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A General facts about Groups and Quotients

Let G be a group and H a subgroup of G. A left coset of H in G is a set gH = {gh | h ∈ H} for
g ∈ G. The cosets form a partition of G. The set of all cosets is called the quotient space or coset
space, and is denoted G/H . There is a canonical projection p : G → G/H that assigns to each
element g the coset it is in. This can be written as p(g) = gH . Fig. 1 provides an illustration for the
group of symmetries of a triangle, and the subgroup H of reflections.

The quotient space carries a left action of G, which we denote with ux for u ∈ G and x ∈ G/H .
This works fine because this action is associative with the group operation:

u(gH) = (ug)H. (1)

for u, g ∈ G. One may verify that this action is well defined, i.e. does not depend on the particular
coset representative g. Furthermore, the action is transitive, meaning that we can reach any coset
from any other coset by transforming it with an appropriate u ∈ G. A space like G/H on which G
acts transitively is called a homogeneous space for G. Indeed, any homogeneous space is isomorphic
to some quotient space G/H .

A section of p is a map s : G/H → G such that p ◦ s = idG/H . We can think of s as choosing a
coset representative for each coset, i.e. s(x) ∈ x. In general, although p is unique, s is not; there can
be many ways to choose coset representatives. However, the constructions we consider will always
be independent of the particular choice of section.

Although it is not strictly necessary, we will assume that s maps the coset H = eH of the identity to
the identity e ∈ G:

s(H) = e (2)
We can always do this, for given a section s′ with s′(H) = h 6= e, we can define the section
s(x) = h−1s′(hx) so that s(H) = h−1s′(hH) = h−1s′(H) = h−1h = e. This is indeed a section,
for p(s(x)) = p(h−1s′(hx)) = h−1p(s′(hx)) = h−1hx = x (where we used Eq. 1 which can be
rewritten as up(g) = p(ug)).

One useful rule of calculation is

(gs(x))H = g(s(x)H) = gx = s(gx)H, (3)

for g ∈ G and x ∈ G/H . The projection onto H is necessary, for in general gs(x) 6= s(gx). These
two terms are however related, through a function h : G/H ×G→ H , defined as follows:

gs(x) = s(gx)h(x, g) (4)

That is,
h(x, g) = s(gx)−1gs(x) . (5)
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Figure 1: A Cayley diagram of the group D3 of symmetries of a triangle. The group is generated
by rotations r and flips f . The elements of the group are indicated by hexagons. The red arrows
correspond to right multiplication by r, while the blue lines correspond to right multiplication by f .
Cosets of the group of flips (H = {e, f}) are shaded in gray. As always, the cosets partition the group.
As coset representatives, we choose s(H) = e, s(rH) = r, and s(r2H) = r2f . The difference
between s(rx) and rs(x) is indicated. For this choice of section, we must set h(x, r) = h(rH, r) = f ,
so that s(rx)h(x, r) = (r2f)(f) = r2 = rs(x).

We can think of h(x, g) as the element of H that we can apply to s(gx) (on the right) to get gs(x).
The h function will play an important role in the definition of the induced representation, and is
illustrated in Fig. 1.

From the fiber bundle perspective, we can interpret Eq. 5 as follows. The group G can be viewed as a
principal bundle with base space G/H and fibers gH . If we apply g to the coset representative s(x),
we move to a different coset, namely the one represented by s(gx) (representing a different point
in the base space). Additionally, the fiber is twisted by the right action of h(x, g). That is, h(x, g)
moves s(gx) to another element in its coset, namely to gs(x).

The following composition rule for h is very useful in derivations:

h(x, g1g2) = s(g1g2x)−1g1g2s(x)

= [s(g1g2x)−1g1s(g2x)][s(g2x)−1g2s(x)]

= h(g2x, g1)h(x, g2)

(6)

For elements h ∈ H , we find:

h(H,h) = s(H)−1hs(H) = h. (7)

Also, for any coset x,

h(H, s(x)) = s(s(x)H)−1s(x)s(H) = s(H) = e. (8)

Using Eq. 6 and 8, this yields,

h(H, s(x)h) = h(hH, s(x))h(H,h) = h, (9)

for any h ∈ H and x ∈ G/H .

For x = H , Eq. 5 specializes to:

g = gs(H) = s(gH)h(H, g) ≡ s(gH)h(g), (10)

where we defined
h(g) = h(H, g) = s(gH)−1g (11)

This shows that we can always factorize g uniquely into a part s(gH) that represents the coset of g,
and a part h(g) ∈ H that tells us where g is within the coset:

g = s(gH)h(g) (12)

A useful property of h(g) is that for any h ∈ H ,

h(gh) = s(ghH)−1gh = s(gH)−1gh = h(g)h. (13)
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It is also easy to see that
h(s(x)) = e. (14)

When dealing with different subgroups H1 and H2 of G (associated with the input and output space
of an intertwiner), we will write hi for an element of Hi, si : G/Hi → G, for the corresponding
section, and hi : G/Hi ×G→ Hi for the h-function (for i = 1, 2).

A.1 Double cosets

A (H2, H1)-double coset is a set of the form H2gH1 for H2, H1 subgroups of G. The space of
(H2, H1)-double cosets is called H2\G/H1 ≡ {H2gH1 | g ∈ G}. As with left cosets, we assume a
section γ : H2\G/H1 → G is given, satisfying γ(H2gH1) ∈ H2gH1.

The double coset space H2\G/H1 can be understood as the space of H2-orbits in G/H1, that is,
H2\G/H1 = {H2x|x ∈ G/H1}. Note that although G acts transitively on G/H1 (meaning that
there is only one G-orbit in G/H1), the subgroup H2 does not. Hence, the space G/H1 splits into
a number of disjoint orbits H2x (for x = gH1 ∈ G/H1), and these are precisely the double cosets
H2gH1.

Of course, H2 does act transitively within a single orbit H2x, sending x 7→ h2x (both of which are in
H2x, for x ∈ G/H1). In general this action is not necessarily fixed point free which means that there
may exist some h2 ∈ H2 which map the left cosets to themselves. These are exactly the elements in
the stabilizer of x = gH1, given by

Hx
2 = {h ∈ H2 |hx = x}

= {h ∈ H2 |hs1(x)H1 = s1(x)H1}
= {h ∈ H2 |hs1(x) ∈ s1(x)H1}
= {h ∈ H2 |h ∈ s1(x)H1s1(x)−1}
= s1(x)H1s1(x)−1 ∩H2.

(15)

Clearly, Hx
2 is a subgroup of H2. Furthermore, Hx

2 is conjugate to (and hence isomorphic to) the
subgroup s1(x)−1Hx

2 s1(x) = H1 ∩ s1(x)−1H2s1(x), which is a subgroup of H1.

For double cosets x ∈ H2\G/H1, we will overload the notation to Hx
2 ≡ H

γ(x)H1

2 . Like the coset
stabilizer, this double coset stabilizer can be expressed as

Hx
2 = γ(x)H1γ(x)−1 ∩H2 (16)

A.2 Semidirect products

For a semidirect product group G, such as SE(2) = R2 o SO(2), some things simplify. Let
G = N oH where H ≤ G is a subgroup, N ≤ G is a normal subgroup and N ∩H = {e}. For
every g ∈ G there is a unique way of decomposing it into nh where n ∈ N and h ∈ H . Thus, the
left H coset of g ∈ G depends only on the N part of g:

gH = nhH = nH (17)

It follows that for a semidirect product group, we can define the section so that it always outputs an
element of N ⊆ G, instead of a general element of G. Specifically, we can set s(gH) = s(nhH) =
s(nH) = n. It follows that s(nx) = ns(x) ∀n ∈ N, x ∈ G/H . This allow us to simplify
expressions involving h:

h(x, g) = s(gx)−1gs(x)

= s(gs(x)H)−1gs(x)

= s(gs(x)g−1︸ ︷︷ ︸
∈N

gH)−1gs(x)

=
(
gs(x)g−1 s(gH)

)−1
gs(x)

= s(gH)−1g

= h(g)

(18)
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A.3 Haar measure

When we integrate over a group G, we will use the Haar measure, which is the essentially unique
measure dg that is invariant in the following sense:∫

G

f(g)dg =

∫
G

f(ug)dg ∀u ∈ G. (19)

Such measures always exist for locally compact groups, thus covering most cases of interest [Folland,
1995]. For discrete groups, the Haar measure is the counting measure, and integration can be
understood as a discrete sum.

We can integrate over G/H by using an integral over G,∫
G/H

f(x)dx =

∫
G

f(gH)dg. (20)

B Proofs

B.1 Bi-equivariance of one-argument kernels on G

B.1.1 Left equivariance of κ

We want the result κ ? f (or κ · f ) to live in I2G, which means that this function has to satisfy the
Mackey condition,

[κ ? f ](gh2) = ρ2(h−12 )[κ ? f ](g)

⇔
∫
G

κ((gh2)−1g′)f(g′)dg′ = ρ2(h−12 )

∫
G

κ(g−1g′)f(g′)dg′

⇔ κ(h−12 g−1g′) = ρ2(h−12 )κ(g−1g′)

⇔ κ(h2g) = ρ2(h2)κ(g)

(21)

for all h2 ∈ H2 and g ∈ G.

B.1.2 Right equivariance of κ

The fact that f ∈ I1G satisfies the Mackey condition (f(gh) = ρ1(h)f(g) for h ∈ H1) implies a
symmetry in the correlation κ ? f . That is, if we apply a right-H1-shift to the kernel, i.e. [Rhκ](g) =
κ(gh), we find that

[[Rhκ] ? f ](g) =

∫
G

κ(g−1uh)f(u)du

=

∫
G

κ(g−1u)f(uh−1)du

=

∫
G

κ(g−1u)ρ1(h)f(u)du.

(22)

It follows that we can take (for h ∈ H1),

κ(gh) = κ(g)ρ1(h). (23)

B.2 Kernels on H2\G/H1

We have seen the space KC of H2-equivariant kernels on G/H1 appear in our analysis of both IG
and IC . Kernels in this space have to satisfy the constraint (for h ∈ H2):

←−κ (hy) = ρ2(h)←−κ (y)ρ1(h1(y, h)−1) (24)

Here we will show that this space is equivalent to the space

KD = {κ̄ : H2\G/H1 → Hom(V1, V2) | κ̄(x) = ρ2(h)κ̄(x)ρx1(h)−1,

∀x ∈ H2\G/H1, h ∈ Hγ(x)H1

2 },
(25)
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where we defined the representation ρx1 of the stabilizer Hγ(x)H1

2 ,

ρx1(h) = ρ1(h1(γ(x)H1, h))

= ρ1(γ(x)−1hγ(x)),
(26)

with the section γ : H2\G/H1 → G being defined as in section A.1. To show the equivalence of KC
and KD, we define an ismorphism ΩK : KD → KC . We begin by defining Ω−1K :

κ̄(x) = [Ω−1K
←−κ ](x) =←−κ (γ(x)H1). (27)

We verify that for←−κ ∈ KC we have κ̄ ∈ KD. Let h ∈ Hγ(x)H1

2 , then

κ̄(x) =←−κ (γ(x)H1)

=←−κ (hγ(x)H1)

= ρ2(h)←−κ (γ(x)H1)ρ1(h1(γ(x)H1, h))−1

= ρ2(h)κ̄(x)ρx1(h)−1

(28)

To define ΩK, we use the decomposition y = hγ(H2y)H1 for y ∈ G/H1 and h ∈ H2. Note that h
may not be unique, because H2 does not in general act freely on G/H1.
←−κ (y) = [ΩKκ̄](y) = [ΩKκ̄](hγ(H2y)H1) = ρ2(h)κ̄(H2y)ρ1(h1(γ(H2y)H1, h))−1. (29)

We verify that for κ̄ ∈ KD we have←−κ ∈ KC .
←−κ (h′y) =←−κ (h′hγ(H2y)H1)

= ρ2(h′h)κ̄(H2y)ρ1(h1(γ(H2y)H1, h
′h))−1

= ρ2(h′h)κ̄(H2y)ρ1(h1(hγ(H2y)H1, h
′)h1(γ(H2y)H1, h))−1

= ρ2(h′)ρ2(h)κ̄(H2y)ρ1(h1(γ(H2y)H1, h))−1ρ1(h1(hγ(H2y)H1, h
′))−1

= ρ2(h′)ρ2(h)κ̄(H2y)ρ1(h1(γ(H2y)H1, h))−1ρ1(h1(y, h′))−1

= ρ2(h′)←−κ (y)ρ1(h1(y, h′))−1

(30)

We verify that ΩK and Ω−1K are indeed inverses:

[ΩK[Ω−1K
←−κ ]](y) = [ΩK[Ω−1K

←−κ ]](hγ(H2y)H1)

= ρ2(h)[Ω−1K
←−κ ](H2y)ρ1(h1(γ(H2y)H1, h))−1

= ρ2(h)←−κ (γ(H2y)H1)ρ1(h1(γ(H2y)H1, h))−1

=←−κ (hγ(H2y)H1)

=←−κ (y).

(31)

In the other direction,

[Ω−1K [ΩKκ̄]](x) = [ΩKκ̄](γ(x)H1)

= [ΩKκ̄](γ(H2γ(x)H1)H1)

= ρ2(e)κ̄(H2γ(x)H1)ρ1(h1(γ(H2γ(x)H1)H1, e))
−1

= κ̄(x)

(32)

C Limitations of the Theory

The theory presented here is quite general but still has several limitations. Firstly, we only cover fields
over homogeneous spaces. Although fields can be defined over more general manifolds, and indeed
there has been some effort aimed at defining convolutional networks on general (or Riemannian)
manifolds [Bronstein et al., 2017], we restrict our attention to homogeneous spaces because they
come naturally equipped with a group action to which the network can be made equivariant. A more
general theory would not be able to make use of this additional structure.
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For reasons of mathematical elegance and simplicity, the theory idealizes feature maps as fields over
a possibly continuous base space, but a computer implementation will usually involve discretizing
this space. A similar approach is used in signal processing, where discretization is justified by various
sampling theorems and band-limit assumptions. It seems likely that a similar theory can be developed
for deep networks, but this has not been done yet.
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D Classification of Equivariant CNNs

G H G/H ρ Reference
Z2 {1} Z2 regular Lecun 1990 LeCun et al. [1990]

p4, p4m C4, D4 Z2 regular Cohen 2016 Cohen and Welling [2016],
" " " " Dieleman 2016 Dieleman et al. [2016]

p4, p4m C4, D4 Z2 irrep & regular Cohen 2017 Cohen and Welling [2017]
p6, p6m C6, D6 Z2 regular Hoogeboom 2018 Hoogeboom et al. [2018]
Z3 oH D4, D4h, O,Oh Z3 regular Winkels 2018 Winkels and Cohen [2018]
Z3 oH V, T4, O Z3 regular Worrall 2018 Worrall and Brostow [2018]
R2o CN CN R2 regular Weiler 2017 Weiler et al. [2018a]

" " " " Zhou 2017 Zhou et al. [2017]
" " " " Bekkers 2018 Bekkers et al. [2018]
" " " irrep & regular Marcos 2017 Marcos et al. [2017]

SE(2) SO(2) R2 irrep Worrall 2017 Worrall et al. [2017]
R2oH ≤ E(2) O(2),SO(2), CN , DN R2 any representation Weiler 2019 Weiler and Cesa [2019]
R2o (R+, ∗) (R+, ∗) R2 regular & trivial Ghosh 2019 Ghosh and Gupta [2019]

" " " regular Worrall 2019 Worrall and Welling [2019]
" " " " Sosnovik 2019 Sosnovik et al. [2019]

SE(3) SO(3) R3 irrep Kondor 2018 Kondor [2018]
" " " irrep & regular Thomas 2018 Thomas et al. [2018]
" " " irrep Weiler 2018 Weiler et al. [2018b]
" " " irrep Kondor 2018 Kondor et al. [2018]
" " " irrep Anderson 2019 Anderson et al. [2019]

SO(3) SO(2) S2 regular Cohen 2018 Cohen et al. [2018]
" " " trivial Esteves 2018 Esteves et al. [2018]
" " " " Perraudin 2018 Perraudin et al. [2018]
" " " irrep Jiang 2019 Jiang et al. [2019]
G H G/H trivial Kondor 2018 Kondor and Trivedi [2018]

Table 1: A taxonomy of G-CNNs. Methods are classified by the group G they are equivariant to, the
subgroup H that acts on the fibers, the base space G/H to which the fibers are attached (implied by
G and H), and the type of field ρ (regular, irreducible or trivial).
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