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A Convergence analysis of Varag for deterministic finite-sum optimization

Our main goal in this section is to establish the convergence results stated in Theorems ] and [2| for
the Varag method applied to the finite-sum optimization problem in (I.I).

Before proving Theorem[I|and[2] we first need to present some basic properties for smooth convex
functions and then provide some important technical results.

Lemmal If f : X — R has Lipschitz continuous gradients with Lipschitz constant L, then
V(@) = V)E < f(z) = f(2) = (Vf(z),2 —2) Yo,z € X.

Proof: Denote ¢(x) = f(x) — f(z) — (Vf(z),z — z). Clearly ¢ also has L-Lipschitz continuous
gradients. It is easy to check that V¢(z) = 0, and hence that min, ¢(x) = ¢(z) = 0, which implies

6(2) < Bz — LVo(x))
= o) + / (Vo (x — TVH(x)) , —LVo(x))dr
0

= ¢(x) + (Vo(z), —7 V() +/O (Vo (z — £V(2)) = Vo(x), -1 V(x))dr

1
< 8(z) — L|Vé(@)|? + / LI V(@) |12 V()| dr

= ¢(a) — 3z [Vo(@)|3-

Therefore, we have 5| Vo(x)[|2 < ¢(z) — ¢(z) = ¢(x), and the result follows immediately from
this relation. ]

The following result follows as a consequence of Lemmal[T}

Lemma 2 Let x* be an optimal solution of (L.1). Then we have
i g IV fi(@) = Vfi(a*)|2 < 2Lq [¥(2) — 9 (a*)], Vo € X, (A.1)

where .
_ 1 L;
Lg= max . (A2)

Proof: By Lemmal[I](with f = f;), we have
IV fi(z) = V fi(a")[IZ < 2L; [fi(x) = fi(z®) — (Vfi(z"),x — 27)].
Dividing this inequality by 1/(m?q;), and summing over i = 1,...,m, we obtain
it g IV fi(a) = Vi(@)|2 < 2Lg [f(2) = f(z*) = (VF(z*),z — 2¥)]. (A3)

By the optimality of z*, we have (V f(z*) + h/(z*),x — 2*) > 0 for any x € X, which in view of
the convexity of h, implies that (V f(z*),z — 2*) > h(z*) — h(z) for any x € X. The result then
follows by combining the previous two conclusions. ]

In the sequel, let us define some important notations that help us to simplify the convergence analysis
of Varag .

li(z,2) == f(2) + (Vf(2),z — 2), (A.4)
6t = Gt - Vf(.’l,'t) (AS)
ol = e (@1 + pyszy) (A.6)

where G4, z, and ;_; are generated as in Algonthm[ﬂ LemmaE]below shows that GG; is an unbiased
estimator of V f(z,) and provides a tight upper bound for its variance.

Lemma 3 Conditionally on x1,...,x:_1,
E[5,] = 0, (A7)
E[[16:13] < 2La[f (&) — f(zy) — (Vf(2,), & — z,)]. (A.8)
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Proof: We take the expectation with respect to ¢; conditionally on 1, ..., x4, to obtain
E b Vii(2)] = D8 Vile,) = SI LV file,) = V().

Similarly we have E {ﬁVfit (5:)] = V f(Z). Therefore,

E[G/] = E |- (Vi (@) = Vi, (3)) + V(@)| = V().
To bound the variance, we have
Ef0:I2] =Elll g (Vi (2e) — sz, (&) + V(@) = V()]
=gz IV fi (@) = V@12 = IV f () — V@)
<E[trgyz IV fir (@) = Vi, (@)]12]
The above relation, in view of relation (@) (with z and z* replaced by Z and z,), then implies @)

Using the definition of x;" , in (A.6)), and the definitions of z, and ; in Algorlthm I (see Line |§| and
), we have

Ty —xp = (1 — g — ps)Te—1 + Qsy + ps¥ — 2,
1+L'ys {1+ pys(1 — o)z, — asei—1} — 2,
= ay(zs — o). (A.9)

= asTy +

We characterize the solutions of the prox-mapping (I.6) (or Line 8] of Algorithm [T)) in Lemma [4]
below.

Lemma 4 ([2, Lemma 2]) Let the convex function p : X — R, the points &,y € X and the scalars
1, pa > 0 be given. Let w : X — R be a convex function and V (2°, z) be defined in (T4). If

u* € Argmin{p(u) + 11V (Z,u) + p2V (g, u) : u € X}, (A.10)
then for any u € X, we have

p(u”) + V(& u") + p2V(§,u”) < plu) + pV(Z, u) + p2V (9, u) — (p1 + p2)V(u*, ).

The following result examines the optimality conditions associated with the definition of z; in Line|g]
of Algorithm [T}

Lemma 5 For any v € X, we have

Vsllp (g, we) = Up (2, @) + h(we) = h(@)] < vapV (2, ) + Vw1, @) = (L+ pys)V(ae, )

_HSWS zy — xf |IP = v (0, 2 — ).

Proof: 1t follows from Lemma 4] and the definition of z; in Algorithm ] that
Vs[(Gr, 2 — ) + hxy) — h(z) + pV (g, 2)] + +V (2021, 240)
< VshV (24, @) + Vw1, @) — (14 pys) V@, ).
Also observe that
(Gryme —x) = (Vf(zy), w0 — ) + (0, we — x) = Lp(zy, 00) — (24, ) + (0¢, 24 — )

and
VstV (&g, 20) + V (@1, 20) > 5 (ysllee — zl* + e — 20-11?)
> 71+MS wp — 1||2
where the last inequality follows from the definition of «; ; in (A.6) and the convexity of | - ||. The
result then follows by combining the above three relations. (]

We now show the possible progress made by each inner iteration of the Varag method.
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Lemma 6 Assume that os € [0, 1], ps € [0,1] and s > 0 satisfy
1+ pys — Lagys > 0, (A.11)

L sVs
Ps — 1+u72(i;asvs = 0. (A.12)

Then, conditional on x+,...,x:_1, we have
2B () — (@)] + (14 pys)E[V (24, 7))

< 21— ap — p)[(E1) — (@)] + B2 [H(E) - (a)] + Ve, )
(A.13)

forany x € X.
Proof: Note that by the smoothness of f, the definition of Z;, and @[), we have
F@) < lp(zy @) + 5170 — |
= (1 o0 — Pl (@ Fomr) + oalp (20, 70) + Pl (20, B) + 2552y — 2 4|2
The above inequality, in view of Lemma[5]and the (strong) convexity of f, then implies that
F(@) < (1= a5 —ps)ly(zy, Te-1)
[y w) + h(@) = h() + BV (2 2) + 2V (@1,2) = BV (5, 2)|

+pslf(§t7i) 29, (1 + 1ys — Las'Ys)th - x;i1||2 - a5<5tvxt - :E)
S (1 — O 7ps)f('ft—1) + |:w(f£) - h(xf) + iv(xt—l, -T) — e V(It,SC):|

Vs

+ Dol (2, &) = 5 (14 pys — Lagys)[|lze — a4 |12

— (6, x4 — 95210 - Oés<5t’35211 — )

< (I —as —ps) f(Z—1) + as [w(x) — h(z¢) + iv(xtfla T) — 1+l:’ys V(%w)]

Y

asvsl8e]|?

ey — as{n g — ), (A.14)

+pslf(£ta -i) + 2(1
where the last inequality follows from the fact that b{u, v) — a||v]|?/2 < b?||ul|?/(2a), Va > 0. Note
that by (A.7), (A.8), (A.12) and the convexity of f, we have, conditional on z1,...,z;_1,

~, asvsE[]|0¢ 3
pels(ze, #) + greer bl — a B (6, o, — o))

~ Loagsys ~ ~
< pslyp(@e, @) + 1ot (@) — U2y, 7))
L sVs ~ L sYs ~ ~
< (Ps - %) lf@mx) + %ﬂx) < pof(Z).
Moreover, by convexity of i, we have h(Z:) < (1 — s —ps)h(Zi—1) + ash(zt) + psh(Z). Summing

up the previous three conclusions, we obtain

Efy(z) + U9V (2, 2)] < (1= a0 — pa)v(@e1) + path () + 0sth(3) + 2V (201, 2).

Vs

The result then follows by subtracting ¥ (x) from both sides of the above inequality. ]

A.1 Smooth convex problems

In this subsection, we assume that f is not necessarily strongly convex, i.e., u = 0 in -I)). Lemmal7]
below shows possible decrease of functional value in each epoch of Varag for solving these problems.

Lemma 7 Assume that for each epoch s, s > 1, the parameters o, Vs, ps and T's are chosen such
that (AT1)-(A12) hold. Also, let us set 0; to 2.2). Moreover, let us denote

Lyi= 2o (T, — 1) 2l0etpa) "R o Yo (1 — ) 4 (T, — 1) 22, (A.15)

(o3

and assume that
ws :=Ls —Rep1 >0,Vs > 1. (A.16)
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Then we have
LE[B(E) — ()] + (52 w) ) E[(@*) — ()]
< RAE[(E%) — p(2)] + E[V (2%, 2) — V(2*, 7)) (A.17)

forany x € X, where

o= (52 wy) o (wydd). (A.18)
Proof: Using our assumptions on «s, 7vs and pg, and the fact that © = 0, we have

LE[(#) — ()] < 2(1— o — p)ERp(Fi—1) — ()
+ LEE(E) — ¢(@)] + E[V (21, 2) = V(g ).

Summing up these inequalities for ¢ = 1, ..., T}, using the definition of ¢, in (2.2)) and the fact that
Zo = ¥, and rearranging the terms, we have

SEOE(E) — ()] < [2(1— ag) + (T, - )22 | Bp(@) — ()]
+ E[V(zg,z) — V(zr,z)].

Now using the facts that ° = wp, 19 = °~ 1, 7 = 312 (0,5)/312,0s» & = &°~1, and the
convexity of ¥, we have

SEGERE) - (@) < [2(1 - ag) + (T - D2 Ep(a*!) - ()]
+E[V(2* 2) — V(a®, 2)],

which, in view of the fact that ZtT;Ht = 2o 4 (T, — 1)2=l2=4Ps) then implies that

as as ’

LE[(E°) — p(2)] < RE[W(E) — o(a)] + B[V (25, 2) — V(2®, 2)]. (A.19)
Summing over the above relations, using the convexity of v and rearranging the terms, we then obtain
]

With the help of Lemmal[7} we are now ready to prove Theorem([I] which shows that for solving smooth
convex problems the Varag algorithm can achieve a fast linear rate of convergence O{m log %} if
m > Dg/e and an optimal sublinear rate of convergence otherwise.

Proof of Theorem Let the probabilities ¢; = L;/ Z?;Li fori =1,...,m, and 0y, v, ps, Ts
and o, be defined as in (2.2), (Z.3) and (Z.4). By the definition of L in (A.Z) and the selection of g;,
we have Lo = L. Observe that both conditions in (]Ef[) and @ are satisfied since

1 + wys — LO‘S'VS =1 _Las’ys = %

and

_ _Leoasys 1 _
Ps = Thme—Lazy.  Ps — 2 =0.

Now letting £, and R, be defined in (AT3), we will show that £, > R for any s > 1. Indeed, if
1 < s < 59, we have as 1 = s, Vs+1 = Vs> Ls+1 = 21, and hence

ws =L — Rsy1 = %: [1 + (Ts — D(as +ps) — (1 — as) — (2T — 1)ps]
= 372 [Ts(as _ps)] =0.

Moreover, if s > sg, we have

— — 8 s(as+ps Ys+1P
= Lo~ Ruy = 3 = 2281 — ) + (T, — 1) [05200 — 2epre

(Ts,—1)[2(s—s0+4)—1]
. AL 2 0.

1
=i+

Using these observations in (A7) iteratively, we then conclude that
LE[(E") — ()] < RiE[(E°) — ()] + E[V (2", 2) = V(2*, 2)]

< g (a°) — (@) + V(2°, 2)
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for any s > 1, where the last identity follows from the fact that R; = % Recalling that Dy :=
2[tp(2°) — (x)] + 3LV (2%, x) in 2.6), now we distinguish the following two cases.

. s+1
Case 1: if s < sg, L, = 23T Therefore, we have

E[(3°) — ¢(x)] <27CHDD,, 1< s < 5.

Case 2: if s > sy, we have
Ls=gpa [1+ (T = 1(as + 3)]

_ (s—s0+4)(To —1) 4 (s—s0+4)%(Ts,+1)
6L 24T

s—s +4)2m
{o=sotdf'm | (A.20)

Y

where the last inequality follows from Ty, = 2l1°82™]+1=1 > 4 /2 Hence, we obtain
E[’L/}(is) - ’L/J(Qf)] < %, S > Sp.

In conclusion, we have for any x € X,

2-6tD D, 1<s<s
~SY) < ) —_ — b )
E[y(z°) — ¢(z)] < {(s;(?fi)%na s> s0. (A.21)

In order to derive the complexity bounds in Theorem [T} let us first consider the region of relatively
low accuracy and/or large number of components, i.e., m > Dg/e. In this case Varag needs to run at
most so epochs because by the first case of (A.2T)) we can easily check that

Dy

2s0+1 S €.

More precisely, the number of epochs can be bounded by S; := min {log %, 50} . Hence the total
number of gradient evaluations can be bounded by

mS; + Zf’les =mS; + 25;123_1 =0 {min (m log %Jnlogm)} =0 {mlog %} ,
(A.22)

where the last identity follows from the assumption that m > Dy/e. Now let us consider the region
for high accuracy and/or smaller number of components, i.e., m < Dg/e. In this case, we may
need to run the algorithm for more than sy epochs. More precisely, the total number of epochs

can be bounded by S}, := L / % + 50 — 4—‘ . Note that the total number of gradient evaluations

needed for the first sy epochs can be bounded by msg + Y., T while the total number of gradient
evaluations for the remaining epochs can be bounded by (Ts, + m)(Sr — so). As a consequence, the
total number of gradient evaluations of f; can be bounded by

mso + Y oo Ts + (Tsy + m)(Sh — s0) <00\ Ts + (T, + m)Sp, = O { mbDo 4 mlogm} .
(A23)

Therefore, the results of Theorem [T] follows immediately by combining these two cases. |

A.2 Convex finite-sum problems with or without strong convexity

In this subsection, we provide a unified analysis of Varag when f is possibly strongly convex, i.e.,
w > 0 in @.J). In particular, it achieves a stronger rate of convergence than other RIG methods if
the condition number L/p is very large. Below we consider four different cases and establish the
convergence properties of Varag in each case.

Lemma 8 If s < sq, then for any x € X,
E[(2°) — ¢(z)] < 27D, 1< s < s,
where Dy is defined in (2.6).
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Proof: In this case, we have o, = p, = %, Ys = 3 L, and T, = 25~ 1. It then follows from (A-13) that
LER(Z) — (@)] + (L + pys)E[V (24, 7)) < Z=E(2) — ¢(@)] + E[V (24-1,7)].
Summing up the above relation from ¢ = 1 to T, we have
23 Efp(E) — (@)] + B[V (vr,, 2)] + e 2 B[V (24, 2)]
< LLEW(E) — ¢(2)] + B[V (20, 2)).
Note that in this case 6; are chosen as in @), ie., 0, = g—, t=1,...,Ts in the definition of Z°, we
then have '

LE[p(2°) — h(2)] + E[V (2%, 2)] < EER (@) — ¢(2)] + E[V(2°71, 2)]
= LB (@) — p(a)] + E[V (2 o)),

where we use the facts that & = %1, g = %1, and z° = = xr, in the epoch s and the parameter
settings in (2:3). Applying this inequality recursively, we then have

AT B () — (z)] + B[V (2°,2)] < ZE[(F°) — ()] + V(2°, )
= ZEWE") —v@)]+ V(@ 2).  (A29)
By plugging T = 2°~! into the above inequality, we obtain the result. |

Lemma9 Ifs > sgand m > i—L

E[v(&*) — v(z")] < (5)" Do,

where ©* is an optimal solution of (I.1).

Proof: In this case, we have a; = ps = %, Vs =7 = 3L, and Ty =T, = = 2%0~1 ¢ > gy. It then

follows from (A:T3) that
SB[ (T) — ()] + (1 + 30)E[V (2, 2)] < FE[(E
Multiplying both sides of the above inequality by I'; _; = (1 + 3 ) , we obtain
sr D1 Ep(20) — o (@)] + TE[V (24, 2)] < 57T E[(E ) = P(@)] + D E[V (2e-1, @)].

Note that 6, are chosen as in (2.7) when s > s, i.e., 6 = Iy = (1 + %)t_l, t=1,...,T,,
s > sp. Summing up the above inequality fort = 1,...,Ts we have

37 Lec1OOF [$(0) = ()] + P BV (o, )
< Z S OEW(E) — ¢(@)] + B[V (0, 2)], 5 > so.
Observe that for s > sg, m > Ts =T, = = gllogam| > m/2 and hence that
Iy, = (1+ 227 :(1+§“) o > 14 20 > T 58y > g (A.25)

) = ( )+ EV (21, 2)].
2/

and using the facts that 7° = ZtTgl(Htxt)/thlﬁt, =71 20 =21, and v, = 2% in the s
epoch, and ¢ (Z°) — ¢p(x*) > 0, we conclude from the above inequalities that

H{EEWE) - v + (2100 BV @, 2]}
< FEET) = @) + (200 EV (@ )]s > so.

Applying this relation recursively for s > sg, we then obtain
B (@) = (@) + (22,00 E[V (2%, 27)]
< () {FERE) - 0] + (00 BV (@, }
< ()7 {FEWE") - (@) + AEV @™, a")] ],

where the last inequality follows from Z?;lﬁt > Ts = Ts,. Plugging (A29) into the above
inequality, we have

B0(#) — w(a)] < (1) 2 = (47 B < ()" Dy, 52 50

S0
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Lemma 10 Ifsg < s < so+ 12L —4andm < o= thenforanyx € X,
E[ (&) — ()] < ﬁ

Proof: In this case, 1 > 3780+4 > \/%E. Therefore, we set 0, as in 22), oy = ﬁ,ps =1

Vs =3 L ,and Ts = T,. Observe that the parameter setting in this case is the same as the smooth

case in Theoremm Hence, by following the same procedure as in the proof of Theorem [T} we can
obtain

LEW(E) — p(x)] + E[V (2%, 2)] < Reg1BW(Z°) — ¢(2)] + E[V (2, z)]
< Ly E[p(27) — ¢(z)] + E[V (2™, 2)]
<2,

(A.26)

where the last inequality follows from the fact that £,, > 2; ¢ and the relation in (A.24). The result

then follows by noting that £ > %‘f‘)zm (see (A220)). O

2L

Lemma 11 Ifs > 50 := so + 1 4andm< L then

—m(s—35p)
E[y(i°) — ¢ (z*)] < (H./M) P (A27)

where ©* is an optimal solution of (I.1).

Proof: In this case, % > 1/% > ﬁ20+4' Therefore, we use constant step-size policy that

o = %,ps = % Vs = 7 = \/# and T, = Tj,. Also note that in this case §, are chosen

3La, Ly’
as in (2.7). Multiplying both sides of (A.13) by I';_1 = (1 + us)' !, we obtain
T B[ (20) — $(@)] + TEV (24, 2)] < 2525 (1 — oy — py)E[(Ze-1) — ()]
+ %#E[w(i') —(x)] + Ty B[V (241, 2)].
Summing up the above inequality from ¢ = 1, ..., T and using the fact that £y = z, we arrive at
LS OB (%) — ()] + T, E[V (wr, , )]
<z[i-a-p+ psz?;rt,l] E[(#) — ()] + E[V (20, ).

Now using the facts that 2° = a7, 19 = 2°71, Zt 1(9tﬂft)/zt 00, =351 Ty = Ty,
and the convexity of ¢, we obtain

25 B[ (7°) — ()] + Dr,, E[V (2°, 7))
<2 [1-a = po+p ST | EWGE ) — @) +EV@ T a)]  (A28)
for any s > 59. Moreover, we have
S0, = P -1+ ST (Tmt — (1 — py)TY)
=I7, (1 —as—ps)+ E;Fi(i(rt—l — (1 —as—ps)Ty)
=T, (1 0w = po) + 1= (1= 0 = p) (1 w3 ] 05T

Observe that forany 7> 1and 0 < 6T < 1, (1 +6)T < 1+ 279, as = \/% >4/ T§°L“ and
hence that

(14 pvys)(as — pys +ps)

(1 + pys)(Tso pys — s + ps)
= ps(1 + p7s)[2(Tsy — Vprys +1]
> ps(1+ pys) ™ = pTr,, .

1 - (1 — Qg —ps)(l‘i'/ﬂ’s) Z
>
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Then we conclude that ZtT';”l 0; > T, [1 — a5 —ps + psZ?;%Ft,l] . Together with (A.28) and
the fact that ¢)(Z°) — ¢(«*) > 0, we have

Pr,, {2 [1— a0 = po + 2. S50 | ER(E) — w(@) + BV (2,27)] }
< 2 [1-ay = py + P Te | BB ) — (@*)] + BV (2,2,

Applying the above relation recursively for s > 59 = so + % — 4, and also noting that

I'y = (1 + pys)* and the constant step-size policy in this case, we obtain
Ts ~ * s 0k
2 (1= ay = py + P T | EI(E) — ()] + B[V (", 2")]
< (1 + M,ys)fTso(ngo) {l—i [1 — Qg — Ps +psZ?;%Ft_1]
By (%) — 1 (z")] + E[V (%, 27)]} .

According to the parameter settings in this case, i.e., s = \/3E,ps = 5.7 = 50 =

3Las V3mLy’

- 12L Vs Ts VspsTsg _ Tsg

and 50 = sp + o 4, we have 2= {1 — s — Py +pszt:1]_“t,1} > BN = g =
(50—s0+4)T.

oar— - Using this observation in the above inequality, we then conclude that

E[p(#) = $(a7)] < (L4 ) 7o) [ERE") - v(a7)] + i BV (2%, )]

< (L prys) oo 7)o B (L, B[ (%) — w(a)] + E[V (2%, 27)]]
—T.,(s—5 241 Dy
< (1+ pys) ool O)mj
S (1 + M78)7T90 (87§0) (50—13(?)?-(31)2771
—Ts.(s—35 D
= (14 pvs) of O)3L/2LM,
. . (50—s0+4)°Ts,  Ts
where the second inequality follows from the fact that L5, > “—=—5—=2 = 5 due to (A.20),
the third inequality follows from (A.26)) in Case 3, and last inequality follows from 7}, = 2ll°&2] >
m/2. 0

Putting the above four technical results together, we are ready to prove Theoremlfor Varag solving
(T-1) when (T-1)) is possibly strongly convex.

Proof of Theorem [2| Suppose that the probabilities ¢;’s are set to L; /Y .- L; fori = 1,.
Moreover, let us denote sg := [logm] + 1 and assume that the weights {'Gti are set to @ 1f

1<s<sgorsyg<s<sg+ 12L -4, m < . Otherwise, they are set to ll If the parameters
{T,}, {~s} and {ps} set to 2.3) W1th {ay} given by (2-8), then we have

2—(s+1)D07 1<5< so,
(%)SDO, s> s, and m > iﬁ,
E[¢(2°) — ¢(z")] < ¢ —16Do_ 2L 3L
[Y(T%) —p(z™)] < (s—so+2)2m’ s < s <89+ o 4andm < e
—m(s—35p)
&\ 2  _Dg 12L 4 _ ¢ 3L
(1+\/%) 3L/(§1Ma So + ma 4—80<sandm<4u,

(A.29)
where z* is an optimal solution of (I.I) and Dy is defined as in (2.6).

Now we are ready to provide the proof for the complexity results presented in Theorem 2} Firstly, it
is clear that the first case and the third case corresponds to the results of the smooth case discussed
in Theorem|[I} As a consequence, the total number of gradient evaluations can also be bounded by
(A22) and , respectively. Secondly, for the second case of (A.29), it is easy to check that
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Varag needs to run at most S := O{log Dy/e} epochs, and hence the total number of gradient
evaluations can be bounded by

mS + ZssleS <2mS =0 {mlog %} . (A.30)
Finally, let us consider the last case of (A.29). Since Varag only needs to run at most S’ =

So+2 % log i%; epochs in this case, the total number of gradient evaluations can be bounded

by

s’ S0 S0
D m+T) =Y (m+T)+ > (m+Ts)+(m+Ts)(S" - 5)
s=1 s=1 s=so+1
12L 3L Do/e
< 2mlogm + 2m( —4) +4m, /= log e
=0 {mlogm+ mTLlog ), (A31)
Therefore, the results of Theorem 2] follows immediately from the above discussion. (]

A.3 Convex finite-sum optimization under error bound

In this section, we consider a class of convex finite-sum optimization problems that satisfies the error
bound condition described in (2.10), and establish the convergence results for applying Varag to
solve it.

Proof of Theorem [3] Similar to the smooth case, according to (A.17), for any x € X, we have
LEW(E") — (o)) < RIER(E°) — ()] + E[V (2", 2) - V (2", 2)]
< Rafv(a”) — (@) + V(2% 2).

Then we use x* to replace x and use the relation of (2.10) to obtain
LE[(37) = ()] < Raly (@) = ()] + gl (z) = ().

2
Now, we compute £, and R. According to (A.20), we have £, > (o=so4) (Tog+1)

ST . We have
Ri= 2T1 by plugging the parameters 1, p1, o1 and 77 into (A.15).

Thus, we prove (2.12)) as follows (recall that sg = 4 and s = 59 + 4 F_%m):
s . 16Ty +24L /i x
E[p(°) — ¢(a")] < M@%[w(ﬁ)) —(z")]

ALY [)(2) — ()]

3T [ (00) — ()
3 [(a0) — ()],

where the last inequality follows from T; = min{m, é

IN A

IN

Finally, we plug k = logM so =4, =50+ 4

@.13):
N

;un and 77 = min{m, } to prove

=k ,(m+Ty)) < k(ms +T12°°(s — 5o + 1)) er,/ 1og Yo )=l

B Varag for stochastic finite-sum optimization

In this section, we consider the stochastic finite-sum optimization and online learning problems,
where only noisy gradient information of f; can be accessed via the SFO oracle, and provide the
proof of Theorem 4]

Before proving Theorem 4 we need to establish some key technical results in the following lemmas.
First, we rewrite Lemma [3| under the stochastic setting. Lemma [I2] below shows that G; updated
according to Algorithm I is an unbiased estimator of V f(z,) and its variance is upper bounded.



193 Lemma 12 Conditionally on 1, . .., x4,

E[5,] = 0, ®.1)
E[[16:112] < 2L[f (%) — flzy) — (Vf (), & — z,)] + D10 1qm2b +20 1W+ Yo
(B.2)

194 where 6y = Gy — Vf(x,) and Gy = ﬁzzszl (Gi,(24,85) — G4, (Z)) + G (see Lmeof
195 Algorithm[2).

196 Proof: Take the expectation with respect to i; and [¢] := {£,}%"_| conditionally on z1, ...z, we
197 obtain
1 & 1 I
Ei, g {m ]; Gi, (24, &k) — iGu @)+ — 1:21 Gi(E) — Vf(ﬂ%)}
B, [-L Vi) - —Gu(@) + L Y0 6i@) - V)]
mgi, iy m =

:O’

198 where the first equality follows from (2.14).

199 Moreover, we have

ElI612) =B [ ——- ZGH 20 60) = i Ga(E) + 12 Y Gil) = VI )]
B[l - (Vfu(w) = V() + V@) - V)]

bs

1
$t7§k %Vfit@t)ni]

=1

m

+E[|\ V) - G )+ Y G —fZsz I]

mg;, mqi, m <

m 2

qzt i=1

@~ @I 2| S6E - LY v
1t i=1 i=1

202 202

1 N2 i o? i
<E[rag IV hute) = VR @I+ X o+ 3 g+

+2E|| mz

200 where the last inequality uses (2.15) and in view of relation (A.3) (with = and z* replaced by Z and
201 ), then implies (B.2). O

202 We are now ready to rewrite Lemma [6lunder the stochastic setting.

203 Lemma 13 Assume that as € [0,1], ps € [0,1] and ~vs > 0 satisfy (AT1) and (A12). Then,
204 conditional on x1,...,Ts_1, we have

E[w(jt) + MV(Q)},QE)] < (1 — O _ps)¢(jt—1) +ps¢(i‘) + as¢($) %V(xt—lam)

Vs
@y (Mo m _ 2¢°
+ 2(1+pvys—Lasys) (ZiZI qim2bg + ZZ 1 q;m2B; + mB )
(B.3)

205 foranyx € X.
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206 Proof: Similar to the proof of Lemmal] in view of the smoothness and (strong) convexity of f, we
207 recall the result in (A.T4), i.e.,

F(@) < (U= o = p) f(@-1) + o [0() = h(w) + =V (@p1,2) = B2V (24,0)]

- 57 |02
+pslf(gt,x)+2(li%% —a {6, | — ). (B.4)
208 Also note that by (B1)), (B:2), (A-12) and the convexity of f, we have, conditional on x, ..., z¢_1,

~, asvsE[]|d¢ E
psly(zy, @) + erw—% + @ E[(0, 2y — )]

< pslylzy, @) + Hfj‘:o‘iﬂjm[ﬂ@ - lf(xtvj)]

+ 2(1+u'j:stasws)(Zl Lgim 2b +Z% 1qm2B + mB )
< (p — i) e ) + +7f(w)

+ 2(1+ua§ gLozsvs)(Zz 1g;m 2b +ZZ 1qm2B‘ + mB )

Spef( ) W(Zz 1g;m 21) +Zz lqsz +mB)

200 Moreover, by convexity of h, we have h(Z;) < (1 — ag — ps)h(Zi—1) + ash(zt) + psh(Z). The
210 result then follows by summing up the previous two conclusions with |

=

211 Finally, we need to rewrite the stochastic counterpart of the decrease of function value in each epoch
212 (Lemmal7) in the following lemma.

e

213 Lemma 14 Assume that for each epoch s, s > 1, we have o, s, ps and T such that (@)-@
214 hold. Also, let us set 0, as 2.2). Moreover, let Ls, Rs and ws defined as in (A13) and (A.16)

215 respectively. Then we have
LE[B(E) - ()] + (52 wy) B[ (@) — ()]
< RAE[(E°) — 9 (2)] + B[V (2°, ) = V(2*, )]
TJ

j m
+ Zy 1 2(1-’-#"/J Logvy) (Zz 1q;m 2b + Zz 1qzm23 + mB ) (BS)
216 forany x € X, where ° is defined as in (AI8).

217 Proof: Using our assumptions on «g, vs and ps, the fact that y = 0, and subtracting 1) (x) from the
218 concluding inequality (B-3) of Lemma[I3] we have

ZEW(z) —v(2)] < 22(1 — as — po)EY)(Ze-1) — ¥(2)] + LEE[)(T) — ¢(2)]
+E[V(xt_1,2) — V(z,2)]

2 m 2
+ 2(1+H’Ye Lasys) (Zz 1 qlmzb + Z’L 1q; sz + mB )
o Hence following the same procedure as we did in proving Lemma([7} we can obtain (B.3). O

jre

2

=

220 With the help of Lemma[T4] we are now ready to prove Theoremd] which establishes the convergence
221 properties of Varag for solving stochastic smooth finite-sum problems given in the form of (I.I).

222 Proof of Theorem @ Let the probabilities ¢; = L;/> " fori = 1,...,m, we then have

223 Lg = L. Clearly by setting «s, 75, and p, in 2.3) and @ conditions %ﬂd (AT2) are

224 satisfied. Moreover, similar to the deterministic case, by setting £ and R as in , we can show
225 that £, > R, for any s > 1. Using these observations in (B.3)), we then conclude that

LE[P(E) - ¢(2)] < RIE[Y(2°) — ¢()] +E[V(I o) = V(a®, 95)]
+3 37§1Tj (i 2b +2 q,szJ + %Bi)
2 [0(°) = (@) + V(2°,z)
b5 (G2 + 22 4 22
() = 9(@)] + V(2 x)

s T, Co? 4Co?
+ X e (9 + 450

IN

IN
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240

241

242

243

244

245

1
3Las?
and the definition C' := ) " 1q— Note that the last two terms Cb—" and 40" are in the same
order. Also note that the sampling complexity (number of calls to the SFO oracle) is bounded by
> smBs+ Y Tsbs and the communication complexity (CC), if in the distribued machine learning
case, is bounded by > _(m + 7). So we can let B; = b;, then these two complexity are bounded by
their first term m) B, and m.S respective (note that T’ is always no larger than m). Concretely, we

let i
bi(3)7 J<so
B =b; := 2 ’ . B.6
J J {b/ ]> S0 ( )

for any s > 1, where the second inequality follows from the fact that Ry = SQL,% =

Recalling that Dy := 2[t)(2°) — ¢ ()] + 3LV (2°, ) in (2.6), now we distinguish the following two
cases.

Case1: if s < 50 = |logm] + 1, Ls = 3L02 = 2" Therefore, we have
E[(3*) — ¢(a)] < 270Dy 4270 21 (Ct  ace?)
9—(s+1) —(s+1)y8 500207t
<2 Dy +2 Z 1 T
(é+1)D +92” (5-‘,—1)2 ( )] 15[6/'1;j
s+1 515Co2
<2 —(s+ )D + ( ) 800

=545 1<s<s.

where the last equality holds when s = log 22 and b; = (2)* 150>

Le
In this case, Varag needs to run at most .S; := min {log so} epochs. Hence, the sampling
complexity (number of calls to the SFO oracle) is bounded by
S (mB, + Tiby) < 2mS (3 < dmby (D)% = 0 {22t B)
and the communication complexity (CC), if in the distributed machine learning case, is bounded by
S5 (m+Ty) <2mS =0 {mlog 22} m > Lo, (B.8)
(s—s0+4)°T.

Case 2: if s > sg, L > 0 . Therefore, we have

24L
~ 8D, 8 so  5C 2] 1 5Co? Ts,
]E[’l/)(xs) a ’l/)(I)] < (s—so-‘réf)szo + (s—s0+4)2Ts, (Zjo 10 7 + Z] =so+1 4Lb'a? )

16D 15C 5Co®(j—so+4)*
(5750+Z)2m + (s— so+4 ( -SOZ ( )] LZZ +Zj250+1 z 3]2LZ? )

16 Do 2\s0 15Cc> 5Co?(s—s0)
(s—s0+4)%2m + (s—so+4)2 (3) Lb,y + 2Lb'

€4 € €
72+4+4 S>80.

IN

2
where the last equality holds when s = so + /3220 — 4 b; = (%)80% and b/ = 1097 (s=s0),

32D¢g

me

sampling complexity (number of calls to the SFO oracle) is bounded by
S5 (mBy + Tubs) < 2m3% by (2)*~ + 2mb/ (S, — s0)
< dmby(§)0 + Bmeomnl _ofC8pul (BY)

In this case, Varag needs to run at most run at most Sy, := sg + — 4 epochs. Hence, the

and the communication complexity (CC), if in the distributed machine learning case, is bounded by

ZS’L (m+Ts) <2m(so+ Sp — s9) = O{mlogm—l— 1/”16%}, m < %. (B.10)

The result of Theorem ] follows immediately by combining these two cases. O

12
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C More numerical experiments

Strongly convex problems with small strongly convex modulus. We consider ridge regression
models with a small regularizer coefficient (\) given in the following form,

Irel]i@g%{w(x) = LS fi(@) + h(z)} where f;(2) == 2 (afz — b;)?, h(z) == Al|z[|3.  (C.11)

Since the above problem is strongly convex, we compare the performance of Varag with those of
Prox-SVRGI3] and Katyusha[T]]. As we can see from Figure[I] Varag and Katyusha converges much
faster than Prox-SVRG in terms of training loss. Although Varag and Katyusha perform similar in
terms of training loss per gradient calls, Varag may require less CPU time to perform one epoch
than Katyusha. In fact, Varag only needs to solve one proximal mapping per inner iteration while
Katyusha requires to solve two for strongly convex problems.

—— Prox-SVRG —— Prox-SVRG
————— Katyusha

————— Katyusha

training loss
training loss

B i e o = e —

3 3 5 o 3 2 3 6 B )
#grad/m #grad/m

Diabetes (m = 1151), ridge A = 10~6 Breast-Cancer-Wisconsin (m = 683), ridge A = 106

Figure 1: In this experiments, the algorithmic parameters for Prox-SVRG and Katyusha are set according to [3]]
and [[1]], respectively, and those for Varag are set as in Theorem 2}
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