
Volumetric Correspondence Networks
for Optical Flow

Gengshan Yang1
∗
, Deva Ramanan1,2

1Carnegie Mellon University, 2Argo AI
{gengshay, deva}@cs.cmu.edu

1 Supplementary Material

1.1 Detailed training procedure

We re-implement a Pytorch version of the training pipeline of PWC-Net[4], which has three stages: 1)
Pre-training on FlyingChairs, 2) fine-tuning on FlyingThings and 3) fine-tuning on the target dataset.

Pre-training on Chairs We use the same hyper-parameters, except that: 1) The network is trained
for 140K iterations instead of 1200K iterations, 2) the learning rate is set to be 1e-3 instead of 1e-4,
and reduced by half at {70K,130K} iterations, and 3) the weight-decay term is removed.

Fine-tuning on Things We use the same hyper-parameters, except that: 1) The network is fine-
tuned for 80K iterations instead of 500K iterations, 2) the learning rate is set as 2.5e-4 and reduced
by half at 50K iterations, 3) the weight-decay term is removed, and 4) eight cropped images of size
448× 320 is used in each batch, instead of four cropped images of size 768× 384.

Fine-tuning on KITTI We follow the PWC-Net+ procedure. Besides removing the weight-decay
term, we also 1) use a crop of 256× 768 instead of 320× 896, 2) use 4 GPUs with a batch-size of 16
for two cycles, 3) set the initial learning rate as 0.001, and reduce it by half at {30K,40K,50K,60K}
iterations for each cycle, and 4) use L1 loss + OOR loss instead of the robust loss function. We also
use asymmetric occlusion augmentation as used in HSM-Net [5].

Fine-tuning on Sintel We follow the PWC-Net+ procedure. Besides removing the weight-decay
term, we also 1) use a crop of 320× 576 instead of 384× 768 and also add Chairs and Things for
training, 2) use 4 GPUs with a batch-size of 16 for two cycles, 3) set the initial learning rate as 0.001,
and reduce it by half at {30K,40K,50K,60K} iterations for each cycle, and 4) use L1 loss + OOR
loss instead of the robust loss function. We also use asymmetric occlusion augmentation as used in
HSM-Net [5].

1.2 Details on measuring FLOPS

We use FLOPS (floating point operations per second) to measure the compute needed for a deep
network. It is typically calculated by counting the number of Mult-Adds (multiply–accumulate
operation) [2, 3, 6]. For example, a dot product with N elements has N Mult-Adds. When computing
the FLOPS, we only consider convolutions, batch-norms, activation functions, and pooling layers.
The same python package is used to compute the FLOPS for each model [7].

1.3 Qualitative results

We further show qualitative results of our flow predictions following the Middlebury color encod-
ing [1].

∗Code will be available at github.com/gengshay-y/VCN.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/gengshan-y/VCN


PWC-Net

PWC-Net-ft-stereo Ours-small-ft-stereo

Ours-small

Source image: KITTI-15-training-90 flow ground-truth

PWC-Net-ft-stereo (disparity prediction) Ours-small-ft-stereo (disparity prediction)

Figure 1: Qualitative results for stereo → flow transfer. Before fine-tuning, PWC-Net predicts the motion of
the left-corner car wrong while our model gets the motion correctly. After fine-tuning, although PWC-Net and
ours-small performs similarly on the stereo training data, PWC-Net produces artifect at object boundaries while
our model is able to recover the object boundaries clearly.

• Fig. 1 shows the results of “stereo to flow transfer".
• Fig. 2 gives a qualitative comparison between our model and PWC-Net on flow predicted by

each scale.
• Fig. 3 shows the K flow hypotheses generated by each level of coarse-to-fine prediction.
• Fig. 4 and Fig. 5 show qualitative comparisons with prior arts on challenging examples from

KITTI-15 and Sintel test set.

2



stride-64

stride-32

stride-16

stride-8

stride-4
(final)

PWC-Net Ours Frame 1, 2 and Ground-truth

Figure 2: Comparison of coarse-to-fine prediction between our model and PWC-Net_ROB on Sin-
tel_clean_ambush_2_00. Note that the coarse (stride-64) flow prediction module of PWC-Net is not trainable
due to difficulties in optimization. However, our stride-64 matching module is trainable and yields reasonable
coarse-prediction. We hypothesize the reason to be that 4D volumetric layers takes advantage of weight-sharing
and uses much fewer parameters, which makes gradient propagation easier. Moreover, our model predicts better
details as shown in the circle.

3



Figure 3: Multi-hypotheses predictions for Sintel_clean_ambush_2_00. From top to bottom: hypotheses at
stride-32 and hypothese at stride-4.

LiteFlowNetOurs

PWC-Net+ FlowNet-2.0IRR-PWC

Overlaid input

Figure 4: Results on KITTI-15 test image 48. Color indicates the direction and magnitude of the displacements
following Middlebury color wheel, as shown on top-left. While prior methods predict the dark wall (circled) as
moving to the right together with the front vehicle, our method correctly predicts it as moving to the left.

PWC-Net+

LiteFlowNet-2Ours

FlowNet-2.0IRR-PWC

Figure 5: Results on Sintel test image bamboo_3_29. Compared with prior arts, our method predicts the motion
of the circled region more accurately and captures more details.

4



References
[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation

methodology for optical flow. IJCV, 92(1):1–31, 2011.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

[4] D. Sun, X. Yang, M. Liu, and J. Kautz. Models matter, so does training: An empirical study of
cnns for optical flow estimation. PAMI, 2019.

[5] G. Yang, J. Manela, M. Happold, and D. Ramanan. Hierarchical deep stereo matching on
high-resolution images. In CVPR, 2019.

[6] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural
network for mobile devices. In CVPR, pages 6848–6856, 2018.

[7] L. Zhu. pytorch-opcounter. https://github.com/Lyken17/pytorch-OpCounter, 2019.

5

https://github.com/Lyken17/pytorch-OpCounter

	Supplementary Material
	Detailed training procedure
	Details on measuring FLOPS
	Qualitative results


