure e′ and
generalized propensity score r′. Finally, they propose µ̂(e) = 1/N

∑
i β(e, r(e,Xi)) as an estima-

tor for the average dose-response function µ. In our case, the treatment exposure distribution of
outcome unit i is known and fully parameterized by its outgoing-edge weights {wij}j .
In practice, Hirano and Imbens (2004) suggest fitting a linear regression of Yi on the realized treat-
ment exposure and corresponding propensity score couplet (ei, r(ei,Xi)) to construct an approxi-
mation β̂ of the conditional outcome distribution β, necessary for computing µ̂. Imai and Van Dyk
(2004) propose a similar approach, which stratifies outcome units into S strata by any uni- or
multivariate parameter θi such that r(·,Xi) = r(·, θi), and learns f̂s within each strata such that
Yi(Z) = fs(ei(Z)). They suggest using f̂(·) = 1/S

∑
s

∑
i∈s f̂s(·)Ws as an estimator for the

average dose response function µ, where Ws is the number of outcome units in strata S.

2 Proof of Proposition 1

To prove Proposition 1, we consider a rewriting of the objective from Theorem 1.

∆ = p− p(1− p)
N

∑
C6=C′

∑
j∈C,k∈C′

〈φj , φk〉 −
p(1− p)
N2

∑
C

∑
j∈C
〈φj ,~1〉

2

We decompose this objective term-by-term. For all diversion unit pairs j, k ∈ [1,M ], 〈φj , φk〉 ≥ 0,
with equality if and only if diversion unit j and diversion unit k have no common outcome unit
neighbors. As a result,

∑
C6=C′

∑
j∈C,k∈C′〈φj , φk〉 ≥ 0, with equality if and only if clusters

C and C′ have no common outcome unit neighbors. Furthermore, the following equality holds:∑
C
∑
j∈C〈φj ,~1〉 = N . From the Cauchy-Schwarz inequality,

∑
C(
∑
j∈C〈φj ,~1〉)2 ≥ N2/K,

where K is the total number of clusters C, with equality if and only if ∀C, C′,
∑
j∈C〈φj ,~1〉 =
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∑
j∈C′〈φj ,~1〉 = N/K. If there exists a clustering {C}K with K clusters, such that the variance

maximization objective for {C}K is equal to p − p(1−p)
K , then {C}K cuts no edges of the bipar-

tite graph G. As a result, each outcome unit receives either treatment exposure 1 or 0 for every
assignment Z, and the stable unit treatment value assumption holds.

3 Proof of proposition 2

The first claim is an application of Gauss-Markov; the second claim is an application of Cramer-Rao.

For the sake of exposition, we assume that β = 0 and Y = αe + ε, for all assignments Z. The
average treatment effect is equal to α. Hence, we can restate our proposition with τ̂ as estimators of
α.

For a fixed assignment vector Z, the Cramer-Rao bound states that the variance of any unbi-
ased estimator τ̂ of α is such that Var[α̂] ≥ I(α)−1, where I(α) = −E

[
δ2l(Y,e;α)

δα2

]
is the

Fisher information of α and l is the log-likelihood of observing (Y, e) given α and Z. With
l(Y, e;α) = −N2 log(2πσ2) +

∑N
i=1

(yi−αei)2
2σ2 , we obtain I(α) = 1

N (e − ē)T (e − ē). By the
law of total variance:

VarZ,ε = EZ[Varε[τ̂ |Z]] + VarZ[Eε[τ̂ |Z]] = EZ[Varε[τ̂ |Z]] + VarZ[α] = EZ[Varε[τ̂ |Z]]

Hence the result becomes:

VarZ,ε[τ̂ ] ≥ EZ

[
σ2

1
N (e− ē)T (e− ē)

]
≥ σ2

EZ[ 1
N (e− ē)T (e− ē)]

4 Proof of Theorem 1

Let Φ ∈ RN×M be the adjacency matrix of the bipartite graph between diversion units and outcome
units, such that Φij = wij and φj = ~w·j . Because e(Z) = ΦZ, the variance-maximization objective
in Eq. 3 can be rewritten as

1

N
(e(Z)− ē(Z))

T
(e(Z)− ē(Z)) =

1

N
ZTΦTΦZ−

(
1

N
1TΦZ

)2

Let p be the probability that a diversion unit is assigned to treatment and Σ = EZ[ZTZ] be the
variance-covariance matrix of Z. Taking the expectation of the quadratic form in Z,

EZ

[
1

N
ZTΦTΦZ

]
=

1

N

(
Tr
[
ΦTΦΣ

]
+ p21TΦTΦ1

)
=

1

N
Tr
[
ΦTΦΣ

]
+ p2,

where the second equality is obtained by observing that Φ~1 = ~1. If two diversion units j and k
belong to the same cluster C, then Σjk = p; otherwise, Σjk = p2. Hence,

Tr
[
ΦTΦΣ

]
=
∑
C

∑
j,k∈C2

p(ΦTΦ)jk +
∑
C6=C′

∑
j∈C,k∈C′

p2(ΦTΦ)jk

Because (ΦTΦ)jk = 〈φj , φk〉 and
∑
jk〈φj , φk〉 = N , the above becomes

EZ

[
1

N
ZTΦTΦZ

]
= p2 + p− p(1− p)

N

∑
C6=C′

∑
j∈C,k∈C′

〈φj , φk〉

2



Taking the expectation of the second term of the objective,

EZ

[(
1

N
1TΦZ

)2
]

=
1

N2

∑
i,j,k,l

ΦijΦlkEZ[ZjZk]

=
1

N2

∑
j,k

〈φj ,~1〉〈φk,~1〉EZ[ZjZk]

=
1

N2

p∑
C

∑
j,k∈C

〈φj ,~1〉〈φk,~1〉+ p2
∑
C6=C′

∑
j∈C,k∈C′

〈φj ,~1〉〈φk,~1〉


Noting that

∑M
j,k=1〈φj ,~1〉〈φk,~1〉 = N2, the previous term becomes

EZ

[(
1

N
1TΦZ

)2
]

=
p2N2

N2
+
p(1− p)
N2

∑
C

∑
j,k∈C

〈φj ,~1〉〈φk,~1〉

The final objective can be written as:

∆ = p− p(1− p)
N

∑
C6=C′

∑
j∈C,k∈C′

〈φj , φk〉 −
p(1− p)
N2

∑
C

∑
j,k∈C

〈φj ,~1〉〈φk,~1〉

= p2 +
p(1− p)
N

∑
C

∑
j,k∈C

(
〈φj , φk〉 −

1

N
〈φj ,~1〉〈φk,~1〉

)

Let Wjk = 〈φj , φk〉 − 1
N 〈φj ,~1〉〈φk,~1〉, W

+
jk = max(0,Wjk) and W−jk = min(0,Wjk) be the

positive and negative edges of the graph respectively, and W− =
∑N
j,kW

−
jk be the sum of all

negative edges in the graph. The objective becomes:

∆ = p2 +
p(1− p)
N

W− +
∑
C

∑
j,k∈C

W+
jk −

∑
C6=C′

∑
j∈C′,k∈C

W−jk
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