
A Proof of Theorem 1392

For the simplicity of our argument, we work with the following assumptions on the training set.393

Assumption 1. Label noise: Exactly p fraction of the sample points have their first coordinate394

flipped.395

Assumption 2. Orthogonality: the non-zero coordinates are distinct for all n data points (except396

for the first coordinate)397

Notice that by the fact that n = o(
√
d) and a simple union bound, Assumption 2 holds with high398

probability. For each i ∈ [d], we let j(i) denote the index j that satisfies xj(i) = 1, if it exists. To399

simplify the notation, we assume that all labels yi are 1; this is without loss of generality, since one400

can always replace xi with yixi.401

In order to prove Theorem 1, we will precisely characterize the limiting behavior of SGD in this set-402

ting. We remark that as the optimization objective is strongly convex, SGD and GD with appropriate403

choices of step size is guaranteed to converge to the global minimum.404

Lemma 1 (Convergence of gradient descent). Assume the setting above. Let X ∈ Rn×d be the data405

matrix. Initialized at point w0, (stochastic) gradient descent converges to406

w′ = XT (XXT)−1(1−Xw0) +w0, (1)

as the number of steps goes to infinity. Moreover, we have407

w′(1) =

(
n

n+ 1

)
η − sTXw0

n+ 1
+w0(1), (2)

where s is the first column of X and η = 1− 2p, and for i 6= 1408

w′(i) =

{
w0(i) if xj(i) = 0 for all xj ,

β
(
1 + sj(i)

(
−nη+sTXw0

n+1

)
η − xTj(i)w0

)
+w0(i) if xj(i) = β ∈ {±1} for some xj

(3)

Proof. We focus on the gradient descent case; the proof for SGD is analogous. Consider the empirical409

loss L(w). By the definition of gradient descent, the iterations always stay in the affine space410

V = w0 + RowSpan(X). Gradient descent solves the linear least squares problem minw∈V L(w).411

We claim that w′ is indeed the optimal solution to this program, and thus gradient descent converges412

to it.413

First, one can check XXT is non-singular under Assumption 2, since XXT = I + ssT and414

sTs 6= −1. Moreover, w′ ∈ V since XT (XXT)−1 is the orthogonal projector onto the row space415

of X . Finally, we check that w′ achieves zero empirical loss416

Xw′ = XXT (XXT)−1(1−Xw0) +Xw0 = 1. (4)

For the first coordinate of w′, by the Sherman-Morrison formula [12, p. 51],417

(XXT)−1 = (I + ssT)−1 = I − ssT

1 + sTs
= I − ssT

n+ 1
. (5)

Substituting this into (1) and simplifying yields claims (2) and (3).418

We now recall Theorem 1:419

Theorem 1. Consider training a linear classifier via minimizing the empirical square loss using420

SGD. Let ε > 0 be a small constant and let the initial vector w0 satisfy w0(1) ≥ −n0.99, and421

|w0(i)| ≤ 1− 2p− ε for all i > 1. Then, with high probability, sample accuracy approaches 1 and422

population accuracy approaches 1− p as the number of gradient steps goes to infinity.423

Proof. Let k(j) denote the non-zero coordinate of xj (besides the first coordinate). First we note424

that425

sTXw0 = nw0(1) +

n∑
j=1

sjxj(k(j))w0(k(j))

11

Because each xj(k(j)) is a Bernoulli(p) random variable and every w0(k(j)) ≤ 1, we can apply426

Chebyshev’s inequality to further deduce that with high probability, sTXw0 = nw0(1) +O(
√
n).427

Substituting this into (2) of Lemma 1, letting w′ be the weight vector SGD converges to, we obtain428

w′(1) =

(
n

n+ 1

)
η − nw0(1) +O(

√
n)

n+ 1
+w0(1) = η − o(1)

By (3) of Lemma 1, for every coordinate i such that xj(i) = 0 for all j, we have w′(i) = w0(i).429

Consider a point x drawn from the population, and let k be the index of the non-zero coordinate of430

x. With high probability, k 6= k(j) for all j ∈ [n]. With probability 1− p, x(1) = 1, and in this case431

we obtain432

〈w′,x〉 = w′(1)x(1) +w0(k)x(k) ≥ η − o(1)− (η − ε) = ε− o(1)

For sufficiently large n (corresponding to sufficiently large d) this quantity is always positive, so433

with probability approaching 1− p the model correctly classifies x.434

B Experimental Setup and Results for Sections 3 and 4435

Dataset description. We used the following four datasets in our experiments.436

(i) Binary MNIST: predict whether the image represents a number from 0 to 4 or from 5 to 9.437

It admits a linear classifier with accuracy ≈ 87%,438

(ii) CIFAR-10 Animals vs Objects: predict whether the image represents an animal or an439

object. In order not to enforce bias towards any of the classes we included all the 4 object440

classes (airplane, automobile, ship, truck) and only 4 out of 6 of the animal ones (bird, cat,441

dog, horse). Hence the number of positive and negative samples are the same. CIFAR-10442

Animals vs Objects admits a linear classifier with accuracy ≈ 75%,443

(iii) CIFAR-10 First 5 vs Last 5: predict whether an image belongs to any of the first 5 classes444

of CIFAR10 (airplane, automobile, bird, cat, deer) or the last 5 classes (dog, frog, horse,445

ship, truck). CIFAR-10 First 5 vs Last 5 does not admit a linear classifier with satisfying446

accuracy. The best linear classifier achieves accuracy of ≈ 58%,447

(iv) High-dimensional Sinusoid: predict y := sign(〈w, x〉+ sin〈w′, x〉) for standard Gaussian448

x ∈ Rd where d = 100. The vector w is also chosen uniformly from Sd−1 and w′ is an449

orthogonal vector to the hyperplane. High-dimensional sinusoid admits a linear classifier450

with accuracy ≈ 80%.451

In the cases of datasets (i), (ii), and (iii) we created the train and tests sets by relabeling the train and452

test sets of MNIST and CIFAR10 with {0, 1} labels according to the specific dataset (and excluded453

the images that are not relevant). All experiments are repeated 10 times with random initialization;454

standard deviations are reported in the figures (shaded area).455

Model details. Our results were consistent across various architectures and hyperparameter choices.456

For the Sinusoid distribution we train a 2-layer MLP, with ReLu activations. Each layer is 256457

neurons. For the MNIST and CIFAR tasks in section 3 we train a CNN with 4 2D-Conv layers; each458

layer has 32 filters of size 3× 3. After the first and second layers we have a 2× 2 Max-Pooling layer,459

and at the end of the 4 convolutional layers we have two Dense layers of 2000 units. The activations460

on all intermediate layers are ReLUs. Across all architectures the last layer is a sigmoid neuron.461

Training procedure. We initialize the neural networks with Uniform Xavier [10]. We note that462

in all the experiments we use vanilla SGD without regularization (e.g. dropout) since we want to463

isolate and investigate purely the effect of the optimization algorithm. We use batch size of 32 for464

MLP’s and 64 for CNNs. For the MLP’s in section 3, the learning rate is 0.01. For the CNN’s in465

Section 3, the learning rate is 0.001. For Section 4, we train the resnet and all smaller CNN’s using466

SGD with momentum 0.9, batch size 128 and learning rate 0.01.467

Finding the Conditional Models. For Section 3, in order to find the linear classifier ` that best468

explains the initial phase of learning, we do the following. For tasks (i), (ii), and (iv), where there469

12

Linear Model Null Model
µ(FT0

;L)/I(FT0
;Y) µ(FT0

; L̃)/I(FT0
;Y)

MNIST 0.79 0.52
CIFAR (ii) 0.80 0.31
CIFAR (iii) 0.74 0.02

Sinusoid 0.74 0.27

Table 2: Performance Correlation of Linear Model vs. Null Model

Simple Model Null Model
µ(FT0

;Gi)/I(FT0
;Y) µ(FT0

; G̃i)/I(FT0
;Y)

2-layer CNN 0.68 0.20
4-layer CNN 0.72 0.31
6-layer CNN 0.72 0.40

Table 3: Performance Correlation of simple CNN Models vs. Null Model on CIFAR First vs. Last 5

exists a unique optimal linear classifier, we set ` by training a linear classifier via SGD with logistic470

loss on the training set of the distribution.471

For task (iii), we need to break the symmetry among many linear classifier that are roughly of equal472

performance. Here, we set ` by training a linear classifier via SGD to reproduce the outputs of fT0
473

on the training set. That is, we label the train set using fT0
(outputting labels in {0, 1}), and train a474

linear classifier on these labels. Note that we could also have trained on the sigmoid output of fT0
,475

not rounding its output to {0, 1}; this does not affect results in our experiments.476

In Section 4, we perform a similar procedure: After training f∞, we train simple models gi on the477

predictions of f∞ on the train set, via SGD.478

Estimating the Mutual Information. Let f, g be two classifiers, and y be the true labels. In order479

to estimate our mutual-information metrics, we use the empirical distribution of (F,G, Y) on the480

test set. For example, to estimate I(F ;Y |G) we use the definition481

I(F ;Y |G) =
∑

(f,y,g)∈{0,1}3
p(f, y, g) log

(
p(f, y|g)

p(f |g)p(y|g)

)
(6)

where p(f, y, g) is the joint probability density function of (F, Y,G) and p(f |g), etc. are the con-482

ditional density functions. To estimate this quantity, we first compute the empirical distribution483

of (f, y, g) ∈ {0, 1}3 over the test set. Let p̂(f, y, g) be this empirical density function. Then we484

estimate I(F ;Y |G) by evaluating Equation 6 using p̂ in place of p.485

Further Quantitative Results. In Tables 2 and 3 we provide further quantitative results for our486

experiments in Sections 3 and 4 respectively.487

13

C Additional Plots488

(a) Step 0 (b) Step 10 (c) Step 100 (d) Step 1000 (e) Step 10000

Figure 6: SGD training on a 3-layer, width-100 dense neural network. The data distribution is an
(essentially) 1-dimensional Gaussian labeled by a linear classifier with 10% label noise. After a few
hundreds of SGD steps the decision boundary is very non-linear outside of the training set, indicating
that the neural network does not actually learn a linear classifier but rather a classifier that highly
agrees with a linear one. In other words, there exist a linear classifier that explains the predictions of
the neural network well, despite the fact that the network itself is highly non-linear.

(a) Step 0 (b) Step 10 (c) Step 100 (d) Step 1000 (e) Step 10000

Figure 7: A simplified version of Figure 1. SGD training on a 3-layer, width-100 dense neural
network. The data distribution is an isotropic Gaussian in 2-dimensions, labeled by a linear classifier
with 10% label noise. The blue line corresponds to the decision boundary of the neural network
which becomes more “linear” in the initial stages before starting to overfit to the label noise.

(a) Good Init (via 100 SGD steps) (b) Bad Initialization

(c) Continuing training from bad
initialization.

Figure 8: Two different initializations, each with 88% accuracy on the training set. The data distri-
bution is an isotropic Gaussian in 2-dimensions, labeled by a linear classifier with 10% label noise.
The good initialization is found after running 100 SGD steps from a random initialization. The bad
initialization is found by generating randomly labeled points, and fitting the function to them together
with the original training set. One can see that continuing training from the bad initialization allows
us to overfit to the training set but does not improve the population accuracy at all. The model here
is again a 3-layer, width-100 dense neural network.

14

