
A Convergence analysis of Varag for deterministic finite-sum optimization1

Our main goal in this section is to establish the convergence results stated in Theorems 1 and 2 for2

the Varag method applied to the finite-sum optimization problem in (1.1).3

Before proving Theorem 1 and 2, we first need to present some basic properties for smooth convex4

functions and then provide some important technical results.5

Lemma 1 If f : X → R has Lipschitz continuous gradients with Lipschitz constant L, then6

1
2L‖∇f(x)−∇f(z)‖2∗ ≤ f(x)− f(z)− 〈∇f(z), x− z〉 ∀x, z ∈ X.

Proof: Denote φ(x) = f(x)− f(z)− 〈∇f(z), x− z〉. Clearly φ also has L-Lipschitz continuous7

gradients. It is easy to check that∇φ(z) = 0, and hence that minx φ(x) = φ(z) = 0, which implies8

φ(z) ≤ φ(x− 1
L∇φ(x))

= φ(x) +

∫ 1

0

〈∇φ
(
x− τ

L∇φ(x)
)
,− 1

L∇φ(x)〉dτ

= φ(x) + 〈∇φ(x),− 1
L∇φ(x)〉+

∫ 1

0

〈∇φ
(
x− τ

L∇φ(x)
)
−∇φ(x),− 1

L∇φ(x)〉dτ

≤ φ(x)− 1
L‖∇φ(x)‖2∗ +

∫ 1

0

L‖ τL∇φ(x)‖∗ ‖ 1
L∇φ(x)‖∗dτ

= φ(x)− 1
2L‖∇φ(x)‖2∗.

Therefore, we have 1
2L‖∇φ(x)‖2∗ ≤ φ(x)− φ(z) = φ(x), and the result follows immediately from9

this relation. �10

The following result follows as a consequence of Lemma 1.11

Lemma 2 Let x∗ be an optimal solution of (1.1). Then we have12

1
m

∑m
i=1

1
mqi
‖∇fi(x)−∇fi(x∗)‖2∗ ≤ 2LQ [ψ(x)− ψ(x∗)] , ∀x ∈ X, (A.1)

where13

LQ = 1
m max
i=1,...,m

Li

qi
. (A.2)

Proof: By Lemma 1 (with f = fi), we have

‖∇fi(x)−∇fi(x∗)‖2∗ ≤ 2Li [fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉] .
Dividing this inequality by 1/(m2qi), and summing over i = 1, . . . ,m, we obtain14

1
m

∑m
i=1

1
mqi
‖∇fi(x)−∇fi(x∗)‖2∗ ≤ 2LQ [f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉] . (A.3)

By the optimality of x∗, we have 〈∇f(x∗) + h′(x∗), x− x∗〉 ≥ 0 for any x ∈ X , which in view of15

the convexity of h, implies that 〈∇f(x∗), x− x∗〉 ≥ h(x∗)− h(x) for any x ∈ X . The result then16

follows by combining the previous two conclusions. �17

In the sequel, let us define some important notations that help us to simplify the convergence analysis18

of Varag .19

lf (z, x) := f(z) + 〈∇f(z), x− z〉, (A.4)
δt := Gt −∇f(xt), (A.5)

x+
t−1 := 1

1+µγs
(xt−1 + µγsxt) , (A.6)

where Gt, xt and xt−1 are generated as in Algorithm 1. Lemma 3 below shows that Gt is an unbiased20

estimator of∇f(xt) and provides a tight upper bound for its variance.21

Lemma 3 Conditionally on x1, . . . , xt−1,22

E[δt] = 0, (A.7)

E[‖δt‖2∗] ≤ 2LQ[f(x̃)− f(xt)− 〈∇f(xt), x̃− xt〉]. (A.8)
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Proof: We take the expectation with respect to it conditionally on x1, . . . , xt, to obtain23

E
[

1
mqit
∇fit(xt)

]
=
∑m
i=1

qi
mqi
∇fi(xt) =

∑m
i=1

1
m∇fi(xt) = ∇f(xt).

Similarly we have E
[

1
mqit
∇fit(x̃)

]
= ∇f(x̃). Therefore,24

E[Gt] = E
[

1
mqit

(
∇fit(xt)−∇fit(x̃)

)
+∇f(x̃)

]
= ∇f(xt).

To bound the variance, we have25

E[‖δt‖2∗] =E[‖ 1
mqit

(
∇fit(xt)−∇fit(x̃)

)
+∇f(x̃)−∇f(xt)‖2∗]

=E[ 1
(mqit )2 ‖∇fit(xt)−∇fit(x̃)‖2∗]− ‖∇f(xt)−∇f(x̃)‖2∗

≤E[ 1
(mqit )2 ‖∇fit(xt)−∇fit(x̃)‖2∗]

The above relation, in view of relation (A.3) (with x and x∗ replaced by x̃ and xt), then implies (A.8).26

�27

Using the definition of x+
t−1 in (A.6), and the definitions of xt and x̄t in Algorithm 1 (see Line 6 and28

9), we have29

x̄t − xt = (1− αs − ps)x̄t−1 + αsxt + psx̃− xt
= αsxt + 1

1+µγs
{[1 + µγs(1− αs)]xt − αsxt−1} − xt

= αs(xt − x+
t−1). (A.9)

We characterize the solutions of the prox-mapping (1.6) (or Line 8 of Algorithm 1) in Lemma 430

below.31

Lemma 4 ([2, Lemma 2]) Let the convex function p : X → R, the points x̃, ỹ ∈ X and the scalars32

µ1, µ2 ≥ 0 be given. Let w : X → R be a convex function and V (x0, x) be defined in (1.4). If33

u∗ ∈ Argmin{p(u) + µ1V (x̃, u) + µ2V (ỹ, u) : u ∈ X}, (A.10)

then for any u ∈ X , we have34

p(u∗) + µ1V (x̃, u∗) + µ2V (ỹ, u∗) ≤ p(u) + µ1V (x̃, u) + µ2V (ỹ, u)− (µ1 + µ2)V (u∗, u).

The following result examines the optimality conditions associated with the definition of xt in Line 835

of Algorithm 1.36

Lemma 5 For any x ∈ X , we have37

γs[lf (xt, xt)− lf (xt, x) + h(xt)− h(x)] ≤ γsµV (xt, x) + V (xt−1, x)− (1 + µγs)V (xt, x)

− 1+µγs
2 ‖xt − x+

t−1‖2 − γs〈δt, xt − x〉.

Proof: It follows from Lemma 4 and the definition of xt in Algorithm 1 that38

γs[〈Gt, xt − x〉+ h(xt)− h(x) + µV (xt, xt)] + +V (xt−1, xt)

≤ γsµV (xt, x) + V (xt−1, x)− (1 + µγs)V (xt, x).

Also observe that39

〈Gt, xt − x〉 = 〈∇f(xt), xt − x〉+ 〈δt, xt − x〉 = lf (xt, xt)− lf (xt, x) + 〈δt, xt − x〉
and40

γsµV (xt, xt) + V (xt−1, xt) ≥ 1
2

(
µγs‖xt − xt‖2 + ‖xt − xt−1‖2

)
≥ 1+µγs

2 ‖xt − x+
t−1‖2,

where the last inequality follows from the definition of x+
t−1 in (A.6) and the convexity of ‖ · ‖. The41

result then follows by combining the above three relations. �42

We now show the possible progress made by each inner iteration of the Varag method.43
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Lemma 6 Assume that αs ∈ [0, 1], ps ∈ [0, 1] and γs > 0 satisfy44

1 + µγs − Lαsγs > 0, (A.11)

ps − LQαsγs
1+µγs−Lαsγs

≥ 0. (A.12)

Then, conditional on x1, . . . , xt−1, we have45

γs
αs

E[ψ(x̄t)− ψ(x)] + (1 + µγs)E[V (xt, x)]

≤ γs
αs

(1− αs − ps)[ψ(x̄t−1)− ψ(x)] + γsps
αs

[ψ(x̃)− ψ(x)] + V (xt−1, x)

(A.13)

for any x ∈ X .46

Proof: Note that by the smoothness of f , the definition of x̄t, and (A.9), we have47

f(x̄t) ≤ lf (xt, x̄t) + L
2 ‖x̄t − xt‖

2

= (1− αs − ps)lf (xt, x̄t−1) + αslf (xt, xt) + pslf (xt, x̃) +
Lα2

s

2 ‖xt − x
+
t−1‖2.

The above inequality, in view of Lemma 5 and the (strong) convexity of f , then implies that48

f(x̄t) ≤ (1− αs − ps)lf (xt, x̄t−1)

+ αs

[
lf (xt, x) + h(x)− h(xt) + µV (xt, x) + 1

γs
V (xt−1, x)− 1+µγs

γs
V (xt, x)

]
+ pslf (xt, x̃)− αs

2γs
(1 + µγs − Lαsγs)‖xt − x+

t−1‖2 − αs〈δt, xt − x〉

≤ (1− αs − ps)f(x̄t−1) + αs

[
ψ(x)− h(xt) + 1

γs
V (xt−1, x)− 1+µγs

γs
V (xt, x)

]
+ pslf (xt, x̃)− αs

2γs
(1 + µγs − Lαsγs)‖xt − x+

t−1‖2

− αs〈δt, xt − x+
t−1〉 − αs〈δt, x

+
t−1 − x〉

≤ (1− αs − ps)f(x̄t−1) + αs

[
ψ(x)− h(xt) + 1

γs
V (xt−1, x)− 1+µγs

γs
V (xt, x)

]
+ pslf (xt, x̃) +

αsγs‖δt‖2∗
2(1+µγs−Lαsγs) − αs〈δt, x

+
t−1 − x〉, (A.14)

where the last inequality follows from the fact that b〈u, v〉 − a‖v‖2/2 ≤ b2‖u‖2/(2a),∀a > 0. Note49

that by (A.7), (A.8), (A.12) and the convexity of f , we have, conditional on x1, . . . , xt−1,50

pslf (xt, x̃) +
αsγsE[‖δt‖2∗]

2(1+µγs−Lαsγs) − αsE[〈δt, x+
t−1 − x〉]

≤ pslf (xt, x̃) +
LQαsγs

1+µγs−Lαsγs
[f(x̃)− lf (xt, x̃)]

≤
(
ps − LQαsγs

1+µγs−Lαsγs

)
lf (xt, x̃) +

LQαsγs
1+µγs−Lαsγs

f(x̃) ≤ psf(x̃).

Moreover, by convexity of h, we have h(x̄t) ≤ (1−αs−ps)h(x̄t−1)+αsh(xt)+psh(x̃). Summing51

up the previous three conclusions, we obtain52

E[ψ(x̄t) + αs(1+µγs)
γs

V (xt, x)] ≤ (1− αs − ps)ψ(x̄t−1) + psψ(x̃) + αsψ(x) + αs

γs
V (xt−1, x).

The result then follows by subtracting ψ(x) from both sides of the above inequality. �53

A.1 Smooth convex problems54

In this subsection, we assume that f is not necessarily strongly convex, i.e., µ = 0 in (2.1). Lemma 755

below shows possible decrease of functional value in each epoch of Varag for solving these problems.56

Lemma 7 Assume that for each epoch s, s ≥ 1, the parameters αs, γs, ps and Ts are chosen such57

that (A.11)-(A.12) hold. Also, let us set θt to (2.2). Moreover, let us denote58

Ls := γs
αs

+ (Ts − 1)γs(αs+ps)
αs

, Rs := γs
αs

(1− αs) + (Ts − 1)γspsαs
, (A.15)

and assume that59

ws := Ls −Rs+1 ≥ 0,∀s ≥ 1. (A.16)
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Then we have60

LsE[ψ(x̃s)− ψ(x)] + (
∑s−1
j=1wj)E[ψ(x̄s)− ψ(x)]

≤ R1E[ψ(x̃0)− ψ(x)] + E[V (x0, x)− V (xs, x)] (A.17)

for any x ∈ X , where61

x̄s := (
∑s−1
j=1wj)

∑s−1
j=1(wj x̃

j). (A.18)

Proof: Using our assumptions on αs, γs and ps, and the fact that µ = 0, we have62

γs
αs

E[ψ(x̄t)− ψ(x)] ≤ γs
αs

(1− αs − ps)E[ψ(x̄t−1)− ψ(x)]

+ γsps
αs

E[ψ(x̃)− ψ(x)] + E[V (xt−1, x)− V (xt, x)].

Summing up these inequalities for t = 1, . . . , Ts, using the definition of θt in (2.2) and the fact that63

x̄0 = x̃, and rearranging the terms, we have64 ∑Ts

t=1θtE[ψ(x̄t)− ψ(x)] ≤
[
γs
αs

(1− αs) + (Ts − 1)γspsαs

]
E[ψ(x̃)− ψ(x)]

+ E[V (x0, x)− V (xT , x)].

Now using the facts that xs = xT , x0 = xs−1, x̃s =
∑Ts

t=1(θtx̄t)/
∑Ts

t=1θt, x̃ = x̃s−1, and the65

convexity of ψ, we have66 ∑Ts

t=1θtE[ψ(x̃s)− ψ(x)] ≤
[
γs
αs

(1− αs) + (Ts − 1)γspsαs

]
E[ψ(x̃s−1)− ψ(x)]

+ E[V (xs−1, x)− V (xs, x)],

which, in view of the fact that
∑Ts

t=1θt = γs
αs

+ (Ts − 1)γs(αs+ps)
αs

, then implies that67

LsE[ψ(x̃s)− ψ(x)] ≤ RsE[ψ(x̃s−1)− ψ(x)] + E[V (xs−1, x)− V (xs, x)]. (A.19)

Summing over the above relations, using the convexity of ψ and rearranging the terms, we then obtain68

(A.17). �69

With the help of Lemma 7, we are now ready to prove Theorem 1, which shows that for solving smooth70

convex problems the Varag algorithm can achieve a fast linear rate of convergence O{m log D0

ε } if71

m ≥ D0/ε and an optimal sublinear rate of convergence otherwise.72

Proof of Theorem 1. Let the probabilities qi = Li/
∑m
i=1Li for i = 1, . . . ,m, and θt, γs, ps, Ts73

and αs be defined as in (2.2), (2.3) and (2.4). By the definition of LQ in (A.2) and the selection of qi,74

we have LQ = L. Observe that both conditions in (A.11) and (A.12) are satisfied since75

1 + µγs − Lαsγs = 1− Lαsγs = 2
3

and76

ps − LQαsγs
1+µγs−Lαsγs

= ps − 1
2 = 0.

Now letting Ls andRs be defined in (A.15), we will show that Ls ≥ Rs+1 for any s ≥ 1. Indeed, if77

1 ≤ s < s0, we have αs+1 = αs, γs+1 = γs, Ts+1 = 2Ts, and hence78

ws = Ls −Rs+1 = γs
αs

[1 + (Ts − 1)(αs + ps)− (1− αs)− (2Ts − 1)ps]

= γs
αs

[Ts(αs − ps)] = 0.

Moreover, if s ≥ s0, we have79

ws = Ls −Rs+1 = γs
αs
− γs+1

αs+1
(1− αs+1) + (Ts0 − 1)

[
γs(αs+ps)

αs
− γs+1ps+1

αs+1

]
= 1

12L +
(Ts0
−1)[2(s−s0+4)−1]

24L ≥ 0.

Using these observations in (A.17) iteratively, we then conclude that80

LsE[ψ(x̃s)− ψ(x)] ≤ R1E[ψ(x̃0)− ψ(x)] + E[V (x0, x)− V (xs, x)]

≤ 2
3L [ψ(x0)− ψ(x)] + V (x0, x)
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for any s ≥ 1, where the last identity follows from the fact that R1 = 2
3L . Recalling that D0 :=81

2[ψ(x0)− ψ(x)] + 3LV (x0, x) in (2.6), now we distinguish the following two cases.82

Case 1: if s ≤ s0, Ls = 2s+1

3L . Therefore, we have83

E[ψ(x̃s)− ψ(x)] ≤ 2−(s+1)D0, 1 ≤ s ≤ s0.

Case 2: if s ≥ s0, we have84

Ls = 1
3Lα2

s

[
1 + (Ts − 1)(αs + 1

2 )
]

=
(s−s0+4)(Ts0−1)

6L +
(s−s0+4)2(Ts0+1)

24L

≥ (s−s0+4)2m
48L , (A.20)

where the last inequality follows from Ts0 = 2blog2mc+1−1 ≥ m/2. Hence, we obtain85

E[ψ(x̃s)− ψ(x)] ≤ 16D0

(s−s0+4)2m , s > s0.

In conclusion, we have for any x ∈ X ,86

E[ψ(x̃s)− ψ(x)] ≤

{
2−(s+1)D0, 1 ≤ s ≤ s0,

16D0

(s−s0+4)2m , s > s0.
(A.21)

In order to derive the complexity bounds in Theorem 1, let us first consider the region of relatively87

low accuracy and/or large number of components, i.e., m ≥ D0/ε. In this case Varag needs to run at88

most s0 epochs because by the first case of (A.21) we can easily check that89

D0

2s0+1 ≤ ε.

More precisely, the number of epochs can be bounded by Sl := min
{

log D0

ε , s0

}
. Hence the total90

number of gradient evaluations can be bounded by91

mSl +
∑Sl

s=1Ts = mSl +
∑Sl

s=12s−1 = O
{

min
(
m log D0

ε ,m logm
)}

= O
{
m log D0

ε

}
,

(A.22)

where the last identity follows from the assumption that m ≥ D0/ε. Now let us consider the region92

for high accuracy and/or smaller number of components, i.e., m < D0/ε. In this case, we may93

need to run the algorithm for more than s0 epochs. More precisely, the total number of epochs94

can be bounded by Sh :=

⌈√
16D0

mε + s0 − 4

⌉
. Note that the total number of gradient evaluations95

needed for the first s0 epochs can be bounded by ms0 +
∑s0
s=1Ts while the total number of gradient96

evaluations for the remaining epochs can be bounded by (Ts0 +m)(Sh − s0). As a consequence, the97

total number of gradient evaluations of fi can be bounded by98

ms0 +
∑s0
s=1Ts + (Ts0 +m)(Sh − s0) ≤

∑s0
s=1Ts + (Ts0 +m)Sh = O

{√
mD0

ε +m logm

}
.

(A.23)

Therefore, the results of Theorem 1 follows immediately by combining these two cases. �99

A.2 Convex finite-sum problems with or without strong convexity100

In this subsection, we provide a unified analysis of Varag when f is possibly strongly convex, i.e.,101

µ ≥ 0 in (2.1). In particular, it achieves a stronger rate of convergence than other RIG methods if102

the condition number L/µ is very large. Below we consider four different cases and establish the103

convergence properties of Varag in each case.104

Lemma 8 If s ≤ s0, then for any x ∈ X ,105

E[ψ(x̃s)− ψ(x)] ≤ 2−(s+1)D0, 1 ≤ s ≤ s0,

where D0 is defined in (2.6).106
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Proof: In this case, we have αs = ps = 1
2 , γs = 2

3L , and Ts = 2s−1. It then follows from (A.13) that107

γs
αs

E[ψ(x̄t)− ψ(x)] + (1 + µγs)E[V (xt, x)] ≤ γs
2αs

E[ψ(x̃)− ψ(x)] + E[V (xt−1, x)].

Summing up the above relation from t = 1 to Ts, we have108

γs
αs

∑Ts

t=1E[ψ(x̄t)− ψ(x)] + E[V (xTs
, x)] + µγs

∑Ts

t=1E[V (xt, x)]

≤ γsTs

2αs
E[ψ(x̃)− ψ(x)] + E[V (x0, x)].

Note that in this case θt are chosen as in (2.2), i.e., θt = γs
αs

, t = 1, . . . , Ts in the definition of x̃s, we109

then have110

4Ts

3L E[ψ(x̃s)− ψ(x)] + E[V (xs, x)] ≤ 4Ts

6L E[ψ(x̃s−1)− ψ(x)] + E[V (xs−1, x)]

= 4Ts−1

3L E[ψ(x̃s−1)− ψ(x)] + E[V (xs−1, x)],

where we use the facts that x̃ = x̃s−1, x0 = xs−1, and xs = xTs
in the epoch s and the parameter111

settings in (2.3). Applying this inequality recursively, we then have112

4Ts

3L E[ψ(x̃s)− ψ(x)] + E[V (xs, x)] ≤ 2
3LE[ψ(x̃0)− ψ(x)] + V (x0, x)

= 2
3LE[ψ(x0)− ψ(x)] + V (x0, x). (A.24)

By plugging Ts = 2s−1 into the above inequality, we obtain the result. �113

Lemma 9 If s ≥ s0 and m ≥ 3L
4µ ,114

E[ψ(x̃s)− ψ(x∗)] ≤
(

4
5

)s
D0,

where x∗ is an optimal solution of (1.1).115

Proof: In this case, we have αs = ps = 1
2 , γs = γ = 2

3L , and Ts ≡ Ts0 = 2s0−1, s ≥ s0. It then116

follows from (A.13) that117

4
3LE[ψ(x̄t)− ψ(x)] + (1 + 2µ

3L )E[V (xt, x)] ≤ 2
3LE[ψ(x̃)− ψ(x)] + E[V (xt−1, x)].

Multiplying both sides of the above inequality by Γt−1 = (1 + 2µ
3L )t−1, we obtain118

4
3LΓt−1E[ψ(x̄t)− ψ(x)] + ΓtE[V (xt, x)] ≤ 2

3LΓt−1E[ψ(x̃)− ψ(x)] + Γt−1E[V (xt−1, x)].

Note that θt are chosen as in (2.7) when s ≥ s0, i.e., θt = Γt−1 = (1 + 2µ
3L )t−1, t = 1, . . . , Ts,119

s ≥ s0. Summing up the above inequality for t = 1, . . . , Ts we have120

4
3L

∑Ts

t=1θtE[ψ(x̄t)− ψ(x)] + ΓTsE[V (xTs , x)]

≤ 2
3L

∑Ts

t=1θtE[ψ(x̃)− ψ(x)] + E[V (x0, x)], s ≥ s0.

Observe that for s ≥ s0, m ≥ Ts ≡ Ts0 = 2blog2mc ≥ m/2, and hence that121

ΓTs
= (1 + 2µ

3L )Ts = (1 + 2µ
3L )Ts0 ≥ 1 +

2µTs0

3L ≥ 1 +
Ts0

2m ≥
5
4 , ∀s ≥ s0, (A.25)

and using the facts that x̃s =
∑Ts

t=1(θtx̄t)/
∑Ts

t=1θt, x̃ = x̃s−1, x0 = xs−1, and xTs
= xs in the s122

epoch, and ψ(x̃s)− ψ(x∗) ≥ 0, we conclude from the above inequalities that123

5
4

{
2

3LE[ψ(x̃s)− ψ(x∗)] + (
∑Ts

t=1θt)
−1E[V (xs, x∗)]

}
≤ 2

3LE[ψ(x̃s−1)− ψ(x∗)] + (
∑Ts

t=1θt)
−1E[V (xs−1, x∗)], s ≥ s0.

Applying this relation recursively for s ≥ s0, we then obtain124

2
3LE[ψ(x̃s)− ψ(x∗)] + (

∑Ts

t=1θt)
−1E[V (xs, x∗)]

≤
(

4
5

)s−s0 { 2
3LE[ψ(x̃s0)− ψ(x∗)] + (

∑Ts

t=1θt)
−1E[V (xs0 , x∗)]

}
≤
(

4
5

)s−s0 { 2
3LE[ψ(x̃s0)− ψ(x∗)] + 1

Ts0
E[V (xs0 , x∗)]

}
,

where the last inequality follows from
∑Ts

t=1θt ≥ Ts = Ts0 . Plugging (A.24) into the above125

inequality, we have126

E[ψ(x̃s)− ψ(x∗)] ≤
(

4
5

)s−s0 D0

2Ts0
=
(

4
5

)s−s0 D0

2s0
≤
(

4
5

)s
D0, s ≥ s0.

�127
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Lemma 10 If s0 < s ≤ s0 +
√

12L
mµ − 4 and m < 3L

4µ , then for any x ∈ X ,128

E[ψ(x̃s)− ψ(x)] ≤ 16D0

(s−s0+4)2m .

Proof: In this case, 1
2 ≥

2
s−s0+4 ≥

√
mµ
3L . Therefore, we set θt as in (2.2), αs = 2

s−s0+4 , ps = 1
2 ,129

γs = 1
3Lαs

, and Ts ≡ Ts0 . Observe that the parameter setting in this case is the same as the smooth130

case in Theorem 1. Hence, by following the same procedure as in the proof of Theorem 1, we can131

obtain132

LsE[ψ(x̃s)− ψ(x)] + E[V (xs, x)] ≤ Rs0+1E[ψ(x̃s0)− ψ(x)] + E[V (xs0 , x)]

≤ Ls0E[ψ(x̃s0)− ψ(x)] + E[V (xs0 , x)]

≤ D0

3L , (A.26)

where the last inequality follows from the fact that Ls0 ≥
2Ts0

3L and the relation in (A.24). The result133

then follows by noting that Ls ≥ (s−s0+4)2m
48L (see (A.20)). �134

Lemma 11 If s > s̄0 := s0 +
√

12L
mµ − 4 and m < 3L

4µ , then135

E[ψ(x̃s)− ψ(x∗)] ≤
(

1 +
√

µ
3mL

)−m(s−s̄0)
2 D0

3L/4µ , (A.27)

where x∗ is an optimal solution of (1.1).136

Proof: In this case, 1
2 ≥

√
mµ
3L ≥

2
s−s0+4 . Therefore, we use constant step-size policy that137

αs ≡
√

mµ
3L , ps ≡

1
2 , γs ≡ 1

3Lαs
= 1√

3mLµ
, and Ts ≡ Ts0 . Also note that in this case θt are chosen138

as in (2.7). Multiplying both sides of (A.13) by Γt−1 = (1 + µγs)
t−1, we obtain139

γs
αs

Γt−1E[ψ(x̄t)− ψ(x)] + ΓtE[V (xt, x)] ≤ Γt−1γs
αs

(1− αs − ps)E[ψ(x̄t−1)− ψ(x)]

+ Γt−1γsps
αs

E[ψ(x̃)− ψ(x)] + Γt−1E[V (xt−1, x)].

Summing up the above inequality from t = 1, . . . , Ts and using the fact that x̄0 = x̃, we arrive at140

γs
αs

∑Ts

t=1θtE[ψ(x̄t)− ψ(x)] + ΓTs
E[V (xTs

, x)]

≤ γs
αs

[
1− αs − ps + ps

∑Ts

t=1Γt−1

]
E[ψ(x̃)− ψ(x)] + E[V (x0, x)].

Now using the facts that xs = xTs
, x0 = xs−1, x̃s =

∑Ts

t=1(θtx̄t)/
∑Ts

t=1θt, x̃ = x̃s−1, Ts = Ts0141

and the convexity of ψ, we obtain142

γs
αs

∑Ts0
t=1θtE[ψ(x̃s)− ψ(x)] + ΓTs0

E[V (xs, x)]

≤ γs
αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
E[ψ(x̃s−1)− ψ(x)] + E[V (xs−1, x)] (A.28)

for any s > s̄0. Moreover, we have143 ∑Ts0
t=1θt = ΓTs0

−1 +
∑Ts0−1
t=1 (Γt−1 − (1− αs − ps)Γt)

= ΓTs0
(1− αs − ps) +

∑Ts0
t=1(Γt−1 − (1− αs − ps)Γt)

= ΓTs0
(1− αs − ps) + [1− (1− αs − ps)(1 + µγs)]

∑Ts0
t=1Γt−1.

Observe that for any T > 1 and 0 ≤ δT ≤ 1, (1 + δ)T ≤ 1 + 2Tδ, αs =
√

mµ
3L ≥

√
Ts0µ

3L and144

hence that145

1− (1− αs − ps)(1 + µγs) ≥ (1 + µγs)(αs − µγs + ps)

≥ (1 + µγs)(Ts0µγs − µγs + ps)

= ps(1 + µγs)[2(Ts0 − 1)µγs + 1]

≥ ps(1 + µγs)
Ts0 = psΓTs0

.

7



Then we conclude that
∑Ts0
t=1θt ≥ ΓTs0

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
. Together with (A.28) and146

the fact that ψ(x̃s)− ψ(x∗) ≥ 0, we have147

ΓTs0

{
γs
αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
E[ψ(x̃s)− ψ(x∗)] + E[V (xs, x∗)]

}
≤ γs

αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
E[ψ(x̃s−1)− ψ(x∗)] + E[V (xs−1, x∗)].

Applying the above relation recursively for s > s̄0 = s0 +
√

12L
mµ − 4, and also noting that148

Γt = (1 + µγs)
t and the constant step-size policy in this case, we obtain149

γs
αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
E[ψ(x̃s)− ψ(x∗)] + E[V (xs, x∗)]

≤ (1 + µγs)
−Ts0 (s−s̄0)

{
γs
αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
E[ψ(x̃s̄0)− ψ(x∗)] + E[V (xs̄0 , x∗)]

}
.

According to the parameter settings in this case, i.e., αs ≡
√

mµ
3L , ps ≡

1
2 , γs ≡ 1

3Lαs
= 1√

3mLµ
,150

and s̄0 = s0 +
√

12L
mµ − 4, we have γs

αs

[
1− αs − ps + ps

∑Ts0
t=1Γt−1

]
≥ γspsTs0

αs
=

Ts0

2mµ =151

(s̄0−s0+4)2Ts0

24L . Using this observation in the above inequality, we then conclude that152

E[ψ(x̃s)− ψ(x∗)] ≤ (1 + µγs)
−Ts0

(s−s̄0)
[
E[ψ(x̃s̄0)− ψ(x∗)] + 24L

(s̄0−s0+4)2Ts0
E[V (xs̄0 , x∗)]

]
≤ (1 + µγs)

−Ts0
(s−s̄0) 24L

(s̄0−s0+4)2Ts0

[
Ls̄0E[ψ(x̃s̄0)− ψ(x∗)] + E[V (xs̄0 , x∗)]

]
≤ (1 + µγs)

−Ts0
(s−s̄0) 24L

(s̄0−s0+4)2Ts0

D0

3L

≤ (1 + µγs)
−Ts0

(s−s̄0) 16D0

(s̄0−s0+4)2m

= (1 + µγs)
−Ts0

(s−s̄0) D0

3L/4µ ,

where the second inequality follows from the fact that Ls̄0 ≥
(s̄0−s0+4)2Ts0

24L =
Ts0

2mµ due to (A.20),153

the third inequality follows from (A.26) in Case 3, and last inequality follows from Ts0 = 2blog2mc ≥154

m/2. �155

Putting the above four technical results together, we are ready to prove Theorem 2 for Varag solving156

(1.1) when (1.1) is possibly strongly convex.157

Proof of Theorem 2. Suppose that the probabilities qi’s are set to Li/
∑m
i=1Li for i = 1, . . . ,m.158

Moreover, let us denote s0 := blogmc + 1 and assume that the weights {θt} are set to (2.2) if159

1 ≤ s ≤ s0 or s0 < s ≤ s0 +
√

12L
mµ −4, m < 3L

4µ . Otherwise, they are set to (2.7). If the parameters160

{Ts}, {γs} and {ps} set to (2.3) with {αs} given by (2.8), then we have161

E[ψ(x̃s)− ψ(x∗)] ≤



2−(s+1)D0, 1 ≤ s ≤ s0,(
4
5

)s
D0, s > s0, and m ≥ 3L

4µ ,

16D0

(s−s0+4)2m , s0 < s ≤ s0 +
√

12L
mµ − 4 and m < 3L

4µ ,(
1 +

√
µ

3mL

)−m(s−s̄0)
2 D0

3L/4µ , s0 +
√

12L
mµ − 4 = s̄0 < s and m < 3L

4µ ,

(A.29)
where x∗ is an optimal solution of (1.1) and D0 is defined as in (2.6).162

Now we are ready to provide the proof for the complexity results presented in Theorem 2. Firstly, it163

is clear that the first case and the third case corresponds to the results of the smooth case discussed164

in Theorem 1. As a consequence, the total number of gradient evaluations can also be bounded by165

(A.22) and (A.23), respectively. Secondly, for the second case of (A.29), it is easy to check that166
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Varag needs to run at most S := O{logD0/ε} epochs, and hence the total number of gradient167

evaluations can be bounded by168

mS +
∑S
s=1Ts ≤ 2mS = O

{
m log D0

ε

}
. (A.30)

Finally, let us consider the last case of (A.29). Since Varag only needs to run at most S′ =169

s̄0 + 2
√

3L
mµ log D0/ε

3L/4µ epochs in this case, the total number of gradient evaluations can be bounded170

by171

S′∑
s=1

(m+ Ts) =

s0∑
s=1

(m+ Ts) +

s̄0∑
s=s0+1

(m+ Ts0) + (m+ Ts0)(S′ − s̄0)

≤ 2m logm+ 2m(
√

12L
mµ − 4) + 4m

√
3L
mµ log D0/ε

3L/4µ

= O
{
m logm+

√
mL
µ log D0/ε

3L/4µ

}
, (A.31)

Therefore, the results of Theorem 2 follows immediately from the above discussion. �172

A.3 Convex finite-sum optimization under error bound173

In this section, we consider a class of convex finite-sum optimization problems that satisfies the error174

bound condition described in (2.10), and establish the convergence results for applying Varag to175

solve it.176

Proof of Theorem 3. Similar to the smooth case, according to (A.17), for any x ∈ X , we have177

LsE[ψ(x̃s)− ψ(x)] ≤ R1E[ψ(x̃0)− ψ(x)] + E[V (x0, x)− V (xs, x)]

≤ R1[ψ(x0)− ψ(x)] + V (x0, x).

Then we use x∗ to replace x and use the relation of (2.10) to obtain178

LsE[ψ(x̃s)− ψ(x∗)] ≤ R1[ψ(x0)− ψ(x∗)] + 1
u [ψ(x)− ψ(x∗)].

Now, we compute Ls and R1. According to (A.20), we have Ls ≥
(s−s0+4)2(Ts0

+1)

24L . We have179

R1 = 2T1

3L by plugging the parameters γ1, p1, α1 and T1 into (A.15).180

Thus, we prove (2.12) as follows (recall that s0 = 4 and s = s0 + 4
√

L
µ̄m ):181

E[ψ(x̃s)− ψ(x∗)] ≤ 16T1+24L/µ̄
(s−s0+4)2T12s0−1 [ψ(x0)− ψ(x∗)]

≤ 16+24L/(µ̄T1)
(s−s0+4)22s0−1 [ψ(x0)− ψ(x∗)]

≤ 5
16

L/(µ̄T1)
1+L/(µ̄m) [ψ(x0)− ψ(x∗)]

≤ 5
16 [ψ(x0)− ψ(x∗)],

where the last inequality follows from T1 = min{m, Lµ̄ }.182

Finally, we plug k = log ψ(x0)−ψ(x∗)
ε , s0 = 4, s = s0 + 4

√
L
µ̄m and T1 = min{m, Lµ̄ } to prove183

(2.13):184

N̄ := k(
∑
s(m+ Ts)) ≤ k(ms+ T12s0(s− s0 + 1)) = O

(
m+

√
mL
µ̄

)
log ψ(x0)−ψ(x∗)

ε .

�185

B Varag for stochastic finite-sum optimization186

In this section, we consider the stochastic finite-sum optimization and online learning problems,187

where only noisy gradient information of fi can be accessed via the SFO oracle, and provide the188

proof of Theorem 4.189

Before proving Theorem 4, we need to establish some key technical results in the following lemmas.190

First, we rewrite Lemma 3 under the stochastic setting. Lemma 12 below shows that Gt updated191

according to Algorithm 2 is an unbiased estimator of∇f(xt) and its variance is upper bounded.192
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Lemma 12 Conditionally on x1, . . . , xt,193

E[δt] = 0, (B.1)

E[‖δt‖2∗] ≤ 2LQ[f(x̃)− f(xt)− 〈∇f(xt), x̃− xt〉] +
∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs
,

(B.2)

where δt = Gt − ∇f(xt) and Gt = 1
qitmbs

∑bs
k=1

(
Git(xt, ξ

s
k) − Git(x̃)

)
+ g̃ (see Line 2.17 of194

Algorithm 2).195

Proof: Take the expectation with respect to it and [ξ] := {ξk}bsk=1 conditionally on x1, . . . , xt, we196

obtain197

Eit,[ξ]
[ 1

mqitbs

bs∑
k=1

Git(xt, ξk)− 1

mqit
Git(x̃) +

1

m

m∑
i=1

Gi(x̃)−∇f(xt)
]

= Eit
[ 1

mqit
∇fit(xt)−

1

mqit
Git(x̃) +

1

m

m∑
i=1

Gi(x̃)−∇f(xt)
]

= 0,

where the first equality follows from (2.14).198

Moreover, we have199

E[‖δt‖2∗] =E
[∥∥ 1

mqitbs

bs∑
k=1

Git(xt, ξk)− 1

mqit
Git(x̃) +

1

m

m∑
i=1

Gi(x̃)−∇f(xt)
∥∥2

∗

]
=E
[∥∥ 1

mqit

(
∇fit(xt)−∇fit(x̃)

)
+∇f(x̃)−∇f(xt)

∥∥2

∗

]
+ E

[∥∥ 1

mqitbs

bs∑
k=1

Git(xt, ξk)− 1

mqit
∇fit(xt)

∥∥2

∗

]
+ E

[∥∥ 1

mqit
∇fit(x̃)− 1

mqit
Git(x̃) +

1

m

m∑
i=1

Gi(x̃)− 1

m

m∑
i=1

∇fi(x̃)
∥∥2

∗

]
≤E
[ 1

m2q2
it

∥∥∇fit(xt)−∇fit(x̃)
∥∥2

∗

]
+

m∑
i=1

σ2

qim2bs

+ 2E
[∥∥ 1

mqit
∇fit(x̃)− 1

mqit
Git(x̃)

∥∥2

∗

]
+ 2E

[∥∥ 1

m

m∑
i=1

Gi(x̃)− 1

m

m∑
i=1

∇fi(x̃)
∥∥2

∗

]
≤E
[ 1

m2q2
it

∥∥∇fit(xt)−∇fit(x̃)
∥∥2

∗

]
+

m∑
i=1

σ2

qim2bs
+

m∑
i=1

2σ2

qim2Bs
+

2σ2

mBs
,

where the last inequality uses (2.15) and in view of relation (A.3) (with x and x∗ replaced by x̃ and200

xt), then implies (B.2). �201

We are now ready to rewrite Lemma 6 under the stochastic setting.202

Lemma 13 Assume that αs ∈ [0, 1], ps ∈ [0, 1] and γs > 0 satisfy (A.11) and (A.12). Then,203

conditional on x1, . . . , xt−1, we have204

E[ψ(x̄t) + αs(1+µγs)
γs

V (xt, x)] ≤ (1− αs − ps)ψ(x̄t−1) + psψ(x̃) + αsψ(x) + αs

γs
V (xt−1, x)

+ αsγs
2(1+µγs−Lαsγs)

(∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs

)
(B.3)

for any x ∈ X .205
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Proof: Similar to the proof of Lemma 6, in view of the smoothness and (strong) convexity of f , we206

recall the result in (A.14), i.e.,207

f(x̄t) ≤ (1− αs − ps)f(x̄t−1) + αs

[
ψ(x)− h(xt) + 1

γs
V (xt−1, x)− 1+µγs

γs
V (xt, x)

]
+ pslf (xt, x̃) +

αsγs‖δt‖2∗
2(1+µγs−Lαsγs) − αs〈δt, x

+
t−1 − x〉. (B.4)

Also note that by (B.1), (B.2), (A.12) and the convexity of f , we have, conditional on x1, . . . , xt−1,208

pslf (xt, x̃) +
αsγsE[‖δt‖2∗]

2(1+µγs−Lαsγs) + αsE[〈δt, x+
t−1 − x〉]

≤ pslf (xt, x̃) +
LQαsγs

1+µγs−Lαsγs
[f(x̃)− lf (xt, x̃)]

+ αsγs
2(1+µγs−Lαsγs)

(∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs

)
≤
(
ps − LQαsγs

1+µγs−Lαsγs

)
lf (xt, x̃) +

LQαsγs
1+µγs−Lαsγs

f(x̃)

+ αsγs
2(1+µγs−Lαsγs)

(∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs

)
≤ psf(x̃) + αsγs

2(1+µγs−Lαsγs)

(∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs

)
.

Moreover, by convexity of h, we have h(x̄t) ≤ (1 − αs − ps)h(x̄t−1) + αsh(xt) + psh(x̃). The209

result then follows by summing up the previous two conclusions with (B.4). �210

Finally, we need to rewrite the stochastic counterpart of the decrease of function value in each epoch211

(Lemma 7) in the following lemma.212

Lemma 14 Assume that for each epoch s, s ≥ 1, we have αs, γs, ps and Ts such that (A.11)-(A.12)213

hold. Also, let us set θt as (2.2). Moreover, let Ls, Rs and ws defined as in (A.15) and (A.16)214

respectively. Then we have215

LsE[ψ(x̃s)− ψ(x)] + (
∑s−1
j=1wj)E[ψ(x̄s)− ψ(x)]

≤ R1E[ψ(x̃0)− ψ(x)] + E[V (x0, x)− V (xs, x)]

+
∑s
j=1

γ2
jTj

2(1+µγj−Lαjγj)

(∑m
i=1

σ2

qim2bj
+
∑m
i=1

2σ2

qim2Bj
+ 2σ2

mBj

)
(B.5)

for any x ∈ X , where x̄s is defined as in (A.18).216

Proof: Using our assumptions on αs, γs and ps, the fact that µ = 0, and subtracting ψ(x) from the217

concluding inequality (B.3) of Lemma 13, we have218

γs
αs

E[ψ(x̄t)− ψ(x)] ≤ γs
αs

(1− αs − ps)E[ψ(x̄t−1)− ψ(x)] + γsps
αs

E[ψ(x̃)− ψ(x)]

+ E[V (xt−1, x)− V (xt, x)]

+
γ2
s

2(1+µγs−Lαsγs)

(∑m
i=1

σ2

qim2bs
+
∑m
i=1

2σ2

qim2Bs
+ 2σ2

mBs

)
.

Hence following the same procedure as we did in proving Lemma 7, we can obtain (B.5). �219

With the help of Lemma 14, we are now ready to prove Theorem 4, which establishes the convergence220

properties of Varag for solving stochastic smooth finite-sum problems given in the form of (1.1).221

Proof of Theorem 4. Let the probabilities qi = Li/
∑m
i=1Li for i = 1, . . . ,m, we then have222

LQ = L. Clearly by setting αs, γs, and ps in (2.3) and (2.4), conditions (A.11) and (A.12) are223

satisfied. Moreover, similar to the deterministic case, by setting Ls andRs as in (A.15), we can show224

that Ls ≥ Rs+1 for any s ≥ 1. Using these observations in (B.5), we then conclude that225

LsE[ψ(x̃s)− ψ(x)] ≤ R1E[ψ(x̃0)− ψ(x)] + E[V (x0, x)− V (xs, x)]

+
∑s
j=1

3γ2
jTj

4

(∑m
i=1

σ2

qim2bj
+
∑m
i=1

2σ2

qim2Bj
+ 2σ2

mBj

)
≤ 2

3L [ψ(x0)− ψ(x)] + V (x0, x)

+
∑s
j=1

Tj

12L2α2
j

(
Cσ2

bj
+ 2Cσ2

Bj
+ 2σ2

mBj

)
≤ 2

3L [ψ(x0)− ψ(x)] + V (x0, x)

+
∑s
j=1

Tj

12L2α2
j

(
Cσ2

bj
+ 4Cσ2

Bj

)
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for any s ≥ 1, where the second inequality follows from the fact that R1 = 2
3L , γs = 1

3Lαs
,226

and the definition C :=
∑m
i=1

1
qim2 . Note that the last two terms Cσ2

bj
and 4Cσ2

Bj
are in the same227

order. Also note that the sampling complexity (number of calls to the SFO oracle) is bounded by228 ∑
smBs +

∑
sTsbs and the communication complexity (CC), if in the distribued machine learning229

case, is bounded by
∑
s(m+ Ts). So we can let Bj ≡ bj , then these two complexity are bounded by230

their first term m
∑
sBs and mS respective (note that Ts is always no larger than m). Concretely, we231

let232

Bj ≡ bj :=

{
b1( 3

2 )j−1, j ≤ s0

b′ j > s0
. (B.6)

Recalling that D0 := 2[ψ(x0)− ψ(x)] + 3LV (x0, x) in (2.6), now we distinguish the following two233

cases.234

Case 1: if s ≤ s0 = blogmc+ 1, Ls = Ts

3Lα2
s

= 2s+1

3L . Therefore, we have235

E[ψ(x̃s)− ψ(x)] ≤ 2−(s+1)D0 + 2−(s+1)∑s
j=1

2j−1

L

(
Cσ2

bj
+ 4Cσ2

Bj

)
≤ 2−(s+1)D0 + 2−(s+1)∑s

j=1
5Cσ22j−1

LBj

≤ 2−(s+1)D0 + 2−(s+1)∑s
j=1( 4

3 )j−1 5Cσ2

Lb1

≤ 2−(s+1)D0 + ( 2
3 )s 15Cσ2

2Lb1

= ε
2 + ε

2 , 1 ≤ s ≤ s0.

where the last equality holds when s = log D0

ε and b1 = ( 2
3 )s 15Cσ2

Lε .236

In this case, Varag needs to run at most Sl := min
{

log D0

ε , s0

}
epochs. Hence, the sampling237

complexity (number of calls to the SFO oracle) is bounded by238 ∑Sl

s=1(mBs + Tsbs) ≤ 2m
∑Sl

s=1b1( 3
2 )s−1 ≤ 4mb1( 3

2 )Sl = O
{
mCσ2

Lε

}
, (B.7)

and the communication complexity (CC), if in the distributed machine learning case, is bounded by239 ∑Sl

s=1(m+ Ts) ≤ 2mSl = O
{
m log D0

ε

}
, m ≥ D0

ε . (B.8)

Case 2: if s ≥ s0, Ls ≥
(s−s0+4)2Ts0

24L . Therefore, we have240

E[ψ(x̃s)− ψ(x)] ≤ 8D0

(s−s0+4)2Ts0
+ 8

(s−s0+4)2Ts0

(∑s0
j=1

5Cσ22j−1

LBj
+
∑s
j=s0+1

5Cσ2Ts0

4Lb′α2
j

)
≤ 16D0

(s−s0+4)2m + 16
(s−s0+4)2

(
2−s0

∑s0
j=1( 4

3 )j−1 5Cσ2

Lb1
+
∑s
j=s0+1

5Cσ2(j−s0+4)2

32Lb′

)
≤ 16D0

(s−s0+4)2m + 16
(s−s0+4)2 ( 2

3 )s0 15Cσ2

Lb1
+ 5Cσ2(s−s0)

2Lb′

= ε
2 + ε

4 + ε
4 s > s0.

where the last equality holds when s = s0 +
√

32D0

mε − 4, b1 = ( 2
3 )s0 30Cσ2m

LD0
and b′ = 10Cσ2(s−s0)

Lε .241

In this case, Varag needs to run at most run at most Sh := s0 +
√

32D0

mε − 4 epochs. Hence, the242

sampling complexity (number of calls to the SFO oracle) is bounded by243 ∑Sl

s=1(mBs + Tsbs) ≤ 2m
∑s0
s=1b1( 3

2 )s−1 + 2mb′(Sh − s0)

≤ 4mb1( 3
2 )s0 + 20mCσ2(Sh−s0)2

Lε = O
{
Cσ2D0

Lε2

}
, (B.9)

and the communication complexity (CC), if in the distributed machine learning case, is bounded by244 ∑Sh

s=1(m+ Ts) ≤ 2m(s0 + Sh − s0) = O
{
m logm+

√
mD0

ε

}
, m < D0

ε . (B.10)

The result of Theorem 4 follows immediately by combining these two cases. �245
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C More numerical experiments246

Strongly convex problems with small strongly convex modulus. We consider ridge regression247

models with a small regularizer coefficient (λ) given in the following form,248

min
x∈Rn
{ψ(x) := 1

m

∑m
i=1fi(x) + h(x)} where fi(x) := 1

2 (aTi x− bi)2, h(x) := λ‖x‖22. (C.11)

Since the above problem is strongly convex, we compare the performance of Varag with those of249

Prox-SVRG[3] and Katyusha[1]. As we can see from Figure 1, Varag and Katyusha converges much250

faster than Prox-SVRG in terms of training loss. Although Varag and Katyusha perform similar in251

terms of training loss per gradient calls, Varag may require less CPU time to perform one epoch252

than Katyusha. In fact, Varag only needs to solve one proximal mapping per inner iteration while253

Katyusha requires to solve two for strongly convex problems.254

Diabetes (m = 1151), ridge λ = 10−6 Breast-Cancer-Wisconsin (m = 683), ridge λ = 10−6

Figure 1: In this experiments, the algorithmic parameters for Prox-SVRG and Katyusha are set according to [3]
and [1], respectively, and those for Varag are set as in Theorem 2.
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