
Appendix for:
Neural Relational Inference

with Fast Modular Meta-learning

Ferran Alet, Erica Weng, Tomás Lozano Pérez, Leslie Pack Kaelbling
MIT Computer Science and Artificial Intelligence Laboratory

{alet,ericaw,tlp,lpk}@mit.edu

A Experimental setup

To eliminate the amount of hyperparameters from modular meta-learning regarding the temperature
schedule of Simulated Annealing we decided to auto-adjust the temperature based on the current
mean-squared error loss; which essentially turns Simulated Annealing into MCMC. There are a
few options how to turn the loss into the temperature, we tried 3 of them: directly using the loss as
the temperature (which assume losses for different samples are perfectly correlated), using the loss
divided by the number of samples (which assume they are independent). However, we went for the
middle ground by computing the R2 coefficient (the correlation squared) between the error in one
timestep t and the error on the following timestep t+ 1, equivalent to adding a linear model on the
residual as corrector and then using the loss divided by the number of samples times (1−R2); so
the temperature parameter was self-adjusted as MSE/(F ·N · T · (1 − R2)) where MSE is the
mean-squared error loss across all datasets, F = 4, the number of features, N = 5, the number of
particles, T = 50 the number of time-steps.

Before running all the experiments, we chose the relevant hyperparameters on runs using 10000
datasets on both springs and charged. We tried the following learning rates for Adam (Kingma & Ba,
2014): 3e− 2, 1e− 2, 3e− 3, 1e− 3, 3e− 4, 1e− 4, 3e− 5; we chose 1e− 2 for springs and 1e− 4
for charged. Since the amount of overfitting was relatively small in these trial runs of 10k datasets,
the number of epochs was decided mainly from computational constraints, running 1k epochs for the
experiments with 50k datasets.

All other hyperparameters were the same as the code for Neural Relational Inference, to ensure they
were as comparable as possible.

We run on pods containing 12GB of RAM, 5 CPUs and 1 nVIDIA RTX 2080 with PyTorch1.1 (Paszke
et al., 2017) and CUDA 10.0;the biggest experiments took on the order of two days. We ran each
experiment 2 times and averaged the results, except for the biggest number of datasets where we only
ran them once.

B Pseudo-code for modular meta-learning in graph neural networks

Notation

• G: graph, with node n1, . . . , nr and directed edges e1, . . . , er′ .

• fin: encoding function from input to graph initial states.

• fout: decoding function from graph final states to output.

• G: set of node modules g1, . . . , g|G|, where gi is a network with weights θgi .

• H: set of edge modules h1, . . . , h|H|, where hi is a network with weights θhi
.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

• S: a structure, one module per node mn1 , . . . ,mnr , one module per edge me1 , . . . ,mer′ .
Each mni is a pointer to G and each mej is a pointer to H.

• T 1, . . . , T k: set of regression tasks, from which we can sample (x, y) pairs.

• MP(T)(G, S)(xt) → xt+1: message-passing function applied T times, see Gilmer et al.
(2017) for details.
• L(ytarget, ypred): loss function; in our case |ytarget − ypred|2.
• P proposal function, a neural network that returns a factored probability distribution, with

the probability for each module for each node and each edge.
• LP (p, S): loss function for proposal function; in our case the cross-entropy loss function of

probability p to predict S.
• L: instantiations losses. This includes the actual loss value and infrastructure to backpropa-

gate them.
• random_elt(S, P): pick element from set S according to a probability distribution

Algorithm 1 BounceGrad with learned proposal function for Graph Neural Networks.
1: procedure INITIALIZESTRUCTURE(G,G,H) . Initialize with random modules
2: for ni ∈ G.nodes do S.mni ←random_elt(G)
3: for ei ∈ G.edges do S.mei ←random_elt(H)
4: procedure PROPOSECANDIDATESTRUCTURE(S,G,G,H, p)
5: C ← S
6: idx← random_elt(G.nodes)
7: if Bernouilli(1/2) then . In our experiments we only have one node module and skip this branch
8: C.mnidx ←random_elt(G \ C.mnidx , pnidx)
9: else . Resample incoming edges to one particular node

10: for e ∈ incoming(G.nodesidx) do
11: C.me ←random_elt(H, pme)
12: return P
13: procedure EVALUATE(G, S,L,x,y)
14: w ← MP(T)(G, S)(x) . Running the GNN with modular structure S
15: return L(y,w)

16: procedure BOUNCEGRAD(G,G,H, T 1, . . . , T k) . Modules in G,H and proposal P start untrained
17: for l ∈ [1, k] do
18: Sl ← InitializeStructure(G,G,H)

19: while not done do
20: l← random_elt([1, k])
21: (x,y)← sample(T l) . Train data
22: p← P (x,y) . Proposal function predicts probabilities for every module slot
23: C ← ProposeCandidateStructure(Sl,G,G,H, p)
24: LSl ←Evaluate(G, Sl,L,x,y)
25: LC ←Evaluate(G, C,L,x,y)
26: Sl ←SimulatedAnnealing((Sl, LSl), (C,LC)) . Choose between Sl and C
27: (x′,y′)← sample(T l) . Test data
28: L,LP ←Evaluate(G, Sl,L,x′,y′), LP (p, S)
29: for h ∈ H do θh ← GradientDescent(L, θh)
30: for g ∈ G do θg ← GradientDescent(L, θg)
31: θP ← GradientDescent(LP , θp)
32: return G,H, P . Return specialized modules and proposal function

2

C Pseudo-code for estimating the trajectory of an unseen node

Our algorithm for estimating the trajectory for the unseen node resorts to estimating its initial position
and predicting the dynamical system from there. For any potential initial position for the unseen
node, we can take the initial positions of all the nodes and simulate the system forward. We then
compare the predictions with the observations, obtaining a loss function. Given this loss function,
the initial position of the unseen node is found by maintaining a current best estimate and updating
it via gradient descent (since the loss is end-to-end differentiable). Moreover, at every step we also
sample a new candidate initial position and replace the current candidate with this new one in case it
improves the loss. This prevents us from falling into local optima.

Algorithm 2 Estimating the trajectory of an unseen node from its effects on observed nodes.
1: procedure EVALUATEUNSEENNODE(G,x1

1,x
1:T
2:n ,L,x)

2: x1 = [x11, x
1
2:n]

3: w ← MP(T)(G, S)(x) . Running the GNN with modular structure S from position x1

4: return L(x1:T
2:n ,w

1:T
2:n),w1 . Return error in predictions for seen nodes and entire trajectory for x1.

5: procedure FINDNODE(G,G,H, S,x1:T
2:n) . We assume modules are trained and we know the structure S.

6: x1
1 ← Uniform([0, 1]4) . Sample an initial position and velocity for the unseen node

7: while not done do
8: c1 ← Unif([0, 1]4) . Sample a new candidate initial position and velocity
9: Lx,x1 ←EvaluateUnseenNode(G,x1

1,x
1:T
2:n ,L, S)

10: Lc, c←EvaluateUnseenNode(G, c,x1:T
2:n ,L, S)

11: if Lc < Lx then . If random sample improves loss, change to new sample.
12: x1 ← c
13: else
14: x1

1 ← GradientDescent(Lx,x
1
1) . Loss is end-to-end differentiable w.r.t. initial position of x1.

15: return x1 . Return estimate of the trajectory of the unseen node.

References
Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural

message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Adam Paszke, Sam Gross, and Adam Lerer. Automatic differentiation in PyTorch. In International
Conference on Learning Representations, 2017.

3

	Experimental setup
	Pseudo-code for modular meta-learning in graph neural networks
	Pseudo-code for estimating the trajectory of an unseen node

