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Abstract

Often, a principal must make a decision based on data provided by an agent.1

Moreover, typically, that agent has an interest in the decision that is not perfectly2

aligned with that of the principal. Thus, the agent may have an incentive to select3

from or modify the samples he obtains before sending them to the principal. In4

other settings, the principal may not even be able to observe samples directly;5

instead, she must rely on signals that the agent is able to send based on the samples6

that he obtains, and he will choose these signals strategically.7

In this paper, we give necessary and sufficient conditions for when the principal can8

distinguish between agents of “good” and “bad” types, when the type affects the9

distribution of samples that the agent has access to. We also study the computational10

complexity of checking these conditions. Finally, we study how many samples are11

needed.12

1 Introduction13

Anyone can have a bad day. Or a lucky one. Thus, in general, to determine with reasonable confidence14

who are the highly capable agents—whether they be people, companies, or anything else—we need15

to observe their output over an extended period of time. Moreover, capability is generally not16

one-dimensional, and who should be considered highly capable depends on what it is that we are17

looking for. Finally, the policy that we set to evaluate agents’ output will in general affect how they18

strategically try to shape that output. Thus, we must choose our policy to enable the agents that are19

highly capable (according to our definition) to distinguish themselves from others.20

Example. Suppose that there are researchers of different types. Specifically, suppose we have the
following set of types:

Θ = {TML-H,TML-L,AML-H,AML-L}

where “TML” stands for “theoretical machine learning,” “AML” for “applied machine learning,” and
“L” and “H” for “low quality” and “high quality,” respectively. Each researcher generates high-quality
ideas (which we will in this paper refer to as samples) according to some probabilistic process.
Suppose here the sample space is

S = {T,A,B}

where “T” stands for a purely theoretical idea without immediate applied significance, “A” for an
applied idea without immediate theoretical significance, and “B” for an idea that has both theoretical
and applied significance. Finally, suppose there are only 3 conferences: COLT, KDD, and NeurIPS
(we will in this paper refer to papers published in these conferences as “signals”).

Σ = {COLT,KDD,NeurIPS}
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Figure 1: Illustration of the example.

A T or a B idea (sample) can be turned into a COLT paper (signal);1 an A or a B idea can be turned21

into a KDD paper; and a T, A, or B idea can be turned into a NeurIPS paper.2 Each idea, of course,22

can be published in only one conference.23

Suppose a university would like to hire an AML-H researcher (but none of the other types). The24

faculty recruiting committee, unfortunately, is excessively lazy and only looks at the publication25

counts in the various venues. While the candidate researchers of course are committed to improving26

this terrible process once they get the job, for now their only concern is getting the job. In particular,27

everyone will attempt to pretend to be an AML-H researcher by sending their papers to the appropriate28

venues. But what exactly does this mean?29

Suppose an AML-H researcher generates ideas at the following rates: 0.5 B, 0.4 A, 0.1 T. Moreover30

suppose that a TML-H researcher generates ideas at the following rates: 0.5 B, 0.1 A, 0.4 T. If the31

AML-H researcher sends all her papers to NeurIPS, then, even in the long run, she cannot distinguish32

herself from the TML-H researcher, who could do the same. On the other hand, if she sends strictly33

more than 0.6 of her ideas to KDD, then in the long run she will be able to distinguish herself from34

the TML-H researcher, because 0.4 of the latter’s ideas cannot go to KDD.35

Now consider the AML-L researcher. First, an easy case: suppose he generates ideas at the following36

rates: 0.4 B, 0.3 A, 0 T. (These numbers do not sum to 1, but this is not necessary, since they are rates.37

Equivalently, we can suppose him to have “the empty idea” ∅ with the remaining probability 0.3,38

which can be sent only to “the empty conference” where anything can be sent. This “empty signal”39

can also be used to model that the researchers sometimes only have ideas that they do not consider40

worth publishing, i.e., that they strategically select only a subset of their samples to pursue.) Clearly41

the AML-H researcher will in the long run distinguish herself from the AML-L researcher simply by42

the overall number of papers published (as long as the AML-H researcher does not unnecessarily send43

papers to the empty conference!). Alternatively, suppose the AML-L researcher generates ideas at44

the following rates: 0.4 B, 0.5 A, 0.1 T (so that the only weakness of the AML-L researcher relative45

to the AML-H researcher is that fewer of his ideas have both theoretical and applied significance). In46

this case, the AML-H researcher can, in the long run, distinguish herself from the AML-L researcher47

by sending strictly more than 0.5 of her ideas to COLT. Of course, this conflicts with what she needs48

to do distinguish herself from the TML-H researcher. Still, she can distinguish herself from both the49

TML-H and the AML-L researcher in the long run by, in odd-numbered years, sending strictly more50

than 0.6 of her ideas to KDD, and, in even-numbered years, sending strictly more than 0.5 of her51

ideas to COLT.52

In the long run we are all dead. —John Maynard Keynes53

In reality, the candidates will have only finite time to prove themselves. Still, the lazy committee may54

hope to distinguish them with high probability. How many years suffice for this (and, therefore, should55

be the length of a typical Ph.D. program, potentially extended with a postdoctoral appointment)?56

While this is example is a bit tongue-in-cheek, it is not hard to see that this basic phenomenon57

frequently occurs in society. People select from their opportunities and craft them to fit what they58

1Of course, having the basic idea is generally only a small part of the work that needs to be done for a
conference paper; but for our purposes here, we may imagine that the idea incorporates all the work that needs
to be done.

2We use the names of actual conferences strictly for amusement value, and while we think our example
roughly aligns with the focus of these conferences, we do not mean to imply anything about their selectivity
(all these ideas are high-quality) or open-mindedness. We also do not mean to imply anything about other
conferences—e.g., ICML could just as well have been used instead of NeurIPS—or (in what follows) about
different types of researchers or the priorities and effort levels of actual hiring committees.
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think will appeal to future employers. A start-up company may select from its opportunities and craft59

them to fit what they think will impress future backers. In this paper, we introduce a general model60

that captures all these and other cases. Within this model, we characterize conditions under which61

agents of certain types can distinguish themselves from others, as well as how many samples are62

needed for this.63

1.1 Related Work64

Zhang et al. [19] study a related problem in which an agent draws samples and has to submit a subset65

of size k of these samples to a principal, where k is exogenous. In that paper, the motivation is that the66

principal can inspect only so many samples. In contrast, in this paper there is no such constraint, but67

samples can be modified or turned into signals according to a given (arbitrary) graph. This paper also68

allows for uncertainty about how many samples an agent has available, via the “empty sample/signal”69

trick illustrated in the introductory example.70

Our setting is related to mechanism design with partial verification [8, 18], where an agent’s type71

restricts which signals he can send. This can be thought of as corresponding to the special case of72

our model in which an agent only has a single sample which is fully determined by his type. More73

generally, our setting is related to the literature in economics on signaling (along the lines of [16]).74

However, our model does not involve the agents taking any costly actions. There is other work that75

generalizes the partial verification setting to allow costly signaling [12, 13], motivated in part by76

settings where agents are being classified but they can strategically change their features at some cost77

(as also studied in [9]).3 In contrast to this line of work, in this paper we consider settings where78

a single agent with a single type repeatedly generates samples according to a distribution (which79

are then strategically transformed into signals). This allows us to study the question of how many80

samples are needed to, with high confidence, distinguish types from each other.81

Our results can be viewed as generalizations of classical results in efficient statistics, and in particular,82

results for learning and testing discrete distributions, to strategic settings. One of our main results,83

Theorem 6, relies on a subroutine which generalizes the folklore result that Θ(n/ε2) samples are84

needed to estimate a discrete distribution over support [n] with error at most ε, with probability 2/3.85

Another main result, Theorem 7, uses as a building block the identity testing algorithm by Valiant and86

Valiant [17]4, which given O(
√
n/ε2) samples to a distribution y, with probability 2/3, distinguishes87

between the following two cases: y is identical to a given distribution x over support [n], or the88

distance between x and y is at least ε. Theorem 7 generalizes their algorithm into an environment89

where samples can be strategically modified according to a partial order.90

2 Preliminaries91

For a set S, we use ∆(S) to denote the set of probability distributions over S. Given a distribution92

x ∈ ∆(S), we use x(i) to denote the probability mass on the element i ∈ S, and x(A) to denote the93

total probability mass on the set A ⊆ S. We are generally interested in distinguishing one or more94

good distributions from one or more bad distributions (where good and bad are determined by what95

we are looking for). We use g to denote the good distribution, and b to denote the bad distribution.96

(We use (gi)i and (bi)i when there are multiple good/bad distributions.) The agent, depending on his97

type being either good or bad, draws n samples i.i.d. from either g or b. How samples can be turned98

into signals is represented by a bipartite graph G = (S ∪ Σ, E) between the (discrete) sample space99

S and the (discrete) signal space Σ. An agent must convert each sample into a signal and then submit100

all n signals to the principal. E specifies which signals are valid for each sample: a sample s ∈ S101

can be converted into a signal σ ∈ Σ iff (s, σ) ∈ E.102

Note that our model generalizes each of the following models:103

1. The agent can choose to omit samples. We can add an “empty signal” to Σ, where converting a104

sample s to the empty signal corresponds to not reporting s.105

3Other work that models strategic agents manipulating the data that they submit [5, 15] concerns aggregating
the data of multiple agents into a single outcome that all these agents care about; as such, this is less related to
our model here, as here we are interested in determining a given single agent’s type rather than choosing a single
outcome that affects multiple agents.

4Diakonikolas et al. [6] give an algorithm of the same sample complexity.
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2. The agent may or may not receive a sample in each round. E.g., in the example where samples106

correspond to ideas and signals correspond to papers, in some rounds the agent may not have any107

(worthwhile) idea. We can add an “empty sample” in S which can only be converted to the empty108

signal.109

3. The signal space is the same as the sample space: S = Σ. In this case it is more natural to replace110

the bipartite graph by one that has only one copy of each sample/signal, is no longer bipartite,111

and that represents the possibility of changing sample/signal u to sample/signal v by a directed112

edge (u, v).113

We will be interested in the probability of accepting good or bad types after T rounds (i.e., after the114

agent draws T samples). We call the T signals submitted a report R ∈ ΣT . The principal gets to115

choose an acceptance function (or policy, which could be randomized) f : R → {0, 1} that maps116

the report into a binary decision. Her goal is to accept the good agent and reject the bad agent. The117

agent wants to be accepted regardless of his type. The principal can thus make two types of mistakes:118

false-positive (or type 1 error) when she accepts a bad agent, and false-negative (type 2 error) when119

she rejects a good agent. The principal wants to minimize the maximum probability of making either120

type of mistakes.121

We recall the following definition of the total variation distance:122

Definition 1 (Total Variation Distance). The total variation distance between two distributions123

x, y ∈ ∆(Σ) over support Σ is defined to be124

dTV(x, y) =
1

2
‖x− y‖1 =

1

2

∑
σ∈Σ

|x(σ)− y(σ)| = max
A⊆Σ

(x(A)− y(A)).

In our setting, the total variation distance provides a good way to measure the closeness between two125

signal distributions, which are observable by the principal. We will generalize this definition to our126

strategic setting, to measure how close two distributions over the sample space are to each other.127

3 Basic Structural Results128

In this section, we define a notion that we term “directed total variation distance” dDTV. For two129

distributions x and y over samples, dDTV(x, y) measures how well x can distinguish itself from y130

in our strategic setting. As we will see in the later sections, dDTV is a central notion in this paper,131

and often dictates the number of samples we need to distinguish the two distributions under strategic132

reporting.133

In Section 3.1, we give the formal definitions of reporting strategies and the directed total variation134

distance dDTV(x, y). In Section 3.2, we define another notion MaxSep(x, y) that measures how135

well x can distinguish itself from y from the principal’s perspective, using separating sets instead136

of reporting strategies. In Section 3.3, we present one of our key structural results (Proposition 1),137

which shows that the two notions are equivalent.138

3.1 Directed Total Variation Distance139

Before investigating distinguishing distributions under strategic reporting, we first generalize the140

classical measure of how close two distributions are, dTV, to our strategic setting. We first give a141

formal definition the reporting strategy used by the agents.142

Definition 2 ((Single-Round) Reporting Strategy). Given x ∈ ∆(S), α ∈ ∆(Σ), we say x can report143

α (x→ α), if there exist a reporting strategy R = {rs,σ}(s,σ)∈E satisfying:144

• rs,σ ≥ 0 for all (s, σ) ∈ E.145

• For each s ∈ S,
∑
σ:(s,σ)∈E rs,σ = 1.146

• For each σ ∈ Σ,
∑
s:(s,σ)∈E x(s) · rs,σ = α(σ).147

We say x reports α by strategy R (x→R α).148

In other words, when each sample s ∈ S is drawn from the distribution x and given this sample149

the agent is reporting σ ∈ Σ with probability rs,σ, the resulting distribution over the signal space is150

exactly α. For a fixed sample or a random variable s, we use R(s) ∈ ∆(Σ) to denote the random151

variable whose distribution over the signal space is induced by {Rs,σ}σ∈Σ.152
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Given the definition of reporting strategies, we are ready to generalize dTV to our setting. Intuitively,153

x chooses a report first, and then y chooses a report in response; they play a zero-sum game where154

x wants the reports to be as far away from each other as possible. dDTV(x, y) is the value of this155

two-player game when x must choose a report (i.e., a pure strategy) first, which measures how far x156

can stay away from y.157

Definition 3 (Directed Total Variation Distance). Given (S,Σ, E), the directed total variation distance158

between two distributions x, y ∈ ∆(S) over the sample space S is defined to be159

dDTV(x, y) = max
α:x→α

min
β:y→β

dTV(α, β).

3.2 (Maximum) Separation160

Directed total variance distance nicely characterizes the distance between two distributions from the161

agent’s perspective, but it is not immediately clear how that might help the principal. In particular,162

are two distributions easily separable by setting an appropriate policy if they have large directed163

total variation distance? To study this, we introduce several concepts to model the problem from the164

principal’s perspective.165

Definition 4 (Preimage of Signals). For any set of signals A ⊆ Σ, the preimage pre(A) of A is166

defined to be the set of samples which can be mapped to a signal in A. That is167

pre(A) = {s ∈ S | ∃σ ∈ A, s.t. (s, σ) ∈ E}.

The principal could label a set A of signals as “good” signals and simply measure how many good168

signals the agent is able to send. Ideally, this A is chosen so that a good agent can send (significantly)169

more signals in A than a bad agent. This inspires the following definitions.170

Definition 5 (Separation). For any A ⊆ Σ, if x(pre(A)) − y(pre(A)) = ε > 0, then we say A171

separates x from y by a margin of ε.172

Definition 6 (Max Separation). The max separation of x ∈ ∆(S) from y ∈ ∆(S) over the sample173

space S is defined to be MaxSep(x, y) = maxA⊆Σ(x(pre(A))− y(pre(A))).174

3.3 Equivalence of dDTV and MaxSep175

We now draw the connection between the agent’s and the principal’s perspectives. The following176

proposition can be viewed as a generalization of the classic Hall’s Marriage Theorem. Proposition 1177

states that g can distinguish itself from b under strategic reporting iff there exists a subset A∗ of178

signals so that g can generate more signals in A∗ than b. Equivalently, the best reporting strategy179

for g is to focus on a subset A∗ of the signal space, and try to convert samples into signals in A∗180

whenever possible.181

Proposition 1. For any x, y ∈ ∆(S), dDTV(x, y) = MaxSep(x, y).182

The proof of the proposition, as well as all other proofs, is deferred to the appendix. This equivalence183

between dDTV and MaxSep not only is a nice structural result; Proposition 1 plays a substantial part184

in our main algorithmic results.185

It is worth noting that dDTV(x, y) in general is not equal to dDTV(y, x). However, the triangle186

inequality still holds for dDTV, which also enables some of our main results.187

Proposition 2. For any x, y, z ∈ ∆(S), dDTV(x, y) + dDTV(y, z) ≥ dDTV(x, z).188

4 Structural and Computational Results in the General Case189

In this section, we define adaptive and non-adaptive reporting strategies (Definition 7), and the190

accepting probabilities of the optimal reporting strategies after T rounds (Definition 8). At a high191

level, we give a tight characterization result on when there exists a policy that can distinguish g from192

b under strategic reporting, and provide an asymptotically tight bound on the sample complexity193

of the optimal policy. Moreover, we show that while our structural result is clean and tight, it is194

computationally hard to check if the condition holds. That is, in the general case, it is NP-hard to195

determine whether there is a policy that can distinguish g from b.196
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More specifically, we first show that there exists a policy that can distinguish g from b in the limit197

(when T → ∞) iff dDTV(g, b) > 0 (Theorem 1). Next, we give an asymptotically tight sample198

complexity bound of T = Θ(1/ε2) when dDTV(g, b) = ε and we want to distinguish g from b with199

high constant probability (Theorem 3). We then extend the existence result to more general settings200

when there are multiple good and bad distributions (Theorem 4). Finally, we show that it is NP-hard201

to decide if we are in the case where dDTV(g, b) = 0 or dDTV(g, b) > 1
poly(m,n) (Theorem 2).202

We start with the definition of adaptive reporting strategies.203

Definition 7 (Adaptive Reporting Strategy). An adaptive reporting strategy R = (R1, . . . , RT ) is204

a sequence of (different) reporting strategies. The signal σi at time i is obtained by applying Ri to205

the sample si at time i. Ri = Ri(σ1, . . . , σi−1) may depend on all past signals. A reporting strategy206

is non-adaptive if Ri = R1 for any i and (σ1, . . . , σi−1), and adaptive otherwise. For an adaptive207

policy R = (R1, . . . , RT ), we interchangeably write σi = Ri(si | σ1, . . . , σi−1) to indicate the208

dependence of Ri on σ1, . . . , σi−1.209

When we analyze the quality of a fixed T -round policy f , we are interested in the probability that f210

accepts g or b after T rounds, when the agent (of either type) best-responds to f .211

Definition 8 (Acceptance Probabilities of the Best Reporting Strategies). Given x ∈ ∆(S), T ∈212

N, and the principal’s policy f , let the acceptance rate under adaptive / non-adaptive reporting213

respectively be214

pada(f, x, T ) = max
R=(R1,...,RT )

E[f((Ri(si))i∈[T ])],

pnon(f, x, T ) = max
R=(R,...,R)

E[f((Ri(si))i∈[T ])]

where the expectations are taken over T i.i.d. samples (si)i drawn from x. Observe that215

pada(f, x, T ) ≥ pnon(f, x, T ) for any f , x and T .216

Intuitively, if dDTV(g, b) = 0, then the bad distribution can mimic the good distribution perfectly in217

the signal space, no matter what reporting strategy g uses. Therefore, it is impossible to distinguish218

g from b. The next theorem formalizes this intuition. In particular, even if g reports adaptively, b219

can still mimic g’s conditional reporting strategy in every situation (i.e., for every combination of220

previously reported signals).221

Theorem 1 (Separability in the Limit). Given good and bad distributions g and b:222

(i) If dDTV(g, b) > 0, then there exists a policy f such that223

lim
T→∞

(pnon(f, g, T )− pada(f, b, T )) = 1.

That is, f accepts g and rejects b with probability 1 in the limit.224

(ii) If dDTV(g, b) = 0, then for any policy f and any T ,225

pada(f, g, T ) ≤ pada(f, b, T ), pnon(f, g, T ) ≤ pnon(f, b, T ).

That is, no policy can separate g from b, regardless of whether the setting is adaptive.226

The next theorem states that while our characterization result (Theorem 1) is clean and tight (we can227

distinguish iff dDTV(g, b) > 0), it is in fact computationally hard to check if this condition holds.228

Intuitively, Theorem 2 constructs an instance where the good distribution needs to focus on as few229

signals as possible. The parameters are chosen carefully so that it is crucial that g finds a subset of230

signals A ⊆ Σ with minimum cardinality that covers the support of g.231

Theorem 2 (hardness of checking separability). Given x, y ∈ ∆(S), it is NP-hard to distinguish be-232

tween the following two cases: (1) dDTV(x, y) = 0 and (2) dDTV(x, y) ≥ 1
poly(m,n) , or equivalently,233

to determine the existence of a set A ⊆ Σ such that x(pre(A))− y(pre(A)) ≥ 1
poly(m,n) .234

Note that the hardness of checking the existence of separating sets implies the hardness of finding any235

separating set given that dDTV(x, y) > 0. This is because given an algorithm for the latter problem,236

one could run that algorithm without knowing whether dDTV(x, y) > 0 and see if it succeeds. Either237

the algorithm returns a separating set, or we know it must be the case that dDTV(x, y) = 0 and no238

separating set exists.239
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Next, we focus on the case when there are finitely many samples. Theorem 3 is more refined240

than Theorem 1, in that it gives a tight sample complexity bound instead of only talking about241

distinguishing g and b in the limit.242

Theorem 3 (Sample Complexity with Two Distributions). For any g and b such that dDTV(g, b) ≥ ε:243

• There is a policy f such that for any δ > 0 and T ≥ 2 ln(1/δ)/ε2, pnon(f, g, T ) ≥ 1 − δ and244

pada(f, b, T ) ≤ δ.245

• When dDTV(g, b) = ε and T = o(1/ε2), for any f , pnon(f, g, T )− pnon(f, b, T ) < 1
3 .246

Theorem 3 can be generalized to the case where there are multiple good and bad distributions. First,247

suppose there is one good distribution and multiple bad distributions. As long as dDTV(g, bj) ≥ ε248

for every bad distribution bj , we can use the testing algorithm in Theorem 3 to distinguish them in249

T = O(1/ε2) rounds (with high constant probability). We potentially need to do so separately for250

every bad distribution, paying an extra factor of Ω(`) in the sample complexity if there are ` bad251

distributions. If there are k good distributions, then we can run the k testers in parallel, paying an252

additional factor of log(k) in the sample complexity to boost the success probability so that we can253

take a union bound.254

Theorem 4 (Multiple Good and Bad Distributions, the General Case). For any g1, . . . , gk and255

b1, . . . , b` such that dDTV(gi, bj) ≥ ε for any i ∈ [k] and j ∈ [`], there is a policy f such that: For256

any δ > 0 and T ≥ 2` ln(k`/δ)/ε2, pada(f, gi, T ) ≥ 1− δ for any i ∈ [k], and pada(f, bj , T ) ≤ δ257

for any j ∈ [`].258

We note that the policy in Theorem 4 requires the good distribution to report in different ways,259

which is not possible with a non-adaptive strategy according to our definition. In particular, the260

good distribution must know which bad distribution it is up against in each phase, and report261

accordingly. As our introductory example shows, this is in fact necessary when there are multiple262

bad distributions.263

5 When Signals Are Partially Ordered264

In many real-world situations, the sample and signal spaces are structured. For example, when a265

band is recruiting new members, applicants may be asked to submit video recordings of themselves266

playing. An applicant would probably videotape herself playing for an entire event as a sample, and267

then crop the recording to create a signal that demonstrates only her best performance. This cropping268

procedure is irreversible: the complete recording may be cropped to keep a part, but from a part,269

it is impossible to recover the full recording. The signal space in this scenario is partially ordered270

by the cropping procedure—the samples/signals can be transformed in one direction (shortening),271

but never the other. Also, there is a “default” signal for each sample, which is simply to submit the272

complete recording without cropping. The default signal can be transformed into any signal that can273

be reported from this sample. In this section, we consider the following abstraction of such scenarios:274

• S = Σ,275

• (s, s) ∈ E for any s ∈ S,276

• (s, t) ∈ E and (t, u) ∈ E =⇒ (s, u) ∈ E, and277

• E is acyclic except for self-cycles.278

This abstraction also covers, for example, scenarios where the agent can choose to hide certain279

samples—any sample can be transformed into a non-sample, but not reversely. Note that given the280

above conditions, the sample/signal space is essentially a partially ordered set, where a sample can281

only be transformed according to this partial order. Let n = |S| be the cardinality of the sample/signal282

space.283

We first show some useful structural results in the partially ordered case. The following proposition284

demonstrates that the revelation principle holds in this case.285

Proposition 3 (Revelation Principle). For any policy f :286

• There exists a policy f ′ such that for any x ∈ ∆(S), T ∈ N,287

pnon(f, x, T ) = pnon(f ′, x, T ) = E[f ′((si)i)].

• There exists a policy f ′′ such that for any x ∈ ∆(S), T ∈ N,288

pada(f, x, T ) = pada(f ′′, x, T ) = pnon(f ′′, x, T ) = E[f ′′((si)i)].
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The next proposition simplifies the definition of dDTV in the partially ordered case, based on the289

insight that, per the revelation principle, the best way for x to avoid being mimicked by y is to always290

report the unmodified samples.291

Proposition 4 (dDTV Simplified). In the transitive case, dDTV(x, y) = miny→y′ dTV(x, y′).292

This also gives us an efficient algorithm for finding the set that supports the max separation293

MaxSep(x, y) of x from y:294

Corollary 1 (Efficient Computation of Max Separation). Given any x, y ∈ ∆(S), there is a poly-time295

algorithm which computes a set A∗ satisfying x(pre(A∗))− y(pre(A∗)) = MaxSep(x, y).296

We show in Theorem 5 that in the partially ordered case we can separate multiple good distributions297

from multiple bad ones with much smaller overhead. The proof of Theorem 5 is similar to that of298

Theorem 4. The only difference is that, because of the revelation principle, we no longer require good299

distributions to report adaptively.300

Theorem 5 (Multiple Good and Bad Distributions: The Partially Ordered Case). For any g1, . . . , gk301

and b1, . . . , b` where dDTV(gi, bj) ≥ ε for any i ∈ [k], j ∈ [`], there is a policy f such that: For any302

δ > 0 and T ≥ 2 ln(k`/δ)/ε2, pnon(f, gi, T ) ≥ 1 − δ for any i ∈ [k], and pada(f, bj , T ) ≤ δ for303

any j ∈ [`].304

In the partially ordered case, we cannot only deal with multiple good and bad distributions much305

more efficiently, but also deal with any bad distribution using a single sample-efficient policy. Before306

stating the result, recall the following definition of the width of a partially ordered set.307

Definition 9 (Width of Partially Ordered Sets). The width ρ(G) of a partially ordered set represented308

as graph G = (S,E) is defined to be ρ(G) = max{|A| | A ⊆ S, ∀s1, s2 ∈ A, (s1, s2) /∈ E}. In309

other words, the width is the maximum size of a set A ⊆ S where any two elements in A are not310

comparable. Such a set A is called an anti-chain.311

We now provide our generic policy, whose sample complexity, quite surprisingly, depends roughly312

linearly on the width of the sample space.313

Theorem 6 (Efficient Policy against Any Bad Distribution). For any g ∈ ∆(S), there is a policy f314

such that for any δ > 0, and T ≥ 2ρ ln(1+n/ρ) ln(1/δ)
ε2 : (1) pnon(f, g, T ) ≥ 1− δ, and (2) for any b315

such that dDTV(g, b) ≥ ε, pada(f, b, T ) ≤ δ. Moreover, the outcome of the policy can be computed316

in polynomial time.317

The above policy is able to detect any bad distribution with adaptive reporting. For bad distributions318

without adaptive reporting, when ρ = Ω(
√
n/ log n), the following policy achieves even better319

sample complexity.320

Theorem 7 (Efficient Policy against Non-adaptive Bad Distributions). For any g ∈ ∆(S), there is a321

policy f such that for any δ > 0, with T = O
(√

n ln(1/δ)
ε2

)
samples: (1) pnon(f, g, T ) ≥ 1− δ, and322

(2) for any b such that dDTV(g, b) ≥ ε, pnon(f, b, T ) ≤ δ. Moreover, the outcome of the policy can323

be computed in polynomial time.324

6 Future research325

In this paper, we have focused on distinguishing good and bad types with near certainty. In reality,326

the number of available samples may not always be sufficient for this. If so, it may be worthwhile to327

move beyond simple acceptance and rejection decisions to a more general mechanism design setup.328

For example, when the signals we receive from an agent are not decisive one way or another, perhaps329

an intermediate outcome between rejection and acceptance allows us to improve our objective, by330

avoiding the damage of either accepting a bad type or rejecting a good type. One may also consider331

settings in which signaling is costly (or at least sending high-quality signals comes at an effort cost,332

in line with traditional signaling models [16]) or in which agents can in fact improve their actual333

types via some investment cost. Any of these directions would further enrich the specific connections334

between mechanism design and learning theory that we have begun to explore in this paper (and335

that in turn complement other fascinating connections between these topics that have earlier been336

established by others [1, 11, 2, 10, 3, 4, 14, 7]).337
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A Omitted Proofs From Section 3387

We need the following fact:388

Proposition 5 (Saturation). If x→ α, then for any A ⊆ Σ,389

x(pre(A)) ≥ α(A).

Moreover, there exists αA where x→ αA, such that390

x(pre(A)) = αA(A).

We call the corresponding reporting strategy that achieves x→ αA “saturating” for A.391

Proof of Proposition 5. Let R = {rs,σ}(s,σ)∈E be the reporting strategy by which x reports α.392

x(pre(A)) =
∑

s∈pre(A))

x(s)

≥
∑

s∈pre(A)

∑
σ∈A

rs,σx(s) (
∑
σ∈A rs,σ ≤ 1)

=
∑
σ∈A

∑
s:(s,σ)∈E

rs,σx(s)

=
∑
σ∈A

α(σ) (definition of R)

= α(A).

Now we show αA exists by constructing the corresponding reporting strategy. Let R′ = {r′s,σ} be393

any reporting strategy satisfying: if s ∈ pre(A), r′s,σ = 0 for all σ /∈ A. Such an R′ exists because394

by the definition of pre(A), for every s ∈ pre(A), there is at least one σ ∈ A that connects to s.395

Now for any s ∈ pre(A),396 ∑
σ∈A

r′s,σ = 1.

Hence, for this reporting strategy, the single inequality in the derivation above becomes an equality,397

allowing us to conclude x(pre(A)) = αA(A).398

Proof of Proposition 1. We first show MaxSep(x, y) ≤ dDTV(x, y). Let A∗ =399

argmaxA(x(pre(A))− y(pre(A))).400

dDTV(x, y) = max
α:x→α

min
β:y→β

dTV(α, β)

≥ max
α:x→α

min
β:y→β

∑
σ∈A∗

max{α(σ)− β(σ), 0} (Definition 1 of dTV )

≥ max
α:x→α

min
β:y→β

(α(A∗)− β(A∗))

≥ max
α:x→α

(α(A∗)− y(pre(A∗))) (Proposition 5)

= x(pre(A∗))− y(pre(A∗)) (Proposition 5, existence of saturating distribution)
= MaxSep(x, y).

Now we show MaxSep(x, y) ≥ dDTV(x, y). Let α∗ be a signal distribution reported by x that401

achieves dDTV(x, y). Let β∗ be a signal distribution reported by y that best-response to α∗, where402

we require as a tie-breaker that β∗ minimizes the number of signals σ with α∗(σ) ≥ β∗(σ).403

Let A∗ = {σ | α∗(σ) ≥ β∗(σ)}. We will show that A∗ separates x from y by a margin of404

dDTV(x, y).405

We first show that β∗(A∗) = y(pre(A∗)). Suppose otherwise β∗(A∗) < y(pre(A∗)). Let R =406

{rs,σ} be the reporting strategy that gives y → β∗. We know that there exists some s0 ∈ pre(A∗)407
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with y(s0) > 0 where R does not convert all probability mass on s0 into signals in A∗. Formally,408

we have
∑
σ∈A∗:(s0,σ)∈E rs0,σ < 1. Consider any σ1, σ2 ∈ Σ satisfying: σ1 /∈ A∗, (s0, σ1) ∈ E,409

rs0,σ1
> 0, σ2 ∈ A∗, and (s0, σ2) ∈ E. We have α∗(σ1) < β∗(σ1) and α∗(σ2) ≥ β∗(σ2). Now we410

discuss the following two cases and show there is a contradiction in both cases.411

• If α∗(σ2) > β∗(σ2), then by moving412

min{rs0,σ1
y(s0), β∗(σ1)− α∗(σ1), α∗(σ2)− β∗(σ2)} > 0

mass from σ1 to σ2, y can report β′ such that dTV(α∗, β′) < dTV(α∗, β∗), a contradiction.413

• If α∗(σ2) = β∗(σ2), then by moving414

min{rs0,σ1
y(s0), (β∗(σ1)− α∗(σ1))/2} > 0

mass from σ1 to σ2, y can report β′ such that dTV(α∗, β∗) = dTV(α∗, β′). But now α∗(σ2)−415

β′(σ2) < 0, and for any σ 6= σ2, the sign of α∗(σ)− β′(σ) is the same as that of α∗(σ)− β∗(σ).416

So we have417

|{σ | α∗(σ) ≥ β∗(σ)}| > |{σ | α∗(σ) ≥ β′(σ)}|,
which contradicts the choice of β∗.418

Now given that y(pre(A∗)) = β∗(A∗), we have419

MaxSep(x, y) = max
A

(x(pre(A))− y(pre(A))

≥ x(pre(A∗))− y(pre(A∗))

≥ α∗(A∗)− y(pre(A∗)) (Proposition 5)
= α∗(A∗)− β∗(A∗)
= dTV(α, β)

= dDTV(x, y).

Proof of Proposition 2. Let A∗ = argmaxA(x(pre(A))− z(pre(A))). We have420

dDTV(x, y) + dDTV(y, z) = MaxSep(x, y) + MaxSep(y, z)

= max
A

(x(pre(A))− y(pre(A))) + max
A

(y(pre(A))− z(pre(A)))

≥ (x(pre(A∗))− y(pre(A∗))) + (y(pre(A∗))− z(pre(A∗)))

= x(pre(A∗))− z(pre(A∗))

= MaxSep(x, z)

= dDTV(x, z).

B Omitted Proofs From Section 4421

Proof of Theorem 1. Part (i) follows from Theorem 3.422

For part (ii), suppose dDTV(g, b) = 0. Let sig (resp. sb) be a random variable that denotes the sample423

drawn from g (resp. b) at time i. Abusing notation, for two random variables X and Y , we write424

dTV (X,Y ) for the dTV between the underlying distributions of X and Y .425

We show that given an adaptive / non-adaptiveRg , there is an adaptive / non-adaptiveRb, such that426

dTV((Rig(s
i
g))i∈[T ], (R

i
b(s

i
b))i∈[T ]) = 0. (1)

Because the good and bad distributions have identical distributions over the signal space, and this427

holds for all possible reporting strategiesRg , part (ii) follows immediately.428

Consider first non-adaptive reporting. Fix Rg = (R1
g, . . . , R

T
g ) where Rig = Rg for all i, let429

Rb = (R1
b , . . . , R

T
b ), where430

dTV(Rig(s
i
g), R

i
b(s

i
b)) = 0.

The existence of such an Rb follows from the fact that dDTV(g, b) = 0. Now since Rig(s
i
g) and431

Rib(s
i
b) are i.i.d., Equation (1) holds.432
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Now consider adaptive reporting. For any adaptive reporting strategy Rg, we will construct an433

adaptiveRb inductively, such that for any k,434

dTV((Rig(s
i
g))i∈[k], (R

i
b(s

i
b))i∈[k]) = 0.

For the base case when k = 1, observe that since dDTV(g, b) = 0, for any R1
g, there exists R1

b such435

that436

dTV(R1
g(s

1
g), R

1
b(s

1
b)) = 0.

For the inductive case, suppose that dTV((Rig(s
i
g))i∈[k], (R

i
b(s

i
b))i∈[k]) = 0. Given (R1

b , . . . , R
k
b ),437

we construct Rk+1
b in the following way. Let Rk+1

b be such that438

Rk+1
b (sk+1

b | σ1, . . . , σk) = Rk+1
g (sk+1

g | σ1, . . . , σk),

for any (σ1, . . . , σk). Now for any (σ1, . . . , σk+1),439

Pr[(R1
b(s

1
b), . . . , R

k+1
b (sk+1

b )) = (σ1, . . . , σk+1)]

= Pr[(R1
b(s

1
b), . . . , R

k
b (skb )) = (σ1, . . . , σk)] · Pr[Rk+1

b (sk+1
b | σ1, . . . , σk) = σk+1]

= Pr[(R1
g(s

1
g), . . . , R

k
g(skg)) = (σ1, . . . , σk)] · Pr[Rk+1

b (sk+1
b | σ1, . . . , σk) = σk+1]

(induction hypothesis)

= Pr[(R1
g(s

1
g), . . . , R

k
g(skg)) = (σ1, . . . , σk)] · Pr[Rk+1

g (sk+1
g | σ1, . . . , σk) = σk+1]

(construction of Rk+1
b )

= Pr[(R1
g(s

1
g), . . . , R

k+1
g (sk+1

g )) = (σ1, . . . , σk+1)].

In other words, we have440

dTV((Rig(s
i
g))i∈[k+1], (R

i
b(s

i
b))i∈[k+1]) = 0,

which concludes the inductive proof for Equation (1) in the adaptive case.441

Proof of Theorem 2. We reduce from Set Cover. More specifically, we use the following decision442

version of Set Cover: given ground set X = [n], family of sets F = {F1, . . . , Fm} where Fi ⊆ X ,443

and integer k = m/2, determine whether there are k sets in F whose union is X . Note that it444

is without generality to set k = m/2, since given any Set Cover instance with an arbitrary k, we445

could always pad the instance by adding at most m elements into X and m sets into F , to obtain an446

equivalent new instance with k′ = m′/2. Fixing a Set Cover instance, we construct S, Σ, E, x and y447

in the following way.448

• S = U ∪ V , where U = {u1, . . . , un+1}, V = {v1, . . . , vm+2}, and U ∩ V = ∅.449

• Σ = {σ1, . . . , σm+1}.450

• x(ui) = 1
2n for i ∈ [n], and x(un+1) = 1

2 .451

• y(vi) = (1/2 + 1/(2n) − t)/m for i ∈ [m], y(vm+1) = 1
2 −

1
2n , and y(vm+2) = t, where452

t ∈ [0, 1/2 + 1/(2n)] is a constant to be determined later.453

• For i ∈ [m] and j ∈ Fi, let (uj , σi) ∈ E. Let (un+1, σm+1) ∈ E.454

• For any i ∈ [m], let (vi, σi) ∈ E. For any i ∈ [m+ 2], let (vi, σm+1) ∈ E. For any i ∈ [m+ 1],455

let (vm+1, σi) ∈ E.456

• E contains only edges that mentioned above.457

Now consider the problem of finding a set that separates x from y with a positive margin. First458

observe that such a set A would never include σm+1, since y(pre({σm+1})) = 1. Our goal is to set459

t, such that iff |A| ≤ k and pre(A) = {u1, . . . , un}, A separates x from y with a positive margin.460

Such an A in the Set Cover instance would correspond to at most k sets in F whose union cover X .461

Note that if σm+1 /∈ A,462

y(pre(A)) =
1/2 + 1/(2n)− t

m
· |A|+ 1

2
− 1

2n
≥ 1

2
− 1

2n
.

If pre(A) covers {u1, . . . , un}, then x(pre(A)) = 1
2 . Otherwise, x(pre(A)) ≤ 1

2−
1

2n ≤ y(pre(A)).463

So if pre(A) does not cover {u1, . . . , un}, A cannot be a separating set. We set t such that464

y(pre(A)) = 1
2 if |A| = k + 1 = (m + 2)/2. Such a t always exists. Moreover, observe that465

such a value of t guarantees that whenever |A| ≤ k, y(pre(A)) ≤ 1
2 −

1
poly(m,n) . Now iff |A| ≤ k466
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and A covers {u1, . . . , un}, A separates x from y with a margin of 1
poly(m,n) . In other words, there467

is a separating set with a positive margin iff there are at most k sets that cover X in the Set Cover468

instance. Our NP-hardness result follows.469

Proof of Theorem 3. For the first bullet point, let A∗ be a set which separates g from b by a margin470

of ε. Consider the following policy: accept (σ1, . . . , σT ) iff471

1

T

∑
i∈[T ]

I[σi ∈ A∗] ≥ g(pre(A∗))− 1

2
ε.

That is, the policy accepts the distribution iff ᾱ(A∗) ≥ g(pre(A∗))− 1
2ε, where ᾱ is the empirical472

distribution of the reported signals. We now bound the probability of g being accepted. Using some473

saturating reporting strategy RA∗ for A∗ (Proposition 5), we have474

sig ∈ pre(A∗) ⇐⇒ RA∗(s
i
g) ∈ A∗.

So by the Chernoff-Hoeffding bound, f rejects g with probability475

Pr

[
1

T

∑
i

I[sig ∈ pre(A∗)]− g(pre(A∗)) < −1

2
ε

]
≤ exp(−Tε2/2) ≤ δ.

On the other hand, by Proposition 5 for any reporting strategy Rb of b,476

Pr[Rb(s
i
b) ∈ A∗] ≤ b(pre(A∗)) ≤ g(pre(A∗))− ε.

So f accepts b with probability at most477

Pr

[
1

T

∑
i

I[sib ∈ pre(A∗)]− b(pre(A∗)) ≥ 1

2
ε

]
≥ exp(−Tε2/2) ≤ δ.

For the second bullet point, consider the following instance: S = Σ = (s1, s2), g(s1) = 1
2 + ε,478

g(s2) = 1
2−ε, b(s1) = b(s2) = 1

2 , andE = {(s1, s1), (s2, s2)}. In words, s1 is a good sample/signal,479

and s2 is a bad one. Agents must report the sample drawn as is. The good distribution draws good480

samples with slightly higher probability than the bad distribution. For this instance, distinguishing481

between g and b is exactly equivalent to distinguishing a coin with bias ε with a fair coin. In the latter482

problem, it is well-known that Ω(1/ε2) samples are required.483

Proof of Theorem 4. Consider the following policy which uses the policy in Theorem 3 as a building484

block. Let the policy in Theorem 3 be fg,b for good distribution g and bad distribution b. Let485

T0 = 2 ln(k`/δ)/ε2, where `T0 = T . Given the T reported signals (σi), our policy f proceeds in486

the following way:487

• For each i ∈ [k], j ∈ [`], feed the T0 signals488

σ(j−1)T0+1, . . . , σjT0

to policy fgi,bj , and let the output be oi,j = fgi,bj (σ(j−1)T0+1, . . . , σjT0).489

• f outputs 1 iff490 ∨
i∈[k]

∧
j∈[`]

oi,j = 1.

To see the correctness of the policy, observe that for each any i, j, with probability 1 − δ
k` , fgi,bj491

accepts gi and rejects bj given the signals fed in. Taking a union bound over all such (i, j), with492

probability at least 1− δ, all these policies succeed simultaneously. Now for some good distribution493

gi∗ , as long as the above event happens, we have oi∗,j = 1 for all j ∈ [`], so494 ∨
i∈[k]

∧
j∈[`]

oi,j ≥
∏
j∈[`]

oi∗,j = 1.

On the other hand, for some bad distribution bj∗ , we have oi,j∗ = 0 for any i ∈ [k], and therefore495 ∨
i∈[k]

∧
j∈[`]

oi,j ≤
∑
i

∏
j

oi,j = 0.
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Figure 2: Illustration of Proposition 4. Vertices in the frame are from S, and the rest of the network
is constructed as described in the proof. The dashed edges are saturated in the max flow. The boldface
vertices are cut to st, and therefore constitute the prefix supporting the max separation.

C Omitted Proofs From Section 5496

Proof of Proposition 3. Consider f ′ (resp. f ′′) which first applies the optimal non-adaptive (resp.497

adaptive) reporting strategy for x to the original samples, and then applies f to the transformed498

samples. Now the optimal reporting strategy for x given policy f ′ (or f ′′) is simply reporting the499

original sample received from x. The proposition follows.500

Proof of Proposition 4. We show that MaxSep(x, y) = miny→y′ dTV(x, y′), which implies the501

proposition given Proposition 1.502

Consider the following flow network G = (V,E′, w):503

• V = S ∪ {ss, st}, where ss is the source and st is the sink.504

• E′ = E ∪ {(ss, s)}s∈S ∪ {(s, st)}s∈S .505

• w(s1, s2) =∞ for any (s1, s2) ∈ E, w(ss, s) = b(s) for s ∈ S, and w(s, st) = g(s) for s ∈ S.506

See Figure 2 for illustration of an example network. Now observe that507

• 1 − MaxSep(x, y) is the ss-st min-cut of this network. This is because every set A ⊆ S508

corresponds to a cut, where S \ pre(A) is cut to ss and pre(A) is cut to st. The value of509

1− (x(pre(A))− y(pre(A))) is exactly the value of the cut. Similarly, any cut corresponds to a510

separating set. It follows that MaxSep(x, y) corresponds to the min-cut.511

• 1 −miny→y′ dTV(x, y′) is the ss-st max-flow of the network. This is because every y′ corre-512

sponds to a feasible flow in the network, whose capacity is513 ∑
s

min{x(s), y′(s)} = 1− dTV(x, y′).

Taking max over y′, we see that the max-flow has capacity514

max
y→y′

(1− dTV(x, y′)) = 1− min
y→y′

dTV(x, y′).

Strong duality immediately gives the desired statement.515

Proof of Corollary 1. Run max-flow on the flow network constructed in the proof of Proposition 4,516

compute the min-cut on the residual network, and return the subset of S on the same side as ss.517

Proof of Theorem 5. Let the policy in Theorem 3 be the truthful version of fg,b for good distribution518

g and bad distribution b.5 Given the T reported signals (σi), our policy f proceeds in the following519

way:520

5The policy in Theorem 3 is itself truthful, but the construction here works even if it is not.
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• For each i ∈ [k], j ∈ [`], feed all T signals reported to policy fgi,bj , and let the output be521

oi,j = fgi,bj (σ1, . . . , σT ).522

• f outputs 1 iff523 ∨
i∈[k]

∧
j∈[`]

oi,j = 1.

The rest of the proof is essentially the same as that of Theorem 4.524

Our policy against any adaptive bad distribution in Theorem 6 uses an efficient learner as a building525

block, which generalizes classical results for learning discrete distributions.526

Theorem 8 (Efficient Learner). Let ρ = ρ(G) be the width of graph G = (S,E). For any x ∈ ∆(S),527

ε > 0, δ > 0, and T = ρ ln(1+n/ρ) ln(1/δ)
2ε2 , for any valid reporting strategy that satisfies (si, σi) ∈ E,528

with probability at least 1− δ, dDTV(ᾱ, x) ≤ ε, where ᾱ is the empirical distribution given by the529

reports (σi)i, i.e., ᾱ(s) =
∑

i I[σ
i=s]

T .530

The following well-known fact about the width is used in the analysis of our learner:531

Theorem 9 (Dilworth’s Theorem). A chain in a partially ordered set G = (S,E) is an ordered532

set C = (c1, . . . , c`), where ci ∈ S for i ∈ [`] and (ci, ci+1) ∈ E for any i ∈ [` − 1]. Dilworth’s533

Theorem states that for any partially ordered set G = (S,E), the width of ρ(G) is equal to the534

minimum number of chains whose union covers S.535

Proof of Theorem 8. We show that MaxSep(ᾱ, x) ≤ ε w.p. 1 − δ. More specifically, if for all A536

where A = pre(A), ᾱ(A) − x(A) ≤ ε, then duality gives immediately that dDTV(ᾱ, x) ≤ ε. We537

will show that this happens with probability 1− δ.538

Let x̄ be the empirical distribution of (si)i. Fix A ⊆ S where A = pre(A). Observe that x̄(A) ≥539

ᾱ(A), so x(A) = E[x̄(A)] ≥ E[ᾱ(A)]. The Chernoff bound gives540

Pr[ᾱ(A) ≥ x(A) + ε] ≤ exp(−2Tε2) ≤ δ

(1 + n/ρ)ρ
.

We only need to show that the number of different sets A where A = pre(A) is at most (1 + n/ρ)ρ.541

We call such sets prefixes of graph (S,E). Dilworth’s Theorem (Theorem 9) states that the width ρ542

of (S,E) is equal to the minimum number of chains whose union covers S. Let C = {Ck}k∈[ρ] be543

such a covering family, where for any k, Ck = (sk,1, . . . , Sk,`k) is a chain (i.e., (sk,i, sk,i+1) ∈ E544

for i ∈ [`k − 1]. For any prefix A, let pk(A) = |A ∩Ck|. Observe that if two prefixes A1 and A2 are545

distinct, then there is some k ∈ [ρ] such that pk(A1) 6= pk(A2). On the other hand, consider vector546

(p1(A), . . . , pρ(A)). The number of possible values of this vector is
∏
k(`k + 1) ≤ (1 + n/ρ)ρ,547

which is an upper bound of the number of different prefixes. Taking union bound over all these548

prefixes, we have549

Pr[∀A where A = pre(A), ᾱ(A) ≥ x(A) + ε] ≤ δ

(1 + n/ρ)ρ
· (1 + n/ρ)ρ = δ.

The theorem follows.550

Given the efficient learner constructed above, we are ready to prove Theorem 6.551

Proof of Theorem 6. Consider the following policy: compute the empirical distribution ᾱ of the552

reported signals. Accept iff dDTV(g, ᾱ) < 1
2ε. Note that since g is known, dDTV(g, ᾱ) can be553

computed in polynomial time using the algorithm in Corollary 1.554

We first show that pnon(f, g, T ) ≥ 1− δ). In particular, we show that if g reports truthfully, then with555

probability 1− δ, dDTV(g, ḡ) < 1− 1
2ε. The argument is similar to that in the proof of Theorem 8.556

For any A ⊆ S where A = pre(A), the Chernoff bound implies557

Pr[g(A)− ḡ(A) ≥ ε/2] ≤ δ

(1 + n/ρ)ρ
.

Since there are at most (1 + n/ρ)ρ such sets, from a simple union bound, with probability 1 − δ,558

dDTV(g, ḡ) = MaxSep(g, ḡ) ≤ 1
2ε.559
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Now we show that pada(f, b, T ) ≤ δ for any b where dDTV(g, b) ≥ ε. No matter what adaptive560

reporting strategy b uses, the signals reported by b must satisfy (sib, σ
i
b) ∈ E for all i. By Theorem 8,561

with probability 1 − δ, the empirical distribution ᾱ satisfies dDTV(ᾱ, b) ≤ 1
2ε. Now since dDTV562

satisfies the triangle inequality (Proposition 2),563

dDTV(g, ᾱ) ≥ dDTV(g, b)− dDTV(ᾱ, b) ≥ ε− 1

2
ε =

1

2
ε.

Whenever this happens, b is rejected by f , which means pada(f, b, T ) ≤ δ.564

Proof of Theorem 7. We use the algorithm by Valiant and Valiant [17] for testing identity of discrete565

distributions as a building block. Given a distribution x ∈ ∆([n]), with T = O
(√

n ln(1/δ)
ε2

)
samples566

to an unknown distribution y, their algorithm distinguishes between the following two cases: (1)567

y = x and (2) dTV(x, y) ≥ ε. Our policy for non-adaptive reporting is simply running the algorithm568

by Valiant and Valiant on the good distribution g and the signals reported (σi)i.569

The good distribution g, in order to be accepted with high probability, simply reports truthfully. The570

distribution of signals of g is therefore exactly g, which with probability 1− δ passes the test.571

As for the bad distribution, observe that any non-adaptive reporting strategy Rb = (Rb, . . . , Rb)572

induces a distribution αb of signals reported, where b →Rb
αb. No matter how b reports, because573

dDTV(g, b) ≥ ε, we always have dTV(g, αb) ≥ ε, in which case αb fails the test with probability at574

least 1− δ.575
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