
A Related work on learning Ising models

For the special case of learning Ising models (i.e., binary variables), we compare the sample complex-
ity among different graph recovery algorithms in Table 2. Note that most of the results here (Raviku-
mar et al., 2010; Bresler, 2015; Vuffray et al., 2016; Lokhov et al., 2018; Rigollet and Hütter, 2017)
are only for learning Ising models. Therefore, we do not list them in Table 1.

Paper Assumptions Sample complexity (N )

Information-theoretic
lower bound
(Santhanam and
Wainwright, 2012)

1. Model width ≤ λ, and λ ≥ 1 max{ ln(n)
2η tanh(η) ,

2. Degree ≤ d d
8 ln( n8d ),

3. Minimum edge weight ≥ η > 0 exp(λ) ln(nd/4−1)
4ηd exp(η) }4. External field = 0

`1-regularized logistic
regression (Raviku-
mar et al.,
2010)

Q∗ is the Fisher information matrix,

O(d3 ln(n))

S is set of neighbors of a given variable.
1. Dependency: ∃ Cmin > 0 such that

eigenvalues of Q∗SS ≥ Cmin

2. Incoherence: ∃ α ∈ (0, 1] such that
‖Q∗ScS(Q∗SS)−1‖∞ ≤ 1−α

3. Regularization parameter:

λN ≥ 16(2−α)
α

√
ln(n)
N

4. Minimum edge weight≥ 10
√
dλN/Cmin

5. External field = 0

6. Probability of success ≥ 1− 2e−O(λ2
NN)

Greedy
algorithm (Bresler,
2015)

1. Model width ≤ λ
O(exp( exp(O(dλ))

ηO(1) ) ln(nρ ))
2. Degree ≤ d
3. Minimum edge weight ≥ η > 0
4. Probability of success ≥ 1− ρ

Interaction
Screening (Vuffray
et al., 2016)

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2 }
3. Minimum edge weight ≥ η > 0 d3 exp(6λ) ln(nρ ))

4. Regularization parameter = 4
√

ln(3n2/ρ)
N

5. Probability of success ≥ 1− ρ

`1-regularized logistic
regression (Lokhov
et al., 2018)

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2 }
3. Minimum edge weight ≥ η > 0 d3 exp(8λ) ln(nρ ))

4. Regularization parameter O(
√

ln(n2/ρ)
N )

5. Probability of success ≥ 1− ρ
`1-constrained
logistic
regression (Rigollet
and Hütter, 2017)

1. Model width ≤ λ
O(λ

2 exp(8λ)
η4 ln(nρ ))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ

Sparsitron (Klivans
and Meka, 2017)

1. Model width ≤ λ
O(λ

2 exp(12λ)
η4 ln( nρη ))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ
`1-constrained
logistic regression
(this paper)

1. Model width ≤ λ
O(λ

2 exp(12λ)
η4 ln(nρ ))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ
Table 2: Comparison of the sample complexity required for graph recovery of an Ising model. The
second column lists the assumptions in their analysis. Given λ and η, the degree is bounded by
d ≤ λ/η, with equality achieved when every edge has the same weight and there is no external field.

As mentioned in the Introduction, Ravikumar et al. (2010) consider `1-regularized logistic regression
for learning Ising models in the high-dimensional setting. They require incoherence assumptions that
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ensure, via conditions on sub-matrices of the Fisher information matrix, that sparse predictors of each
node are hard to confuse with a false set. Their analysis obtains significantly better sample complexity
compared to what is possible when these extra assumptions are not imposed (Bento and Montanari,
2009). Others have also considered `1-regularization (Lee et al., 2007; Yuan and Lin, 2007; Banerjee
et al., 2008; Jalali et al., 2011; Yang et al., 2012; Aurell and Ekeberg, 2012) for structure learning of
Markov random fields but they all require certain assumptions about the graphical model and hence
their methods do not work for general graphical models. The analysis of (Ravikumar et al., 2010) is
of essentially the same convex program as this work (except that we have an additional thresholding
procedure). The main difference is that they obtain a better sample guarantee but require significantly
more restrictive assumptions.

In the general setting with no restrictions on the model, Santhanam and Wainwright (2012) provide an
information-theoretic lower bound on the number of samples needed for graph recovery. This lower
bound depends logarithmically on n, and exponentially on the width λ, and (somewhat inversely) on
the minimum edge weight η. We will find these general broad trends, but with important differences,
in the other algorithms as well.

Bresler (2015) provides a greedy algorithm and shows that it can learn with sample complexity that
grows logarithmically in n, but doubly exponentially in the width λ and also exponentially in 1/η. It
is thus suboptimal with respect to its dependence on λ and η.

Vuffray et al. (2016) propose a new convex program (i.e. different from logistic regression), and for
this they are able to show a single-exponential dependence on λ. There is also low-order polynomial
dependence on λ and 1/η. Note that given λ and η, the degree is bounded by d ≤ λ/η (the equality
is achieved when every edge has the same weight and there is no external field). Therefore, their
sample complexity can scale as worse as 1/η5. Later, the same authors (Lokhov et al., 2018) prove a
similar result for the `1-regularized logistic regression using essentially the same proof technique
as (Vuffray et al., 2016).

Rigollet and Hütter (2017) analyze the `1-constrained logistic regression for learning Ising models.
Their sample complexity6 has a better dependence on 1/η (1/η4 vs 1/η5) than (Lokhov et al.,
2018). It would be interesting to see if their analysis can be extended to the `2,1-constrained logistic
regression. Naïve extension may give a sample complexity exponential in the alphabet size7.

In this paper, we analyze the `2,1-constrained logistic regression for learning discrete pairwise
graphical models with general alphabet. Our proof uses generalization bound, and is different
from (Lokhov et al., 2018; Rigollet and Hütter, 2017). For learning Ising models (shown in Table 2),
our sample complexity matches that of (Klivans and Meka, 2017). For learning non-binary pairwise
graphical models (shown in Table 1), our sample complexity improves the state-of-the-art result.

B Supporting lemmas

In this section, we list the lemmas that will be used in proving our main theorems: Theorem 1 and 2.
Proofs of the two theorems are given in Appendix C and D. Proofs of the supporting lemmas are
given in Appendix E to H.

Lemma 1 and Lemma 2 are the key results in our proof. They essentially say that given enough
samples, solving the corresponding constrained logistic regression problem will provide a prediction
σ(〈ŵ, x〉) close to the true σ(〈w∗, x〉) in terms of their expected squared distance.

Lemma 1. Let D be a distribution on {−1, 1}n × {−1, 1} where for (X,Y ) ∼ D, P[Y = 1|X =
x] = σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ for a known λ ≥ 0. Given N i.i.d. samples
{(xi, yi)}Ni=1, let ŵ be any minimizer of the following `1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (16)

6Lemma 5.21 in (Rigollet and Hütter, 2017) has a typo: The upper bound should depend on exp(2λ).
Accordingly, Theorem 5.23 should depend on exp(4λ) rather than exp(3λ).

7This is because the Hessian of the population loss has a lower bound that depends on exp(−2λ
√
k) for

‖w‖2,1 ≤ λ
√
k and ‖x‖2,∞ ≤ 1.
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Given ρ ∈ (0, 1) and ε > 0, if the number of samples satisfies N = O(λ2 ln(n/ρ)/ε2), then with
probability at least 1− ρ over the samples, E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.

Lemma 2. Let D be a distribution on X × {−1, 1}, where X = {x ∈ {0, 1}n×k : ‖x‖2,∞ ≤ 1}.
Furthermore, (X,Y ) ∼ D satisfies P[Y = 1|X = x] = σ(〈w∗, x〉), where w∗ ∈ Rn×k. We assume
that ‖w∗‖2,1 ≤ 2λ

√
k for a known λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1 from D, let ŵ be

any minimizer of the following `2,1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤ 2λ

√
k. (17)

Given ρ ∈ (0, 1) and ε > 0, if the number of samples satisfies N = O(λ2k(ln(n/ρ))/ε2), then with
probability at least 1− ρ over the samples, E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.

The proofs of Lemma 1 and Lemma 2 are given in Appendix E. Note that in the setup of both lemmas,
we form a pair of dual norms for x and w, e.g., ‖x‖2,∞ and ‖w‖2,1 in Lemma 2, and ‖x‖∞ and ‖w‖1
in Lemma 1. This duality allows us to use a sharp generalization bound with a sample complexity
that scales logarithmic in the dimension (see Lemma 8 and Lemma 11 in Appendix E).

Definition 3 defines a δ-unbiased distribution. This notion of δ-unbiasedness is proposed by Klivans
and Meka (2017).

Definition 3. Let S be the alphabet set, e.g., S = {−1, 1} for Ising model and S = [k] for an
alphabet of size k. A distribution D on Sn is δ-unbiased if for X ∼ D, any i ∈ [n], and any
assignment x ∈ Sn−1 to X−i, minα∈S(P[Xi = α|X−i = x]) ≥ δ.

For a δ-unbiased distribution, any of its marginal distribution is also δ-unbiased (see Lemma 3).

Lemma 3. Let D be a δ-unbiased distribution on Sn, where S is the alphabet set. For X ∼ D, any
i ∈ [n], the distribution of X−i is also δ-unbiased.

Lemma 4 describes the δ-unbiased property of graphical models. This property has been used in the
previous papers (e.g., (Klivans and Meka, 2017; Bresler, 2015)).

Lemma 4. Let D(W,Θ) be a pairwise graphical model distribution with alphabet size k and
width λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k. Specifically, an Ising model
distribution D(A, θ) is e−2λ(A,θ)/2-unbiased.

In Lemma 1 and Lemma 2, we give a sample complexity bound for achieving a small `2 error
between σ(〈ŵ, x〉) and σ(〈w∗, x〉). The following two lemmas show that if the sample distribution is
δ-unbiased, then a small `2 error implies a small distance between ŵ and w∗.

Lemma 5. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that for two vectors u,w ∈ Rn
and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉 + θ′) − σ(〈u,X〉 + θ′′))2] ≤ ε, where ε < δe−2‖w‖1−2|θ′|−6.
Then ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·

√
ε/δ.

Lemma 6. LetD be a δ-unbiased distribution on [k]n. ForX ∼ D, let X̃ ∈ {0, 1}n×k be the one-hot
encoded X . Let u,w ∈ Rn×k be two matrices satisfying

∑
a u(i, a) = 0 and

∑
a w(i, a) = 0, for

i ∈ [n]. Suppose that for some u,w and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)−σ(

〈
u, X̃

〉
+

θ′′))2] ≤ ε, where ε < δe−2‖w‖∞,1−2|θ′|−6. Then8 ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

The proofs of Lemma 5 and Lemma 6 can be found in (Klivans and Meka, 2017) (see Claim 8.6 and
Lemma 4.3 in their paper). We give a slightly different proof of these two lemmas in Appendix H.

C Proof of Theorem 1

We first restate Theorem 1 and then give the proof.

8For a matrix w, we define ‖w‖∞ = maxij |w(i, j)|. Note that this is different from the induced matrix
norm.
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Theorem. Let D(A, θ) be an unknown n-variable Ising model distribution with dependency graph
G. Suppose that the D(A, θ) has width λ(A, θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number
of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then with probability at least 1 − ρ,
Algorithm 1 produces Â that satisfies

max
i,j∈[n]

|Aij − Âij | ≤ ε. (18)

Proof. For ease of notation, we consider the n-th variable. The goal is to prove that Algorithm 1 is
able to recover the n-th row of the true weight matrix A. Specifically, we will show that if the number
samples satisfies N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability as least 1− ρ/n,

max
j∈[n]

|Anj − Ânj | ≤ ε. (19)

We then use a union bound to conclude that with probability as least 1−ρ, maxi,j∈[n] |Aij−Âij | ≤ ε.

Let Z ∼ D(A, θ), X = [Z−n, 1] = [Z1, Z2, · · · , Zn−1, 1] ∈ {−1, 1}n, and Y = Zn ∈ {−1, 1}.
By Fact 1, P[Y = 1|X = x] = σ(〈w∗, x〉), where w∗ = 2[An1, · · · , An(n−1), θn]. Further,
‖w∗‖1 ≤ 2λ. Let ŵ be the solution of the `1-constrained logistic regression problem defined in (4).

By Lemma 1, if the number of samples satisfies N = O(λ2 ln(n/ρ)/γ2), then with probability at
least 1− ρ/n, we have

E
X

[(σ(〈w∗, X〉)− σ(〈ŵ,X〉))2] ≤ γ. (20)

By Lemma 4, Z−n ∈ {−1, 1}n−1 is δ-unbiased (Definition 3) with δ = e−2λ/2. By Lemma 5, if
γ < C1δe

−4λ for some constant C1 > 0, then (20) implies that

‖w∗1:(n−1) − ŵ1:(n−1)‖∞ ≤ O(1) · e2λ ·
√
γ/δ. (21)

Note that w∗1:(n−1) = 2[An1, · · · , An(n−1)] and ŵ1:(n−1) = 2[Ân1, · · · , Ân(n−1)]. Let γ =

C2δe
−4λε2 for some constant C2 > 0 and ε ∈ (0, 1), (21) then implies that

max
j∈[n]

|Anj − Ânj | ≤ ε. (22)

The number of samples needed is N = O(λ2 ln(n/ρ)/γ2) = O(λ2e12λ ln(n/ρ)/ε4).

We have proved that (19) holds with probability at least 1 − ρ/n. Using a union bound over all n
variables gives that with probability as least 1− ρ, maxi,j∈[n] |Aij − Âij | ≤ ε.

D Proof of Theorem 2

The following lemma will be used in the proof.
Lemma 7. LetZ ∼ D, whereD is a δ-unbiased distribution on [k]n. Given α 6= β ∈ [k], conditioned
on Zn ∈ {α, β}, Z−n ∈ [k]n−1 is also δ-unbiased.

Proof. For any i ∈ [n− 1], a ∈ [k], and x ∈ [k]n−2, we have

P[Zi = a|Z[n]\{i,n} = x, Zn ∈ {α, β}]

=
P[Zi = a, Z[n]\{i,n} = x, Zn = α] + P[Zi = a, Z[n]\{i,n} = x, Zn = β]

P[Z[n]\{i,n} = x, Zn = α] + P[Z[n]\{i,n} = x, Zn = β]

(a)

≥ min(
P[Zi = a, Z[n]\{i,n} = x, Zn = α]

P[Z[n]\{i,n} = x, Zn = α]
,
P[Zi = a, Z[n]\{i,n} = x, Zn = β]

P[Z[n]\{i,n} = x, Zn = β]
)

= min(P[Zi = a|Z[n]\{i,n} = x, Zn = α],P[Zi = a|Z[n]\{i,n} = x, Zn = β])

(b)

≥ δ. (23)

where (a) follows from the fact that (a+ b)/(c+ d) ≥ min(a/c, b/d) for a, b, c, d > 0, (b) follows
from the fact that Z is δ-unbiased.
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Now we are ready to prove Theorem 2, which is restated below.

Theorem. Let D(W,Θ) be an n-variable pairwise graphical model distribution with width
λ(W,Θ) ≤ λ and alphabet size k. Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. sam-
ples satisfies N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then with probability at least 1− ρ, Algorithm 2
produces Ŵij ∈ Rk×k that satisfies

|Wij(a, b)− Ŵij(a, b)| ≤ ε, ∀i 6= j ∈ [n], ∀a, b ∈ [k]. (24)

Proof. To ease notation, let us consider the n-th variable (i.e., set i = n inside the first “for” loop of
Algorithm 2). The proof directly applies to other variables. We will prove the following result: if
the number of samples N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then with probability at least 1− ρ/n,
the Uα,β ∈ Rn×k matrices produced by Algorithm 2 satisfies

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, β, b ∈ [k]. (25)

Suppose that (25) holds, summing over β ∈ [k] and using the fact that
∑
βWnj(β, b) = 0 gives

|Wnj(α, b)−
1

k

∑
β∈[k]

Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, b ∈ [k]. (26)

Theorem 2 then follows by taking a union bound over the n variables.

The only thing left is to prove (25). Now fix a pair of α, β ∈ [k], let Nα,β be the number of samples
such that the n-th variable is either α or β. By Lemma 2 and Fact 2, if Nα,β = O(λ2k ln(n/ρ′)/γ2),
then with probability at least 1 − ρ′, the minimizer of the `2,1 constrained logistic regression
wα,β ∈ Rn×k satisfies

E
X

[(σ(〈w∗, X〉)− σ(
〈
wα,β , X

〉
))2] ≤ γ. (27)

Recall that X ∈ {0, 1}n×k is the one-hot encoding of the vector [Z−n, 1] ∈ [k]n, where Z ∼
D(W,Θ) and Zn ∈ {α, β}. Besides, w∗ ∈ Rn×k satisfies

w∗(j, :) = Wnj(α, :)−Wnj(β, :), ∀j ∈ [n− 1]; w∗(n, :) = [θn(α)− θn(β), 0, · · · , 0]. (28)

Let Uα,β ∈ Rn×k be formed by centering the first n − 1 rows of wα,β . Since each row of X is a
standard basis vector (i.e., all 0’s except a single 1),

〈
Uα,β , X

〉
=
〈
wα,β , X

〉
. Hence, (27) implies

E
X

[(σ(〈w∗, X〉)− σ(
〈
Uα,β , X

〉
))2] ≤ γ. (29)

By Lemma 4, we know thatZ ∼ D(W,Θ) is δ-unbiased with δ = e−2λ/k. By Lemma 7, conditioned
onZn ∈ {α, β}, Z−n is also δ-unbiased. Hence, the condition of Lemma 6 holds. Applying Lemma 6
to (29), we get that if Nα,β = O(λ2k3 exp(12λ) ln(n/ρ′))/ε4), the following holds with probability
at least 1− ρ′:

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀b ∈ [k]. (30)

So far we have proved that (25) holds for a fixed (α, β) pair. This requires that Nα,β =
O(λ2k3 exp(12λ) ln(n/ρ′))/ε4). Recall that Nα,β is the number of samples that the n-th vari-
able takes α or β. We next derive the number of total samples needed in order to have Nα,β samples
for a given (α, β) pair. Since D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k, for Z ∼ D(W,Θ),
we have P[Zn ∈ {α, β}|Z−n] ≥ 2δ, and hence P[Zn ∈ {α, β}] ≥ 2δ. By the Chernoff bound, if
the total number of samples satisfies N = O(Nα,β/δ + log(1/ρ′′)/δ), then with probability at least
1− ρ′′, we have Nα,β samples for a given (α, β) pair.

To ensure that (30) holds for all (α, β) pairs with probability at least 1−ρ/n, we can set ρ′ = ρ/(nk2)
and ρ′′ = ρ/(nk2) and take a union bound over all (α, β) pairs. The total number of samples required
is N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4).

We have shown that (25) holds for the n-th variable with probability at least 1−ρ/n. By the discussion
at the beginning of the proof, Theorem 2 then follows by a union bound over the n variables.
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E Proof of Lemma 1 and Lemma 2

The proof of Lemma 1 relies on the following lemmas. The first lemma is a generalization error
bound for any Lipschitz loss of linear functions with bounded ‖w‖1 and ‖x‖∞.
Lemma 8. (see, e.g., Corollary 4 of (Kakade et al., 2009) and Theorem 26.15 of (Shalev-Shwartz
and Ben-David, 2014)) Let D be a distribution on X × Y , where X = {x ∈ Rn : ‖x‖∞ ≤ X∞},
and Y = {−1, 1}. Let ` : R→ R be a loss function with Lipschitz constant L`. Define the expected
loss L(w) and the empirical loss L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (31)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. DefineW = {w ∈ Rn : ‖w‖1 ≤ W1}.
Then with probability at least 1− ρ over the samples, we have that for all w ∈ W ,

L(w) ≤ L̂(w) + 2L`X∞W1

√
2 ln(2n)

N
+ L`X∞W1

√
2 ln(2/ρ)

N
. (32)

Lemma 9. (Pinsker’s inequality) Let DKL(a||b) := a ln(a/b) + (1− a) ln((1− a)/(1− b)) denote
the KL-divergence between two Bernoulli distributions (a, 1− a), (b, 1− b) with a, b ∈ [0, 1]. Then

(a− b)2 ≤ 1

2
DKL(a||b). (33)

Lemma 10. Let D be a distribution on X × {−1, 1}. For (X,Y ) ∼ D, P[Y = 1|X = x] =
σ(〈w∗, x〉), where σ(x) = 1/(1 + e−x) is the sigmoid function. Let L(w) be the expected logistic
loss:

L(w) = E
(x,y)∼D

ln(1 + e−y〈w,x〉) = E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))].

(34)
Then for any w, we have

L(w)− L(w∗) = E
(x,y)∼D

[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))], (35)

where DKL(a||b) := a ln(a/b) + (1− a) ln((1− a)/(1− b)) denotes the KL-divergence between
two Bernoulli distributions (a, 1− a), (b, 1− b) with a, b ∈ [0, 1].

Proof. Simply plugging in the definition of the expected logistic loss L(·) gives

L(w)− L(w∗) = E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
(x,y)∼D

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

= E
x
E
y|x

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
x
E
y|x

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

(a)
= E

x
[−σ(〈w∗, x〉) ln(σ(〈w, x〉))− (1− σ(〈w∗, x〉)) ln(1− σ(〈w, x〉))]

+ E
x

[σ(〈w∗, x〉) ln(σ(〈w∗, x〉)) + (1− σ(〈w∗, x〉)) ln(1− σ(〈w∗, x〉))]

= E
x

[
σ(〈w∗, x〉) ln

(
σ(〈w∗, x〉)
σ(〈w, x〉)

)
+ (1− σ(〈w∗, x〉)) ln

(
1− σ(〈w∗, x〉)
1− σ(〈w, x〉)

)]
= E

(x,y)∼D
[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))],

where (a) follows from the fact that
Ey|x[y] = 1 · P[y = 1|x] + (−1) · P[y = −1|x] = 2σ(〈w∗, x〉)− 1.
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We are now ready to prove Lemma 1 (which is restated below):

Lemma. LetD be a distribution on {−1, 1}n×{−1, 1} where for (X,Y ) ∼ D, P[Y = 1|X = x] =
σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ for a known λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1,
let ŵ be any minimizer of the following `1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (36)

Given ρ ∈ (0, 1) and ε > 0, suppose that N = O(λ2(ln(n/ρ))/ε2), then with probability at least
1− ρ over the samples, we have that E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.

Proof. We first apply Lemma 8 to the setup of Lemma 1. The loss function `(z) = ln(1 + e−z)
defined above has Lipschitz constant L` = 1. The input sample x ∈ {−1, 1}n satisfies ‖x‖∞ ≤ 1.
LetW = {w ∈ Rn×k : ‖w‖1 ≤ 2λ}. According to Lemma 8, with probability at least 1− ρ/2 over
the draw of the training set, we have that for all w ∈ W ,

L(w) ≤ L̂(w) + 4λ

√
2 ln(2n)

N
+ 2λ

√
2 ln(4/ρ)

N
. (37)

where L(w) = E(x,y)∼D ln(1+e−y〈w,x〉) and L̂(w) =
∑N
i=1 ln(1+e−y

i〈w,xi〉)/N are the expected
loss and empirical loss.

Let N = C · λ2 ln(8n/ρ)/ε2 for a global constant C, then (37) implies that with probability at least
1− ρ/2,

L(w) ≤ L̂(w) + ε, for all w ∈ W. (38)

We next prove a concentration result for L̂(w∗). Here w∗ is the true regression vector and is assumed
to be fixed. First notice that ln(1 + e−y〈w

∗,x〉) is bounded because |y 〈w∗, x〉 | ≤ 2λ. Besides, the
ln(1 + e−z) has Lipschitz 1, so | ln(1 + e−2λ)− ln(1 + e2λ)| ≤ 4λ. Hoeffding’s inequality gives
that P[L̂(w∗)− L(w∗) ≥ t] ≤ e−2Nt2/(4λ)2 . Let N = C ′ · λ2 ln(2/ρ)/ε2 for a global constant C ′,
then with probability at least 1− ρ/2 over the samples,

L̂(w∗) ≤ L(w∗) + ε. (39)

Then the following holds with probability at least 1− ρ:

L(ŵ)
(a)

≤ L̂(ŵ) + ε
(b)

≤ L̂(w∗) + ε
(c)

≤ L(w∗) + 2ε, (40)

where (a) follows from (38), (b) follows from the fact ŵ is the minimizer of L̂(w), and (c) follows
from (39).

So far we have shown that L(ŵ) − L(w∗) ≤ 2ε with probability at least 1 − ρ. The last step is to
lower bound L(ŵ)−L(w∗) by E(x,y)∼D(σ(〈w∗, x〉)− σ(〈w, x〉))2 using Lemma 9 and Lemma 10.

E
(x,y)∼D

(σ(〈w∗, x〉)− σ(〈w, x〉))2
(d)

≤ E
(x,y)∼D

DKL(σ(〈w∗, x〉)||σ(〈w, x〉))/2

(e)
= (L(ŵ)− L(w∗))/2

(f)

≤ ε,

where (d) follows from Lemma 9, (e) follows from Lemma 10, and (f) follows from (40). Therefore,
we have that E(x,y)∼D(σ(〈w∗, x〉)− σ(〈w, x〉))2 ≤ ε with probability at least 1− ρ, if the number
of samples satisfies N = O(λ2 ln(n/ρ)/ε2).

The proof of Lemma 2 is identical to the proof of Lemma 1, except that it relies on the following
generalization error bound for Lipschitz loss functions with bounded `2,1-norm.
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Lemma 11. Let D be a distribution on X × Y , where X = {x ∈ Rn×k : ‖x‖2,∞ ≤ X2,∞}, and
Y = {−1, 1}. Let ` : R→ R be a loss function with Lipschitz constant L`. Define the expected loss
L(w) and the empirical loss L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (41)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. Define W = {w ∈ Rn×k : ‖w‖2,1 ≤
W2,1}. Then with probability at least 1− ρ over the draw of N samples, we have that for all w ∈ W ,

L(w) ≤ L̂(w) + 2L`X2,∞W2,1

√
6 ln(n)

N
+ L`X2,∞W2,1

√
2 ln(2/ρ)

N
. (42)

Lemma 11 can be readily derived from the existing results. First, notice that the dual norm of ‖·‖2,1
is ‖·‖2,∞. Using Corollary 14 in (Kakade et al., 2012), Theorem 1 in (Kakade et al., 2009), and the
fact that ‖w‖2,q ≤ ‖w‖2,1 for q ≥ 1, we conclude that the Rademacher complexity of the function
class F := {x→ 〈w, x〉 : ‖w‖2,1 ≤W2,1} is at most X2,∞W2,1

√
6 ln(n)/N . We can then obtain

the standard Rademacher-based generalization bound (see, e.g., (Bartlett and Mendelson, 2002) and
Theorem 26.5 in (Shalev-Shwartz and Ben-David, 2014)) for bounded Lipschitz loss functions.

We omit the proof of Lemma 2 since it is the same as that of Lemma 1.

F Proof of Lemma 3

Lemma 3 is restated below.

Lemma. Let D be a δ-unbiased distribution on Sn, where S is the alphabet set. For X ∼ D, any
i ∈ [n], the distribution of X−i is also δ-unbiased.

Proof. For any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, we have

P[Xj = a|X[n]\{i,j} = x] =
∑
b∈S

P[Xj = a,Xi = b|X[n]\{i,j} = x]

=
∑
b∈S

P[Xi = b|X[n]\{i,j} = x] · P[Xj = a|Xi = b,X[n]\{i,j} = x]

(a)

≥ δ
∑
b∈S

P[Xi = b|X[n]\{i,j} = x]

= δ, (43)

where (a) follows from the fact that X ∼ D and D is a δ-unbiased distribution. Since (43) holds
for any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, by definition, the distribution of X−i is
δ-unbiased.

G Proof of Lemma 4

The lemma is restated below, followed by its proof.

Lemma. Let D(W,Θ) be a pairwise graphical model distribution with alphabet size k and width
λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k. Specifically, an Ising model
distribution D(A, θ) is e−2λ(A,θ)/2-unbiased.
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Proof. Let X ∼ D(W,Θ), and assume that X ∈ [k]n. For any i ∈ [n], any a ∈ [k], and any
x ∈ [k]n−1, we have

P[Xi = a|X−i = x] =
exp(

∑
j 6=iWij(a, xj) + θi(a))∑

b∈[k] exp(
∑
j 6=iWij(b, xj) + θi(b))

=
1∑

b∈[k] exp(
∑
j 6=i(Wij(b, xj)−Wij(a, xj)) + θi(b)− θi(a))

(a)

≥ 1

k · exp(2λ(W,Θ))
= e−2λ(W,Θ)/k, (44)

where (a) follows from the definition of model width. The lemma then follows (Ising model
corresponds to the special case of k = 2).

H Proof of Lemma 5 and Lemma 6

The proof relies on the following basic property of the sigmoid function (see Claim 4.2 of (Klivans
and Meka, 2017)):

|σ(a)− σ(b)| ≥ e−|a|−3 ·min(1, |a− b|), ∀a, b ∈ R. (45)

We first prove Lemma 5 (which is restated below).
Lemma. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that for two vectors u,w ∈ Rn
and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉 + θ′) − σ(〈u,X〉 + θ′′))2] ≤ ε, where ε < δe−2‖w‖1−2|θ′|−6.
Then ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·

√
ε/δ.

Proof. For any i ∈ [n], any X ∈ {−1, 1}n, let Xi ∈ {−1, 1} be the i-th variable and X−i ∈
{−1, 1}n−1 be the [n]\{i} variables. Let Xi,+ ∈ {−1, 1}n (respectively Xi,−) be the vector
obtained from X by setting Xi = 1 (respectively Xi = −1). Then we have

ε ≥ E
X∼D

[(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2

]
= E
X−i

[(σ(
〈
w,Xi,+

〉
+ θ′)− σ(

〈
u,Xi,+

〉
+ θ′′))2 · P[Xi = 1|X−i]

+ (σ(
〈
w,Xi,−〉+ θ′)− σ(

〈
u,Xi,−〉+ θ′′))2 · P[Xi = −1|X−i]]

(a)

≥ δ · E
X−i

[(σ(
〈
w,Xi,+

〉
+ θ′)− σ(

〈
u,Xi,+

〉
+ θ′′))2

+ (σ(
〈
w,Xi,−〉+ θ′)− σ(

〈
u,Xi,−〉+ θ′′))2]

(b)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w,Xi,+

〉
+ θ′)− (

〈
u,Xi,+

〉
+ θ′′))2)

+ min(1, ((
〈
w,Xi,−〉+ θ′)− (

〈
u,Xi,−〉+ θ′′))2)]

(c)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

min(1, (2wi − 2ui)
2/2)

(d)
= δe−2‖w‖1−2|θ′|−6 ·min(1, 2(wi − ui)2). (46)

Here (a) follows from the fact that D is a δ-unbiased distribution, which implies that P[Xi =
1|X−i] ≥ δ and P[Xi = −1|X−i] ≥ δ. Inequality (b) is obtained by substituting (45). Inequality (c)
uses the following fact

min(1, a2) + min(1, b2) ≥ min(1, (a− b)2/2),∀a, b ∈ R. (47)

To see why (47) holds, note that if both |a|, |b| ≤ 1, then (47) is true since a2 + b2 ≥ (a − b)2/2.
Otherwise, (47) is true because the left-hand side is at least 1 while the right-hand side is at most 1.
The last equality (d) follows from that X−i is independent of min(1, 2(wi − ui)2).
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Since ε < δe−2‖w‖1−2|θ′|−6, (46) implies that |wi − ui| ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ. Because (46)

holds for any i ∈ [n], we have that ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ.

We now prove Lemma 6 (which is restated below).

Lemma. Let D be a δ-unbiased distribution on [k]n. For X ∼ D, let X̃ ∈ {0, 1}n×k be the one-hot
encoded X . Let u,w ∈ Rn×k be two matrices satisfying

∑
j u(i, j) = 0 and

∑
j w(i, j) = 0 for

i ∈ [n]. Suppose that for some u,w and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)−σ(

〈
u, X̃

〉
+

θ′′))2] ≤ ε, where ε < δe−2‖w‖∞,1−2|θ′|−6. Then ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

Proof. Fix an i ∈ [n] and a 6= b ∈ [k]. Let Xi,a ∈ [k]n (respectively Xi,b) be the vector obtained
from X by setting Xi = a (respectively Xi = b). Let X̃i,a ∈ {0, 1}n×k be the one-hot encoding of
Xi,a ∈ [k]n. Then we have

ε ≥ E
X∼D

[(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2

]
≥ E
X−i

[(σ(
〈
w, X̃i,a

〉
+ θ′)− σ(

〈
u, X̃i,a

〉
+ θ′′))2 · P[Xi = a|X−i]

+ (σ(
〈
w, X̃i,b

〉
+ θ′)− σ(

〈
u, X̃i,b

〉
+ θ′′))2 · P[Xi = b|X−i]]

(a)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w, X̃i,a

〉
+ θ′)− (

〈
u, X̃i,a

〉
+ θ′′))2)

+ min(1, ((
〈
w, X̃i,b

〉
+ θ′)− (

〈
u, X̃i,b

〉
+ θ′′))2)]

(b)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2)

= δe−2‖w‖∞,1−2|θ′|−6 min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2) (48)

Here (a) follows from that D is a δ-unbiased distribution and (45). Inequality (b) follows from (47).
Because ε < δe−2‖w‖∞,1−2|θ′|−6, (48) implies that

(w(i, a)− w(i, b))− (u(i, a)− u(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (49)

(u(i, a)− u(i, b))− (w(i, a)− w(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (50)

Since (49) and (50) hold for any a 6= b ∈ [k], we can sum over b ∈ [k] and use the fact that∑
j u(i, j) = 0 and

∑
j w(i, j) = 0 to get

w(i, a)− u(i, a) =
1

k

∑
b

(w(i, a)− w(i, b))− (u(i, a)− u(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

u(i, a)− w(i, a) =
1

k

∑
b

(u(i, a)− u(i, b))− (w(i, a)− w(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

Therefore, we have |w(i, a)−u(i, a)| ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ, for any i ∈ [n] and a ∈ [k].

I Learning pairwise graphical models in Õ(n2) time

Our results so far assume that the `1-constrained logistic regression (in Algorithm 1) and the `2,1-
constrained logistic regression (in Algorithm 2) can be solved exactly. This would require Õ(n4)
complexity if an interior-point based method is used (Koh et al., 2007). The goal of this section is to
reduce the runtime to Õ(n2) via first-order optimization method. Note that Õ(n2) is an efficient time
complexity for graph recovery over n nodes. Previous structural learning algorithms of Ising models
require either Õ(n2) complexity ((Bresler, 2015; Klivans and Meka, 2017)) or a worse complexity
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((Ravikumar et al., 2010; Vuffray et al., 2016) require Õ(n4) runtime). We would like to remark
that our goal here is not to give the fastest first-order optimization algorithm (see our remark after
Theorem 5). Instead, our contribution is to provably show that it is possible to run Algorithm 1 and
Algorithm 2 in Õ(n2) time without affecting the original statistical guarantees.

To better exploit the problem structure9, we use the mirror descent algorithm10 with a properly chosen
distance generating function (aka the mirror map). Following the standard mirror descent setup, we
use negative entropy as the mirror map for `1-constrained logistic regression and a scaled group
norm for `2,1-constrained logistic regression (see Section 5.3.3.2 and Section 5.3.3.3 in (Ben-Tal and
Nemirovski, 2013) for more details). The pseudocode is given in Appendix J. The main advantage
of mirror descent algorithm is that its convergence rate scales logarithmically in the dimension
(see Lemma 12 in Appendix K). Specifically, let w̄ be the output after O(ln(n)/γ2) mirror descent
iterations, then w̄ satisfies

L̂(w̄)− L̂(ŵ) ≤ γ, (51)

where L̂(w) =
∑N
i=1 ln(1 + e−y

i〈w,xi〉)/N is the empirical logistic loss, and ŵ is the actual
minimizer of L̂(w). Since each mirror descent update requires O(nN) time, where N is the number
of samples and scales as O(ln(n)), and we have to solve n regression problems (one for each variable
in [n]), the total runtime scales as Õ(n2), which is our desired runtime.

There is still one problem left, that is, we have to show that ‖w̄ − w∗‖∞ ≤ ε (where w∗ is the
minimizer of the true loss L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉)) in order to conclude that Theorem 1
and 2 still hold when using mirror descent algorithms. Since L̂(w) is not strongly convex, (51) alone
does not necessarily imply that ‖w̄− ŵ‖∞ is small. Our key insight is that in the proof of Theorem 1
and 2, the definition of ŵ (as a minimizer of L̂(w)) is only used to show that L̂(ŵ) ≤ L̂(w∗) (see
inequality (b) of (40) in Appendix E). It is then possible to replace this step with (51) in the original
proof, and prove that Theorem 1 and 2 still hold as long as γ is small enough (see (60) in Appendix K).

Our key results in this section are Theorem 4 and Theorem 5, which show that Algorithm 1 and
Algorithm 2 can run in Õ(n2) time without affecting the original statistical guarantees.

Theorem 4. In the setup of Theorem 1, suppose that the `1-constrained logistic regression in
Algorithm 1 is optimized by the mirror descent method (Algorithm 3) given in Appendix J. Given ρ ∈
(0, 1) and ε > 0, if the number of mirror descent iterations satisfies T = O(λ2 exp(12λ) ln(n)/ε4),
and the number of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then (6) still holds with
probability at least 1− ρ. The total time complexity of Algorithm 1 is O(TNn2).

Theorem 5. In the setup of Theorem 2, suppose that the `2,1-constrained logistic regression in
Algorithm 2 is optimized by the mirror descent method (Algorithm 4) given in Appendix J. Given ρ ∈
(0, 1) and ε > 0, if the number of mirror descent iterations satisfies T = O(λ2k3 exp(12λ) ln(n)/ε4),
and the number of i.i.d. samples satisfies N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then (15) still holds
with probability at least 1− ρ. The total time complexity of Algorithm 2 is O(TNn2k2).

Remark. It is possible to improve the time complexity given in Theorem 4 and 5 (especially the
dependence on ε and λ), by using stochastic or accelerated versions of mirror descent algorithms
(instead of the batch version given in Appendix J). In fact, the Sparsitron algorithm proposed by
Klivans and Meka (2017) can be seen as an online mirror descent algorithm for optimizing the
`1-constrained logistic regression (see Algorithm 3 in Appendix J). Furthermore, Algorithm 1 and 2
can be parallelized as the regression problem is defined separately for each variable.

9Specifically, for the `1-constrained logisitic regression defined in (4), since the input sample satisifies
‖x‖∞ = 1, the loss function is O(1)-Lipschitz w.r.t. ‖·‖1. Similarly, for the `2,1-constrained logisitic regression
defined in (11), the loss function is O(1)-Lipschitz w.r.t. ‖·‖2,1 because the input sample satisfies ‖x‖2,∞ = 1.

10Other approaches include the standard projected gradient descent and the coordinate descent. Their
convergence rates depend on either the smoothness or the Lipschitz constant (w.r.t. ‖·‖2) of the objective
function (Bubeck, 2015). This would lead to a total runtime of Õ(n3) for our problem setting. Another option
would be the composite gradient descent method, the analysis of which relies on the restricted strong convexity
of the objective function (Agarwal et al., 2010). For other variants of mirror descent algorithms, see the remark
after Theorem 5.
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J Mirror descent algorithms for constrained logistic regression

Algorithm 3 gives a mirror descent algorithm for the following `1-constrained logistic regression:

min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤W1. (52)

We use the doubling trick to expand the dimension and re-scale the samples (Step 2 in Algorithm 3).
Now the original problem becomes a logistic regression problem over a probability simplex: ∆2n+1 =

{w ∈ R2n+1 :
∑2n+1
i=1 wi = 1, wi ≥ 0,∀i ∈ [2n+ 1]}.

min
w∈∆2n+1

1

N

N∑
i=1

−ŷi ln(σ(
〈
w, x̂i

〉
))− (1− ŷi) ln(1− σ(

〈
w, x̂i

〉
)), (53)

where (x̂i, ŷi) ∈ R2n+1 × {0, 1}. In Step 4-11 of Algorithm 3, we follow the standard simplex setup
for mirror descent algorithm (see Section 5.3.3.2 of (Ben-Tal and Nemirovski, 2013)). Specifically,
the negative entropy is used as the distance generating function (aka the mirror map). The projection
step (Step 9) can be done by a simple `1 normalization operation. After that, we transform the
solution back to the original space (Step 12).

Algorithm 3: Mirror descent algorithm for `1-constrained logistic regression

Input: {(xi, yi)}Ni=1 where xi ∈ {−1, 1}n, yi ∈ {−1, 1}; constraint on the `1 norm W1 ∈ R+;
number of iterations T .

Output: w̄ ∈ Rn.
1 for sample i← 1 to N do

// Form samples (x̂i, ŷi) ∈ R2n+1 × {0, 1}.
2 x̂i ← [xi,−xi, 0] ·W1, ŷi ← (yi + 1)/2
3 end
// Initialize w as the uniform distribution.

4 w1 ← [ 1
2n+1 ,

1
2n+1 , · · · ,

1
2n+1 ] ∈ R2n+1

5 γ ← 1
2W1

√
2 ln(2n+1)

T // Set the step size.
6 for iteration t← 1 to T do
7 gt ← 1

N

∑N
i=1(σ(

〈
wt, x̂i

〉
)− ŷi)x̂i // Compute the gradient.

8 wt+1
i ← wti exp(−γgti), for i ∈ [2n+ 1] // Coordinate-wise update.

9 wt+1 ← wt+1/‖wt+1‖1 // Projection step.
10 end
11 w̄ ←

∑T
t=1 w

t/T // Aggregate the updates.
// Transform w̄ back to Rn and the actual scale.

12 w̄ ← (w̄1:n − w̄(n+1):2n) ·W1

Algorithm 4 gives a mirror descent algorithm for the `2,1-constrained logistic regression:

min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤W2,1. (54)

For simplicity, we assume that n ≥ 311. We then follow Section 5.3.3.3 of (Ben-Tal and Nemirovski,
2013) to use the following function as the mirror map Φ : Rn×k → R:

Φ(w) =
e ln(n)

p
‖w‖p2,p, p = 1 + 1/ ln(n). (55)

The update step (Step 8) can be computed efficiently in O(nk) time, see the discussion in Section
5.3.3.3 of (Ben-Tal and Nemirovski, 2013) for more details.

11For n ≤ 2, we need to switch to a different mirror map, see Section 5.3.3.3 of (Ben-Tal and Nemirovski,
2013) for more details.
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Algorithm 4: Mirror descent algorithm for `2,1-constrained logistic regression

Input: {(xi, yi)}Ni=1 where xi ∈ {0, 1}n×k, yi ∈ {−1, 1}; constraint on the `2,1 norm
W2,1 ∈ R+; number of iterations T .

Output: w̄ ∈ Rn×k.
1 for sample i← 1 to N do

// Form samples (x̂i, ŷi) ∈ Rn×k × {0, 1}.
2 x̂i ← xi ·W2,1, ŷi ← (yi + 1)/2
3 end
// Initialize w as a constant matrix.

4 w1 ← [ 1
n
√
k
, 1
n
√
k
, · · · , 1

n
√
k

] ∈ Rn×k

5 γ ← 1
2W2,1

√
e ln(n)
T // Set the step size.

6 for iteration t← 1 to T do
7 gt ← 1

N

∑N
i=1(σ(

〈
wt, x̂i

〉
)− ŷi)x̂i // Compute the gradient.

8 wt+1 ← arg min‖w‖2,1≤1 Φ(w)− 〈∇Φ(wt)− γgt, w〉 // Φ(w) is in (55).
9 end

10 w̄ ← (
∑T
t=1 w

t/T ) ·W21 // Aggregate the updates.

K Proof of Theorem 4 and Theorem 5

Lemma 12. Let L̂(w) = 1
N

∑N
i=1 ln(1 + e−y

i〈w,xi〉) be the empirical loss. Let ŵ be a minimizer of
the ERM defined in (52). The output w̄ of Algorithm 3 satisfies

L̂(w̄)− L̂(ŵ) ≤ 2W1

√
2 ln(2n+ 1)

T
. (56)

Similarly, let ŵ be a minimizer of the ERM defined in (54). Then the output w̄ of Algorithm 4 satisfies

L̂(w̄)− L̂(ŵ) ≤ O(1) ·W2,1

√
ln(n)

T
. (57)

Lemma 12 follows from the standard convergence result for mirror descent algorithm (see, e.g.,
Theorem 4.2 of (Bubeck, 2015)), and the fact that the gradient gt in Step 6 of Algorithm 3 satisfies
‖gt‖∞ ≤ 2W1 (reps. the gradient gt in Step 6 of Algorithm 4 satisfies ‖gt‖∞ ≤ 2W2,1). This
implies that the objective function after rescaling the samples is 2W1-Lipschitz w.r.t. ‖·‖1 (reps.
2W2,1-Lipschitz w.r.t. ‖·‖2,1).

We are now ready to prove Theorem 4, which is restated below.

Theorem. In the setup of Theorem 1, suppose that the `1-constrained logistic regression in Algo-
rithm 1 is optimized by the mirror descent method (Algorithm 3) given in Appendix J. Given ρ ∈ (0, 1)
and ε > 0, if the number of mirror descent iterations satisfies T = O(λ2 exp(12λ) ln(n)/ε4, and
the number of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then (6) still holds with
probability at least 1− ρ. The total run-time of Algorithm 1 is O(TNn2).

Proof. We first note that in the proof of Theorem 1, we only use ŵ in order to apply the result from
Lemma 1. In the proof of Lemma 1 (given in Appendix E), there is only one place where we use
the definition of ŵ: the inequality (b) in (40). As a result, if we can show that (40) still holds after
replacing ŵ by w̄, i.e.,

L(w̄) ≤ L(w∗) +O(γ), (58)

then Lemma 1 would still hold, and so is Theorem 1.

By Lemma 12, if the number of iterations satisfies T = O(W 2
1 ln(n)/γ2), then

L̂(w̄)− L̂(ŵ) ≤ γ. (59)
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As a result, we have

L(w̄)
(a)

≤ L̂(w̄) + γ
(b)

≤ L̂(ŵ) + 2γ
(c)

≤ L̂(w∗) + 2γ
(d)

≤ L(w∗) + 3γ, (60)

where (a) follows from (38), (b) follows from (59), (c) follows from the fact that ŵ is the min-
imizer of L̂(w), and (d) follows from (39). The number of mirror descent iterations needed
for (58) to hold is T = O(W 2

1 ln(n)/γ2). In the proof of Theorem 1, we need to set γ =
O(1)ε2 exp(−6λ) (see the proof following (21)), so the number of mirror descent iterations needed
is T = O(λ2 exp(12λ) ln(n)/ε4).

To analyze the runtime of Algorithm 1, note that for each variable in [n], transforming the samples
takes O(N) time, solving the `1-constrained logisitic regression via Algorithm 3 takes O(TNn)

time, and updating the edge weight estimate takes O(n) time. Forming the graph Ĝ over n nodes
takes O(n2) time. The total runtime is O(TNn2).

The proof of Theorem 5 is identical to that of Theorem 4 and is omitted here. The key step is to
show that (58) holds after replacing ŵ by w̄. This can be done by using the convergence result in
Lemma 12 and applying the same logic in (60). The runtime of Algorithm 2 can be analyzed in the
same way as above. The `2,1-constrained logistic regression dominates the total runtime. It requires
O(TNα,βnk) time for each pair (α, β) and each variable in [n], where Nα,β is the subset of samples
that a given variable takes either α or β. Since N ≥ kNα,β , the total runtime is O(TNn2k2).

L More experimental results

We compare our algorithm (Algorithm 2) with the Sparsitron algorithm in (Klivans and Meka,
2017) on a two-dimensional 3-by-3 grid (shown in Figure 2). We experiment three alphabet sizes:
k = 2, 4, 6. For each value of k, we simulate both algorithms 100 runs, and in each run we generate
the Wij matrices with entries ±0.2. To ensure that each row (as well as each column) of Wij is
centered (i.e., zero mean), we will randomly choose Wij between two options: as an example of
k = 2, Wij = [0.2,−0.2;−0.2, 0.2] or Wij = [−0.2, 0.2; 0.2,−0.2]. The external field is zero.
Sampling is done via exactly computing the distribution. The Sparsitron algorithm requires two
sets of samples: 1) to learn a set of candidate weights; 2) to select the best candidate. We use
max{200, 0.01 ·N} samples for the second part. We plot the estimation error maxij‖Wij − Ŵij‖∞
and the fraction of successful runs (i.e., runs that exactly recover the graph) in Figure 3. Compared to
the Sparsitron algorithm, our algorithm requires fewer samples for successfully recovery.
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Figure 3: Comparison of our algorithm and the Sparsitron algorithm in (Klivans and Meka, 2017) on a
two-dimensional 3-by-3 grid. Top row shows the average of the estimation error maxij‖Wij−Ŵij‖∞.
Bottom row plots the faction of successful runs (i.e., runs that exactly recover the graph). Each
column corresponds to an alphabet size: k = 2, 4, 6. Our algorithm needs fewer samples than the
Sparsitron algorithm for graph recovery.
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