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1 Relationship between tensor networks, hidden Markov models and
quantum circuits

1.1 Non-negative MPS are HMM

Consider an MPS with non-negative tensors Ai and TT-rankR≥0
= r. To express the corresponding probability

distribution as a HMM, we split the tensors using an (exact) non-negative canonical polyadic decomposition
such that Ajki,l =

∑r′

s=1B
js
i C

ls
i D

sk
i , where r′ ≤ min(dr, r2) (Fig. S1b). We can now set

P (Xi = l|Hi = s) = Clsi (S1)

P (Hi = s|Hi−1 = j) =
∑
u

Dju
i−1B

us
i , (S2)

where the probabilities must be normalized properly, which can be done by first constructing the unnormalized
factor graph and then normalizing the probabilities on every edge. We have then defined a HMM with hidden
variables of dimension r′ that defines the same probability of the observed units as the one arising from the MPS.
Note that using a different graph for the hidden Markov model we could also arrive at a dimension of hidden
variables of r [1, 2].
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(a) (b)

Figure S1: (a) Mapping of a hidden Markov chain to a MPS with non-negative tensor elements. (b)
Mapping of a MPS with non-negative tensor elements to a hidden Markov chain.

1.2 Local quantum circuits are Born machines

In order to clarify the relationship between Born machines and local quantum circuits we provide here a concise
introduction to the formalism of circuit based quantum computing. For a more thorough description, see ref. [3].

Consider the Hilbert spaceH = Cd, with ortho-normal basis {|X〉}dX=1, where Dirac notation |X〉 has been
used to represent a vector ~X ∈ H. From a mathematical perspective, a d-dimensional qudit is a system whose
state vector |ψ〉 can be described by a unit vector inH. With respect to any fixed ortho-normal basis {|X〉}dX=1,
a qudit is therefore specified by d complex amplitudes {ψ(X)}dX=1 - i.e., |ψ〉 =

∑d
X=1 ψ(X)|X〉, with∑d

X=1 |ψ(X)|2 = 1.

At a high level, a quantum circuit then consists of multiple qudits, and a sequence of quantum gates, which are
unitary operations acting on (a subset of) the qudits, with unitarity required to preserve the normalization of the
global state of the system. To be more precise, consider a collection of N d-dimensional qudits, each described
by unit vectors in Hi = Cd, where i ∈ {1, . . . , N} indicates a particular qudit. Given such a collection of
qudits, the global state of the system is described by a unit vector |ψ〉 ∈ H ≡

⊗N
i=1Hi = Cd

N

. In particular,
with respect to a fixed ortho-normal basis {|Xi〉}dX=1 for each sub-system Hilbert spaceHi, the global state is
specified by dN complex amplitudes ψ(X1, . . . , XN ) - i.e.,

|ψ〉 =

d∑
X1=1

. . .

d∑
XN=1

ψ(X1, . . . , XN )|X1〉 ⊗ . . .⊗ |XN 〉, (S3)

with the constraint that

〈ψ|ψ〉 =

d∑
X1=1

. . .

d∑
XN=1

|ψ(X1, . . . , XN )|2 = 1. (S4)

Note that the set of all amplitudes, which completely defines the state vector |ψ〉 with respect to this particular
basis, is naturally represented as an order-N tensor with d-dimensional indices:

ψ(X1, . . . , XN ) =

X1 XN

. (S5)

Furthermore, in this diagrammatic notation where legs that join two tensors represent a summation over the
corresponding indices of the tensors, the normalization constraint takes the particularly simple form,

〈ψ|ψ〉 = = 1, (S6)

where the upper tensor is taken to be the complex conjugate of the lower tensor.
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Given some initial state of the system, a quantum circuit then consists of a sequence of unitary operations
(referred to as gates), each of which preserves the normalization of the global state of the system. We are
particularly interested in local quantum circuits, which consist of unitary operations which act only on a subset
of qubits. To be more precise, given some Hilbert spaceH, let us denote the set of unitary operators acting on
elements ofH as U(H). We will be concerned with 2-local quantum circuits, which consist of unitary operations
acting only on pairs of neighbouring qudits - i.e., all gates U ∈ U(H)are of the form

U = 11 ⊗ . . .⊗ 1i−1 ⊗ Ui,i+1 ⊗ 1i+2 ⊗ . . .⊗ 1N , (S7)

for some i ∈ {1, . . . , N}, where Uj,j+1 ∈ U(Hj ⊗Hj+1) and 1k is the identity operator onHk.

Let us now consider a quantum circuit in a one-dimensional geometry, consisting of N d-dimensional qudits, all
initialized in the |0〉 state vector, to which D layers of 2-local unitary gates are applied. As shown in Equation
(S8) below one can write the output state of this circuit as an MPS by first splitting each unitary operator through
a singular value decomposition, and then contracting all the resulting tensors as indicated by the dashed boxes.
Note that as a result of 2-locality, each unitary operator has rank less than d2, and therefore, the MPS has TT-rank
less than dD+1.

ψ(X1, . . . , XN ) = = = .

(S8)

Finally, given the outcome state vector |ψ〉 of a quantum circuit, it is necessary to understand the measurement
process, via which classical information can be extracted from this state. To this end, we need to understand
the Born rule of quantum mechanics. More specifically, in the restricted setting of finite-dimensional Hilbert
spaces which we consider here, observables correspond to Hermitian operators, and the Born rule states that
measurement of an observable O will yield one of the eigenvalues λi of O, with probability 〈ψ|Πi|ψ〉, where
Πi is the projection onto the eigenspace of λi. Note that the normalization of |ψ〉 is required precisely to allow
for this probabilistic interpretation of measurements via the Born rule.

Let us now consider an observable O which is diagonal in the fixed basis we have previously considered (often
referred to as the “computational basis”). In this case, we can write

O =

d∑
X1=1

. . .

d∑
XN=1

λ(X1, . . . , XN )|X1〉〈X1| ⊗ . . .⊗ |XN 〉〈XN |, (S9)

=

d∑
X1=1

. . .

d∑
XN=1

λ(X1, . . . , XN )Π(X1, . . . , XN ), (S10)

and we find that P (X1, . . . , XN ), the probability of obtaining measurement outcome λ(X1, . . . , XN ), is given
by

P (X1, . . . , XN ) = 〈ψ|Π(X1, . . . , XN )|ψ〉, (S11)

= |ψ(X1, . . . , XN )|2, (S12)

= . (S13)

As such, we find that measurements of the observable O allow us to sample from the probability mass function
P (X1, . . . , XN ) = |ψ(X1, . . . , XN )|2, and that when |ψ〉 is the output state of a 2-local quantum circuit of
depth D, this probability mass function is exactly a Born machine (where the origin of the name is now clear) of
Born-rank dD+1. This shows that in this probabilistic modeling approach, local quantum circuits of fixed depth
are Born machines of fixed Born-rank.
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1.3 Local quantum circuits with ancillas are locally purified states

In order to understand the relationship between locally purified states and local quantum circuits with ancillas, it
is necessary to understand the effect and formalism of measurements on subsystems.

To this end, consider a one-dimensional array of 2N d-dimensional qudits, consisting of alternating pairs of
system and ancilla qudits respectively, where each system qudit is a unit vector in H(S)

i = Cd spanned by
ortho-normal basis {|Xi〉}dX=1, and each ancilla qudit is a unit vector inH(A)

j = Cµ spanned by {|Yj〉}µY=1.

The global state vector |ψ〉 is therefore an element of the Hilbert spaceH = H(S)
1 ⊗H(A)

1 ⊗ . . .⊗H(S)
N ⊗H

(A)
N

- i.e.,

|ψ〉 =

d∑
X1,...,XN=1

µ∑
Y1,...,YN=1

ψ(X1, Y1, . . . , XN , YN )|X1〉 ⊗ |Y1〉 ⊗ . . .⊗ |XN 〉 ⊗ |YN 〉. (S14)

As in the previous section, we can consider a 2-local quantum circuit of depth D, where all qudits (system and
ancilla) are initialized in the |0〉 state vector, and note that the output state vector |ψ〉 can again be written as a
matrix product state of TT-rank less than rD+1, where r = min(d, µ).

|ψ〉 = = = . (S15)

Now, consider an observableO, as in Equation (S10), which is defined only on the system qudits, and is diagonal
in the computational basis for this subsystem - i.e.,

O =

d∑
X1=1

. . .

d∑
XN=1

λ(X1, . . . , XN )Π(X1 . . . , XN ). (S16)

The postulates of quantum mechanics state that the probability P (X1, . . . , XN ) of measurement outcome
λ(X1, . . . , XN ), when performing a measurement of observable O on the system qudits, is given by

P (X1, . . . , XN ) = Tr
(
ρSΠ(X1, . . . , XN )

)
, (S17)

where ρS is the system density matrix, given by
ρS = TrA(|ψ〉〈ψ|), (S18)

and where TrA indicates the partial trace over the Hilbert space of all ancilla qudits. Luckily, equations (S17)
and (S18) are both easily and concisely expressed in tensor network notation (which is in fact a particularly
strong motivation for such a notation). Specifically,

ρS = = , (S19)

and therefore

P (X1, . . . , XN ) =

µ∑
Y1,...YN=1

|ψ(X1, Y1, . . . , XN , YN )|2 (S20)

= . (S21)

As such, we find that measurements of the observable O on the system qudits allow us to sample from
the probability mass function (S21), which is precisely a locally purified state of puri-rank rD+1, where
r = min(d, µ), if |ψ〉 is the output state vector of a 2-local quantum circuit of depth D, consisting of 2N
alternating d-dimensional system and µ-dimensional local ancilla qudits.
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2 Proofs on the expressive power of tensor networks

We provide here proofs for all propositions in Section 5 of the main text. To facilitate ease of presentation and
understanding, we restate the propositions here. We begin with the following proposition, concerning inclusions
between the sets of probability distributions which can be exactly represented by different tensor-network
representations of the same rank.
Proposition 1. For all non-negative tensors TT-rankR≥0

≥ TT-rankR, Born-rankR ≥ Born-rankC,
Born-rankR ≥ puri-rankR, Born-rankC ≥ puri-rankC, puri-rankR ≥ puri-rankC, TT-rankR≥0

≥ puri-rankR,
TT-rankR = TT-rankC.

Proposition 1 is proven via Lemmas 1- 3 below:
Lemma 1. For all non-negative tensors, TT-rankR≥0

≥ TT-rankR, Born-rankR ≥ Born-rankC, Born-rankR ≥
puri-rankR, Born-rankC ≥ puri-rankC, puri-rankR ≥ puri-rankC.

Proof. It is clear that enlarging the set of tensor elements can only reduce the corresponding rank. Moreover a
BM is a LPS with purification dimension µ = 1.

Lemma 2. For all non-negative tensors, TT-rankR = TT-rankC.

Proof. The canonical MPS decomposition of a non-negative tensor can be obtained by successive singular value
decompositions [4], and has the same TT-rank as the highest rank across a bipartition. Because the rank of a
non-negative matrix is the same over R or C, TT-rankR = TT-rankC.

Lemma 3. For all non-negative tensors, TT-rankR≥0
≥ puri-rankR

Proof. Let us denote the non-negative tensors of an MPS of TT-rankR≥0
= r as Ai. We define a LPSR of

purification index of size µ = r2 with the tensors

Bβ1,α1
1,X1

= δα1,β1

√
Aα1

1,X1
, (S22)

B
βN ,αN−1

N,XN
= δαN−1,βN

√
A
αN−1

N,XN
, (S23)

B
βi,αi−1,αi

i,Xi
= δαi−1r+αi,βi

√
A
βi,αi−1,αi

i,Xi
. (S24)

We now observe that∑
βi

B
βi,αi−1,αi

i,Xi
B
βi,α

′
i−1,α

′i
i,Xi

=
∑
βi

δαi−1r+αi,βiδα′i−1r+α
′
i,βi

√
A
βi,αi−1,αi

i,Xi

√
A
βi,α

′
i−1,α

′i

i,Xi
(S25)

= δαi−1,α
′
i−1

δαi,α
′
i
A
αi−1,αi

i,Xi
, (S26)

or equivalently, in graphical notation, that

Xi Xi

r r r r
A

B

Xi

r

r

r

r

B
(S27)

Therefore, this LPS defines the same tensor as the original MPS and has puri-rankR = r.

We now turn to Proposition 2, showing that all inequalities given in Proposition 1 can in fact be strict, and that
for all other pairs of representations there exist probability distributions (non-negative tensors) showing that
neither rank can always be lower than the other.
Proposition 2. The ranks of all introduced tensor-network representations satisfy the properties contained in
Table 1. Specifically, denoting by rrow (rcolumn) the rank appearing in the row (column), < indicates that there
exists a tensor satisfying rrow < rcolumn and<,> indicates that there exists both a tensor satisfying rrow < rcolumn

and another tensor satisfying rcolumn > rrow.

Again, we prove Proposition 2 via Lemmas 4-9, each of which addresses a subset of the entries in Table 1. The
particular entry addressed by a specific lemma is indicated by [k, l]> or [k, l]<, where k denotes the row and
l the column of Table 1, and the subscript < (>) is used to indicate a specific case. Note also that a tensor
providing a proof for entry [k, l]> ([k, l]<) provides also a proof for entry [l, k]< ([l, k]>).
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Table 1: Results of Proposition 2

TT-rankR TT-rankR≥0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = < <,> <,> <,> <,>
TT-rankR≥0

> = <,> <,> > >
Born-rankR <,> <,> = > > >
Born-rankC <,> <,> < = <,> >
puri-rankR <,> < < <,> = >
puri-rankC <,> < < < < =

Lemma 4 ([1, 2]). There exists a non-negative matrix A with TT-rankR < TT-rankR≥0
.

Proof. Consider the matrix A =

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

. A has TT-rankR = 3 and TT-rankR≥0 = 4 [5].

Lemma 5 ([1, 3]<, [2, 3]<, [3, 4], [3, 5], [3, 6]). There exists a non-negative matrix B with TT-rankR <
Born-rankR, TT-rankR≥0

< Born-rankR and Born-rankR > puri-rankR.

Proof. Consider the matrix B =

2 1 1
1 0 1
1 1 0

. B has TT-rankR = 2 and TT-rankR≥0 = 2. Moreover the

square root element-wise of B is

√2 1 1
1 0 1
1 1 0

, which has rank 3, as well as all square roots obtained by

changing signs of each element, so Born-rankR = 3. On the other hand it is also possible to write B as

the absolute value squared of

1 + i 1 1
1 0 1
i 1 0

, which has rank 2, so Born-rankC = 2. Furthermore, from

Proposition 1 and the fact that TT-rankR≥0 = 2, we have that puri-rankR/C ≤ 2.

Lemma 6 ([2, 5], [2, 6], [2, 3]>, [2, 4]>, [1, 3]>, [1, 4]>, [1, 5]>, [1, 6]>). There exists a non-negative matrix
C with TT-rankR≥0

> puri-rankR, TT-rankR≥0
> puri-rankC, TT-rankR≥0

> Born-rankR, TT-rankR≥0
>

Born-rankC, TT-rankR > Born-rankR, TT-rankR > Born-rankC, TT-rankR > puri-rankR and TT-rankR >
puri-rankC.

Proof. Consider the matrix C =

4 1 1
1 0 1
1 1 0

. C has TT-rankR≥0 = TT-rankR = 3, but the square root is

matrix B from Lemma 5, of rank 2, so Born-rankR = Born-rankC = 2. Again, from Proposition 1 and the fact
that Born-rankR = 2 we have that puri-rankR/C ≤ 2.

Lemma 7 ([1, 4]<, [1, 5]<, [1, 6]<). There exists a non-negative matrix D with TT-rankR < Born-rankC,
TT-rankR < puri-rankR and TT-rankR < puri-rankC.

Proof. Consider a = (1 +
√

5)/2 and define D =


0 1 a 1 0
0 0 1 a 1
1 0 0 1 a
a 1 0 0 1
1 a 1 0 0

. D is the slack matrix of a regular

pentagon, and has TT-rankR≥0 = 5 while TT-rankR = 3. D has puri-rankR = 4 and puri-rankC = 4, as proven
in ref. [6]. By Proposition 1 and the fact that puri-rankC = 4 we have that Born-rankC ≥ 4.

Lemma 8 ([5, 6], [4, 5]<). There exists a non-negative matrix E with puri-rankR > puri-rankC and
Born-rankC < puri-rankR.
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Proof. Consider the matrix E =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

. E can be written as the product of

1 0
0 1
1 −1

1 e2iπ/3

 and

(
0 1 1 1

1 0 1 −e−2iπ/3

)
, which shows that Born-rankC ≤ 2, and therefore, puri-rankC ≤ 2 by Proposition 1.

Bounds on the real positive semidefinite rank imply that it is equal to 3 [7].

Lemma 9 ([4, 6], [2, 4]<, [4, 5]>). There exists a non-negative matrix F with puri-rankC < Born-rankC,
TT-rankR≥0 < Born-rankC and Born-rankC > puri-rankR.

Proof. Consider the matrix F =



1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1
1 0 1 2 1 1 2
1 1 0 1 2 1 2
0 1 1 1 1 2 2
1 1 1 2 2 2 3


. F has TT-rankR = 3 and is equal to the

product of



0 0 1
1 0 0
0 1 0
0 1 1
1 0 1
1 1 0
1 1 1


and its transpose, so F has TT-rankR≥0 = 3. In addition, we now prove that F has

Born-rankC ≥ 4. To this end, consider a complex Hadamard square root of matrix F given by

√
F =



eiφ1 0 0 eiφ2 eiφ3 0 eiφ4

0 eiφ5 0 0 eiφ6 eiφ7 eiφ8

0 0 eiφ9 eiφ10 0 eiφ11 eiφ12

eiφ13 0 eiφ14
√

2eiφ15 eiφ16 eiφ17
√

2eiφ18

eiφ19 eiφ20 0 eiφ21
√

2eiφ22 eiφ23
√

2eiφ24

0 eiφ25 eiφ26 eiφ27 eiφ28
√

2eiφ29
√

2eiφ30

eiφ31 eiφ32 eiφ33
√

2eiφ34
√

2eiφ35
√

2eiφ36
√

3eiφ37


, (S28)

where the φi are real parameters. We will prove that the rank of
√
F is at least 4. First observe that the rank is

invariant under multiplication of a row or a column by a phase. By performing such operations in the right order,
we obtain that the rank of

√
F is the same as the rank of a matrix

M =



1 0 0 1 eiφ1 0 1
0 1 0 0 1 eiφ2 1
0 0 1 eiφ3 0 1 1
eiφ4 0 eiφ5

√
2 eiφ6 eiφ7

√
2eiφ8

eiφ9 eiφ10 0 eiφ11
√

2 eiφ12
√

2eiφ13

0 eiφ14 eiφ15 eiφ16 eiφ17
√

2
√

2eiφ18

eiφ19 eiφ20 eiφ21
√

2eiφ22
√

2eiφ23
√

2eiφ24
√

3


, (S29)

with new real parameters φi (defined modulo 2π). We will prove that such a matrix has always rank at least 4. It
is clear that the first three rows are independent, so the rank is at least 3. Now suppose that the rank is 3, the
rows 4 to 7 are therefore complex linear combinations of the first 3 rows. Let us write such a linear combination
for row 4:

(4) = α(1) + β(2) + γ(3). (S30)

The first columns imply that α = eiφ4 , β = 0 and γ = eiφ5 . Moreover we have

eiφ4 + eiφ5eiφ3 =
√

2, (S31)

eiφ4 + eiφ5 =
√

2eiφ8 . (S32)

Let us take the absolute value squared of these equations, we obtain

2 + 2 cos(φ4 − φ5− φ3) = 2, (S33)
2 + 2 cos(φ4 − φ5) = 2. (S34)

Therefore, cos(φ4 − φ5 − φ3) = cos(φ4 − φ5) = 0, which implies that φ4 − φ5 = ±π/2 and φ3 = 0 or π, so
that eiφ3 = ±1. By similarly writing that row 5 and 6 are linear combinations of the first three rows, we obtain
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by symmetry that eiφ1 = ±1 and eiφ2 = ±1. Let us now show that the last row cannot be written as a linear
combination of the first three rows. Suppose this is the case, so that

(7) = α(1) + β(2) + γ(3). (S35)

Then the first columns imply that α = eiφ19 , β = eiφ20 and γ = eiφ21 . We know that eiφ1 = ±1, eiφ2 = ±1
and eiφ3 = ±1. We then have

eiφ19 ± eiφ21 =
√

2eiφ22 , (S36)

±eiφ19 + eiφ20 =
√

2eiφ23 , (S37)

±eiφ20 + eiφ21 =
√

2eiφ24 . (S38)

From this we obtain, by taking the absolute value squared,

cos(φ19 − (φ21 ± π)) = 0, (S39)
cos((φ19 ± π)− φ20) = 0, (S40)
cos((φ20 ± π)− φ21) = 0, (S41)

which implies

φ19 − φ21 = ±π/2, (S42)
φ19 − φ20 = ±π/2, (S43)
φ20 − φ21 = ±π/2, (S44)

which is impossible. We therefore conclude that M , and thus also
√
F , has rank at least 4.

Before continuing to Proposition 3, it is interesting to note that the proofs of Lemma’s 4 - 9 all involve lower-
bounding a given rank, and that this problem may be cast into the form of a polynomial optimization problem, for
which hierarchies of semi-definite relaxations are available [8]. For example, the non-negative rank TT-rankR≥0

can for a given d× d-matrix T be computed via the minimization problem

min ‖T − C‖2 (S45)

subject to C = AB, where A and B are d× k and k × d matrices with non-negative entries, respectively. A
hierarchy of convex relaxations can then be used to provide increasingly better approximations to the optimal
solution, and Kuhn-Tucker conditions can be made use of to check for global optimality of a solution. In practice
the required relaxations can soon become infeasibly large, however this strategy is worth noting as a potentially
interesting tool, particularly for the complex Hadamard square root rank.

Finally, we move onto the proof of Proposition 3, addressing the question of the overheads required to exactly
represent a tensor network representation of a given rank with an alternative representation.
Proposition 3. The ranks of all introduced tensor-network representations satisfy the relationships without
asterisk contained in Table 2. A function g(x) denotes that for all non-negative tensors rrow ≤ g(rcolumn). “No”
indicates that there exists a family of probability distributions of increasing N with d = 2 and rcolumn constant,
but such that rrow goes to infinity, i.e., that no such function can exist.

Table 2: Results of Proposition 3.

TT-rankR TT-rankR≥0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = ≤ x ≤ x2 ≤ x2 ≤ x2 ≤ x2

TT-rankR≥0
No = No No No No

Born-rankR No No = No No No
Born-rankC No No∗ ≤ x = No∗ No∗
puri-rankR No ≤ x ≤ x ≤ 2x = ≤ 2x
puri-rankC No ≤ x ≤ x ≤ x ≤ x =

Once again, it is convenient to prove Proposition 3 via a series of lemmas. However, note first that all entries of
Table 2 containing the function g(x) = x follow straightforwardly from Proposition 1. Given this, we begin
with Lemmas 10 and 11 addressing the remaining entries of Table 2 for which explicit functions can be found:
Lemma 10. For all non-negative tensors TT-rankR ≤ (puri-rankC)2, therefore, also TT-rankR ≤ (puri-rankR)2,
TT-rankR ≤ (Born-rankR)2 and TT-rankR ≤ (Born-rankC)2.

Proof. Consider an LPSC of puri-rankC = r. Let us denote the tensors defining this LPS as Aβi,αi−1,αi

i,Xi
.

Define new tensors B
αi−1,r+α

′
i−1,αi,r+α

′
i

i,Xi
=
∑
βi
A
βi,αi−1,αi

i,Xi
A
βi,α

′
i−1,α

′
i

i,Xi
. As shown in Equation (S46),
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these tensors define an MPSR of TT-rankR = r2 corresponding to the same probability mass function as the
original LPS.

Xi Xi

r

r

r

r
r2 r2A

B

(S46)

Lemma 11. For all non-negative tensors puri-rankR ≤ 2puri-rankC and puri-rankR ≤ 2Born-rankC.

Proof. Consider an LPSC with purification dimension equal to µ and puri-rankC equal to r, constructed from
tensors Ai. If we fix i and Xi, Ai is an r× µ matrix for i = 1 or i = N and an order-3 tensor of size r× r× µ
otherwise. Now define new tensors by blocks as

B1 =

(
Re(A1) −Im(A1)
Im(A1) Re(A1)

)
, BN =

(
Re(AN ) Im(A1)
−Im(AN ) Re(AN )

)
, (S47)

Bi =

Re(Ai)

Re(Ai)−Im(Ai)

Im(Ai)

Im(Ai)Re(Ai)

−Re(Ai)

Im(Ai)2r

2r

2µ

, ∀i ∈ {2, . . . , N − 1}. (S48)

Here Bi is an order-3 tensor defined by blocks, where each block has dimension r × r × µ. These tensors
define a real LPS with purification dimension equal to 2µ and puri-rankR equal to 2r which represents the
same probability mass function as the original complex LPS. Applying this result when µ = 1 shows that
puri-rankR ≤ 2Born-rankC.

We now move on to the proofs for the “No” entries of Table 2. As discussed in the main text, for each “No” entry
the strategy is to first prove the existence of a family of non-negative matrices (probability distributions over
two discrete random variables) with the property that rcolumn remains constant with respect to the dimension of
the matrix, while rrow grows. To this end, consider lemmas 12-15, each of which addresses a specific entry of
Table 2, for the restricted case of only two random variables:

Lemma 12 ([6, 1]). There exists a family of non-negative matrices, of increasing dimension d, with rank equal
to 3 and puri-rankC ≥ Ω(log d).

Proof. Slack matrices of regular n-gons in the plane have and rank 3 but puri-rankC ≥ Ω(logn) [9].

Lemma 13 ([3, 2]). There exists a family of non-negative matrices, of increasing dimension d, with TT-
rankR≥0

= 2 and Born-rankR = d.

Proof. Consider a sequence of integers ni such that 2ni − 1 is the i-th prime. Define the primes matrices
Ki,j = ni + nj − 1. K has rank 2 and non-negative rank 2. It was shown by induction in ref. [7] that the real
square root rank of K is full.

Lemma 14 ([2, 3]). There exists a family of non-negative matrices, of increasing dimension d, with Born-
rankR = 2 and TT-rankR≥0

≥ log2 d.

Proof. Consider the linear Euclidean distance matrices defined as Mi,j = (j − i)2. M is the element-wise
square of a matrix with elements equal to i− j, so has real square root rank equal to 2. Moreover, it was shown
in ref. [7] that M has non-negative rank at least log2 d.

Lemma 15 ([3, 4]). There exists a family of non-negative matrices, with increasing dimension d, with Born-
rankC = 2 and Born-rankR = d.

9



Proof. The prime matrices K introduced in Lemma 13 have full real square root rank. They can be written as
the absolute value squared element-wise of a matrix Mi,j =

√
ni + i

√
nj − 1. M has rank 2, so the complex

square root rank of K is 2.

Before continuing, note that all the remaining “No” entries not explicitly covered by Lemmas 12-15 in fact follow
directly from these lemmas when combined with Proposition 1 (this is made explicit shortly, in Propositions
4-7).

Given these families of probability distributions over two random variables, we now extend these results to the
case of probability mass functions over many variables of small dimension. As discussed in the main text, for
a particular [row, column] entry, the strategy is to start with a matrix M of size 2N × 2N such that rcolumn is
constant with respect toN , while rrow grows. Via an “unfolding” technique, applied to the column decomposition
of M , we then show that there exists a non-negative tensor with 2N two-dimensional indices such that (a) the
tensor rank corresponding to the column is equal to rcolumn and (b) the matrix M is a reshaping of the central
bipartition of the tensor. As a result of (b) it then follows that the tensor rank corresponding to the row is lower
bounded by rrow, therefore extending the separation from the case of two-variables to the case of many variables
of small dimension.

M =

2N 2N

=

2N 2N

=

N N

(S49)

More generally, we can write any N ×N matrix M as a submatrix of a 2N × 2N matrix for which we can apply
the previous idea. In this case M is a submatrix of the central bipartition of the obtained tensor over 2N binary
variables,

M =

N N

⊂ R =

2N 2N

=

2N 2N

=

N N

. (S50)

The “unfolding” technique upon which this proof strategy relies is formalized by Lemma 16:
Lemma 16. Consider a non-negative matrix M of TT-rankR≥0

(resp. TT-rankR, Born-rankR, Born-rankC)
equal to r and size N ×N . Then there exists an MPSR≥0

(resp. MPSR, BMR, BMC) over 2N binary variables
with TT-rankR≥0

(resp. TT-rankR, Born-rankR, Born-rankC) equal to r such that M is a submatrix of the central
bipartition of the resulting tensor.

Proof. Let us first prove the case where M has TT-rankR r. In this case we can write

Mi,j =

r∑
α=1

Ei,αFα,j , (S51)

where E and F are real matrices.

We now define the appropriate MPS of TT-rank r by direct specification of its tensors. Specifically, define the
boundary tensors for site one (2N ) such that the row (column) vector in the zero-index is a vector of ones and
the row (column) vector in the one-index is the first row (last column) of E (F ), i.e.,

Aα1,0 = 1, Aα1,1 = E1,α, (S52)
Aα2N,0 = 1, Aα2N,1 = Fα,N . (S53)

We then define the bulk tensors such that left (right) of the central bipartition the matrix in the zero-index is the
identity matrix, while the matrix in the one-index is diagonal with a row (column) of E (F ) on the diagonal, i.e.,
for all n in {2, . . . , N},

Aα,βn,0 = δα,β , A
α,β
n,1 = δα,βEn,α, (S54)

Aα,βn−1+N,0 = δα,β , A
α,β
n−1+N,1 = δα,βFα,n. (S55)

This MPS defines a tensor over 2N variables.
N N

i j

r
=

i j 0 1 0 0 1 0
(S56)
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DefineR the 2N×2N matrix corresponding to a reshaping as a matrix of this tensor across the central bipartition.
Consider R0···010···0,0···010···0, where the variables are all 0 except a 1 in position i ≤ d and a 1 in position
j ≥ d+ 1, then R0···010···0,0···010···0 =

∑r
α=1Ei,αFα,j = Mi,j . Therefore, M is a submatrix of R, up to a

reshaping of R as a matrix. The exact same proof can be done if M has TT-rankR≥0
= r.

If M has Born-rankR (resp. Born-rankC) r, apply the previous result to a real (resp. complex) element-wise
square root of M of rank r. This leads to an MPS for which the square root of M is a submatrix of the central
bipartition of the MPS. Therefore, M is a submatrix of the central bipartition of the tensor obtained from the
corresponding BM, which is the square of this MPS.

Via the strategy discussed above - i.e., applying the unfolding to the matrix examples in Lemmas 12 -15 (with
respect to the decomposition for which the corresponding rank remains constant) - we are able to use Lemma 16
to leverage the matrix families from Lemmas 12-15 into families of probability distributions over N random
variables of dimension 2, which prove all the “No” entries in Table 2 (when combined with Proposition 1). Note
that the entries “No∗” remain conjectures. The existence of a family of matrices of constant non-negative rank
but unbounded complex Hadamard square root rank, together with Lemma 16, would prove these entries.

While Lemma 16 provides an explicit construction for the “No” entries in Table 2, the separations it provides
are not optimal, since it is sometimes possible to unfold a 2N × 2N matrix into a tensor network of only 2N
variables, as in Equation (S49), rather than into a tensor network of 2(2N ) variables as is done in Lemma 16. For
this reason we provide more detailed proofs for the explicit asymptotics of the relevant separations, all of which
use a similar strategy, but some of which use alternative unfolding techniques. These results are stated here
as Propositions 4-7 to reflect their discussion in the main text. In particular, in order to obtain the asymptotic
separations given in Propositions 4-6, it is necessary to use alternative unfolding techniques to the one presented
in Lemma 16. Once again, the propositions are labelled by the the specific cases of Table 2 which they address.
Proposition 4 ([6, 1], [5, 1], [4, 1], [3, 1], [2, 1]). There exists a family of non-negative tensors over 2N binary
variables with constant TT-rankR=3 but with puri-rankC = Ω(N), and hence also puri-rankC, Born-rankR/C
and TT-rankR≥0

≥ Ω(N).

Proof. The result for the case [6, 1] has already been proven in ref. [10]. Note that the remaining cases then
follow from Proposition 1.

Proposition 5 ([3, 2], [3, 5], [3, 6]). There exists a family of non-negative tensors over 2N binary variables with
constant TT-rankR≥0

= 2 (and hence also puri-rankR/C = 2) but with Born-rankR ≥ π(2N+1), where π(x) is
the number of prime numbers up to x, which asymptotically satisfies π(x) ∼ x/ log(x).

Proof. Consider the 2N × 2N matrix with entries Mi,j = i + j. A submatrix of M is the prime matrix K
defined in Lemma 13 of size π(2N+1), where π(x) is the number of prime numbers lower than x. Let us show
that we can define an MPSR≥0

of TT-rankR≥0
= 2 such that M is the central bipartition of the resulting tensor.

Let us first define the matrices

PN =


1 1
1 2
...

...
1 2N

 , QN =

(
1 2 · · · 2N

1 1 · · · 1

)
, (S57)

and observe that M = PNQN ,

M = PN QN . (S58)

Now consider the tensors

A1,0 =
(
1 1

)
, A1,1 =

(
1 2

)
, (S59)

∀n ∈ {2, . . . , N}, An,0 =

(
1 0
0 1

)
, An,1 =

(
1 2n

0 1

)
, (S60)

and build an MPS by contracting tensors A1 to AN , as

= =A1 AN PN

(S61)

= = AN+1 A2NQN

(S62)
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We obtain a tensor TN with N open indices corresponding to N binary variables and an extra virtual index
of dimension 2. If we reshape this tensor as a 2N × 2 matrix we obtain matrix PN . In the same way we can
obtain an MPS of non-negative tensors such that contracting N sites gives a tensor that can be reshaped as QN .
Contracting the two extra virtual indices between the two MPS, we finally obtain an MPSR≥0

over 2N variables
such that M is the central bipartition of the resulting tensor. Suppose that there is a BMR defining the same
probability mass function over 2N variables, then it has Born-rankR larger or equal to the square root rank of
M , which is larger than the square root rank of K, which is π(2N+1). This proves the case [3, 2], the remaining
cases follow directly from Proposition 1.

Proposition 6 ([2, 3], [2, 4], [2, 5], [2, 6] ). There exists a family of non-negative tensors over 2N binary
variables with constant Born-rankR = 2 (and hence also constant Born-rankC and puri-rankR/C) that have
TT-rankR≥0

≥ N .

Proof. Consider the linear Euclidean matrices (see Lemma 14) defined as Mi,j = (j − i)2 and observe that M
is the element-wise square of a matrix Hi,j = j − i. We have H = PNQN , where

PN =


1 0
1 −1
1 −2
...

...
1 −2N + 1

 , QN =

(
0 1 2 · · · 2N − 1
1 1 1 · · · 1

)
. (S63)

Now consider the tensors

A1,0 =
(
1 0

)
, A1,1 =

(
1 −1

)
, (S64)

∀n > 1, An,0 =

(
1 0
0 1

)
, An,1 =

(
1 −2n

0 1

)
, (S65)

and build an MPS by contracting tensors A1 to An. We obtain a tensor TN with N open indices corresponding
to N binary variables and an extra virtual index of dimension 2, as in Equation (S61). If we reshape this tensor
as a 2N × 2 matrix we obtain matrix PN . In the same way we can obtain an MPS of non-negative tensors such
that contracting N sites gives a tensor that can be reshaped as QN . Contracting the two extra virtual indices
between the two MPS, we finally obtain an MPSR over 2N binary variables such that H is the central bipartition
of the resulting tensor. By squaring this MPS we obtain a BMR over 2N binary variables such that M is the
central bipartition of the resulting tensor. Suppose that there is an MPSR≥0

defining the same probability mass
function over 2N variables, then it has TT-rankR≥0

larger or equal to the non-negative rank of M , which is
larger than log2 2N = N . This proves the case [2, 3], and again the remaining cases follow from Proposition
1.

Proposition 7 ([3, 4]). There exists a family of non-negative tensors over 2N binary variables with constant
Born-rankC = 2, but with Born-rankR ≥ N .

Proof. Consider the N ×N matrices MN from Lemma 15. These matrices have complex square root rank 2
but real square root rank N . Using Lemma 16, this means that there is a BMC over 2N variables of Born-rankC
equal to 2 such that MN is a submatrix of the central bipartition of the resulting tensor. The Born-rankR of this
tensor is at least the Born-rankR of MN , which is N .

3 Learning algorithms and numerical experiments

3.1 Learning algorithms for LPS

Consider first the setting in which one is given samples {xi = (Xi
1, . . . , X

i
N )} from a discrete multivariate

distribution and would like to obtain an efficient approximation of this distribution. This can be done by
minimizing the negative log-likelihood,

L = −
∑
i

log
Txi

ZT
, (S66)

where i indexes training samples and Txi is given by the contraction of one of the tensor-network models we
have introduced. The derivative of the log-likelihood with respect to a parameter w in the tensor network is
given by

∂wL = −
∑
i

∂wTxi

Txi

− ∂wZT
ZT

. (S67)
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The negative log-likelihood can be minimized using a mini-batch gradient-descent algorithm. At each step of the
optimization, the sum is computed over a batch of training instances. The parameters in the tensor network are
then updated by a small step in the inverse direction of the gradient. Note that when using complex tensors, the
derivatives are replaced by Wirtinger derivatives with respect to the conjugated tensor elements. This algorithm
requires the computation of Txi and ∂wTxi for a training instance, as well as of ZT and ∂wZT .

We first focus on the computation of these quantities for LPS. Since Born machines are LPS of purification
dimension µ = 1, they can directly use the same algorithm [11]. For an LPSC of puri-rank r, the normalization
ZT can be computed by contracting the tensor network

ZT =
∑

X1,...,XN

TX1,...,XN =
A1

A1

. (S68)

This contraction is performed in O(dµr3N) operations from left to right by contracting at each step the two
vertical indices and then each of the two horizontal indices. During this contraction, intermediate results
from the contraction of the first i tensors are stored in Ei, and the same procedure is repeated from the right
with intermediate results of the contraction of the last N − i tensors stored in Fi+1. The derivatives of the
normalization for each tensor are then computed as

∂ZT

∂Āj,k,li,m

=
Ai

j
k l
m

Ei−1 Fi+1 , (S69)

which also costs O(dµr3N) operations. Computing Txi for a training example and its derivative is done in the
same way, except that the contracted index corresponding to an observed variable is now fixed to its observed
value.

Note that here the training is done by computing the gradients of the log-likelihood over all tensors for each batch
of training example and then updating all tensors at once in a gradient-descent optimization scheme. A different
approach would be a DMRG-like algorithm where only a few tensors are updated at a time. The computation of
ZT and its derivative may be greatly simplified by using canonical forms [4].

3.2 Learning algorithms for MPSR≥0

As in the case of LPS, MPSR≥0
can be trained using gradient descent to minimize the log-likelihood. Consider

an MPSR≥0
, and assume that the tensors Ai in the MPS are given by the element-wise square of real tensors Bi.

The normalization can be computed by contracting the following tensor network from left to right, where the
circles represent a vector of ones of dimension d, as

ZT = . (S70)

This contraction is performed in O(dr2N) operations. During this contraction, intermediate results from
the contraction of the first i tensors are stored in Ei, and the same procedure is repeated from the right
with intermediate results of the contraction of the last N − i tensors stored in Fi+1. The derivatives of the
normalization for each tensor are then computed as

∂ZT

∂Aj,ki,m
=

Ei−1 Fi+1j k
m , (S71)

and the derivatives with respect to the original parameters are obtained as

∂ZT

∂Bj,ki,m
= 2

∂ZT

∂Aj,ki,m
Bj,ki,m. (S72)

Applying the same procedure by replacing the circle tensors with indices corresponding to the observed variables
at a training example leads to the computation of Txi and its derivative.
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3.3 Tensor factorizations

We minimize D(P ||T/ZT ) through a non-linear limited-memory BFGS optimization algorithm. The gradient
of the KL-divergence depends on the log-derivatives of T and of ZT , which have already been obtained while
computing the gradient of the log-likelihood.

Optimizing an MPSR requires to impose the non-negativity of the tensor network. In order to still provide a
comparison with MPSR, we optimize them by adding a penalty term constraining all elements of the contracted
tensor to be non-negative. This constraint is difficult to satisfy, so the optimization may not converge to the
global minimum.

Note that we could have chosen any distance instead of the KL-divergence. In particular if instead we minimize
the 2-norm for vectors ||P −T ||2 the optimization for an MPSR can be done by keeping only the largest singular
values of the tensor P (in the case of matrices), and a good starting point for tensors can be obtained through
successive truncated singular value decompositions. We find that the results we obtained are not significantly
modified if the 2-norm was considered instead of the KL-divergence.

3.4 Generalization performance

Our results focus on the expressive power of different tensor-network representations, and for this reason the
numerical experiments focused on the accuracy obtained while training on the full datasets. It is nevertheless
also interesting to see how much these results would be modified if we considered generalization performance
instead.

In order to investigate the differences obtained on training sets or test sets, we focus on the biofam data set of
family life states from the Swiss Household Panel biographical survey [12], since small bond dimensions are
sufficient to get already converged results on training sets and since this data set includes variables that have a
natural sequential order : they represent the family life states from age 15 to 30 (sequence length is 16) and the
variables can take 8 possible values. The probability distribution is therefore a tensor of size 816 = 248, which
requires to use models with smaller number of parameters. We use 1000 examples in the training set, 500 in
the validation set and 500 in the test set. All models are trained for 20000 epochs with a batch size of 20 on
the training set, and the best training accuracy with respect to different learning rates (using a grid search on
powers of 10 going from 10−5 to 105) is recorded. The procedure is repeated 20 times with a different random
initialization of the tensors, and the mean and standard deviation are reported in Fig. S2 (left). For each initial
condition, the best model on the validation set is chosen to be evaluated on the test set. The mean and standard
deviation of the accuracy on the test set with respect to different initial conditions are reported Fig. S2 (right).

Figure S2: Negative log-likelihood per sample obtained on the training set (left) and on the test set
(right) for different tensor-network representations on the biofam data set. The error bars represent
one standard deviation with different initial conditions.

The results indicate that despite rather small differences between HMM and non-negative MPS on the training
set, the differences on the test set are important and non-negative MPS are able to reach a better accuracy at larger
ranks, when HMM do not improve anymore. Born machines and LPS all reach better performance than HMM
and non-negative MPS already for small ranks, and with smaller variance with respect to the initial conditions.
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