
Supplementary material for paper
Sliced Gromov-Wasserstein

Notations In the following F denotes the Fourrier transform. For a probability measure µ ∈ P(Rp)
and for s ∈ Rp, it is defined by Fµ(s) =

´
e−2iπ〈s,x〉dµ(x).

1 Proof for the QAP

In this section we aim at proving the new special case of the QAP, which is recalled in the next
theorem:

Theorem 1.1. A new special case of the QAP. For real numbers x1 ≤ ... ≤ xn and y1 ≤ ... ≤ yn
then

min
σ∈Sn

∑
i,j

(
(xi − xj)2 − (yσ(i) − yσ(j))

2
)2

(1)

is achieved either by the identity permutation σ(i) = i or the anti-identity permutation σ(i) =
n+ 1− i.

Proof. Let us note I = {x, y ∈ Rn × Rn|x1 ≤ x2 ≤ · · · ≤ xn , y1 ≤ y2 ≤ · · · ≤ yn} and Sn the
set of all permutations of {1, ..., n}. We consider for x, y ∈ I:

max
σ∈Sn

Z(x, y, σ) = max
σ∈Sn

∑
i,j

(xi − xj)2(yσ(i) − yσ(j))
2 (2)

The original problem is equivalent to maximizing Z(x, y, σ) over Sn. For any x, y ∈ I , we recall the
rearrangement inequality:

∀σ ∈ Sn,
∑
i

xiyn+1−i ≤
∑
i

xiyσ(i) ≤
∑
i

xiyi (3)

We will prove that it suffices to solve a problem of the form argmax
σ∈Sn

(
∑
i xiyσ(i))

2 in order to recover

the optimal solution.
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Now, given x, y ∈ I, we define X def
=
∑
i xi and Y def

=
∑
i yi. Then:

max
σ∈Sn

Z(x, y, σ) = max
σ∈Sn

∑
i,j

(xi − xj)2(yσ(i) − yσ(j))
2

= max
σ∈Sn

∑
i,j

(x2
i + x2

j )(y
2
σ(i) + y2

σ(j))− 2
∑
i,j

xixj(y
2
σ(i) + y2

σ(j))− 2
∑
i,j

yσ(i)yσ(j)(x
2
i + x2

j )

+ 4
∑
i,j

xixjyσ(i)yσ(j)

= max
σ∈Sn

2n
∑
i

x2
i y

2
σ(i) − 2

∑
i,j

xixj(y
2
σ(i) + y2

σ(j))− 2
∑
i,j

yσ(i)yσ(j)(x
2
i + x2

j )

+ 4
∑
i,j

xixjyσ(i)yσ(j) + 2(
∑
i

x2
i )(
∑
i

y2
i )

= max
σ∈Sn

2n
∑
i

x2
i y

2
σ(i) − 4X

∑
i

xiy
2
σ(i) − 4Y

∑
i

x2
i yσ(i) + 4

∑
i,j

xixjyσ(i)yσ(j) + 2(
∑
i

x2
i )(
∑
i

y2
i )

(∗)
= C + 2

(
max
σ∈Sn

∑
i

nx2
i y

2
σ(i) − 2

∑
i

(Xxiy
2
σ(i) + Y x2

i yσ(i)) + 2(
∑
i

xiyσ(i))
2
)

where in (*) we defined C def
= 2(

∑
i x

2
i )(
∑
i y

2
i ) the term that does not depend on σ. We define

W (x, y, σ)
def
=
∑
i

nx2
i y

2
σ(i) − 2(Xxiy

2
σ(i) + Y x2

i yσ(i)) + 2(
∑
i

xiyσ(i))
2

and
f(xi, yσ(i))

def
= nx2

i y
2
σ(i)−2(Xxiy

2
σ(i)+Y x

2
i yσ(i)) = nx2

i y
2
σ(i)−2((

∑
i

xi)xiy
2
σ(i)+4(

∑
i

yi)x
2
i yσ(i))

such that:
W (x, y, σ) =

∑
i

f(xi, yσ(i)) + 2(
∑
i

xiyσ(i))
2

With these new definitions we have proven:

∀x, y ∈ I, argmax
σ∈Sn

Z(x, y, σ) = argmax
σ∈Sn

W (x, y, σ) = argmax
σ∈Sn

∑
i

f(xi, yσ(i)) + 2(
∑
i

xiyσ(i))
2

(4)
We also introduce for x, y ∈ I, b ∈ R:

g(x, y, b)
def
=
∑
i

f(xi + b, yσ(i))

which is a perturbated version of the cost by a constant b. Since we know that the original cost
Z(x, y, σ) is invariant by any translation of the points x, y the idea is to find a constant b∗ such that
g(x, y, b∗) = 0 to simplify the problem. We have:

g(x, y, b) = −(n‖x‖22+2Y 2)b2−
(
4Y
∑
i

[xiyσ(i)]+2X‖x‖22
)
b+
∑
i

xiyσ(i)(nxiyσ(i)−2Xyσ(i)−2Y xi)

with ‖x‖22 =
∑
i x

2
i . Indeed:

g(x, y, b) =
∑
i

f(xi + b, yσ(i)) =
∑
i

n(xi + b)2y2
σ(i) − 2

(
(X + nb)(xi + b)y2

σ(i) + Y (xi + b)2yσ(i)

)
=
∑
i

n(x2
i + 2bxi + b2)y2

σ(i) − 2
(
(Xxi +Xb+ nbxi + nb2)y2

σ(i) + Y (x2
i + 2bxi + b2)yσ(i)

)
=
∑
i

b2
[
ny2

σ(i) − 2ny2
σ(i) − 2Y yσ(i)

]
+
∑
i

b
[
2nxiy

2
σ(i) − 2Xy2

σ(i) − 2nxiy
2
σ(i) − 4Y xiyσ(i)

]
+
∑
i

[
nx2

i y
2
σ(i) − 2Xxiy

2
σ(i) − 2Y x2

i yσ(i)

]
= −(n‖x‖22 + 2Y 2)b2 −

(
4Y
∑
i

xiyσ(i) + 2X‖x‖22
)
b+

∑
i

xiyσ(i)(nxiyσ(i) − 2Xyσ(i) − 2Y xi)
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If X,Y = 0 then g(x, y, b) = 0 ⇐⇒ b = b∗(x, y, σ) = 1
‖x‖2

√∑
i x

2
i y

2
σ(i).

In this way for x, y ∈ I with X,Y = 0 using (4):

W (x+ b∗(x, y, σ)1n, y, σ) = g(x, y, b∗(x, y, σ)) + 2(
∑
i

(xi + b∗(x, y, σ))yσ(i))
2

= 2(
∑
i

(xiyσ(i) + b∗(x, y, σ)yσ(i)))
2

= 2(
∑
i

xiyσ(i) + b∗(x, y, σ)
∑
i

yσ(i))
2

= 2(
∑
i

xiyσ(i) + b∗(x, y, σ)Y )2

= 2(
∑
i

xiyσ(i))
2

(5)

Moreover for x, y ∈ I we have by invariance of the cost w.r.t. any translation:

argmax
σ∈Sn

Z(x, y, σ) = argmax
σ∈Sn

Z(x− 1

n

∑
i

xi, y −
1

n

∑
i

yi, σ)

= argmax
σ∈Sn

Z(x′, y′, σ)

with x′, y′ ∈ I and
∑
i x
′
i =

∑
i y
′
i = 0. So without loss of generality we can solve the original

problem only for x, y ∈ I with X,Y = 0. In this case:

argmax
σ∈Sn

Z(x, y, σ)
∗
= argmax

σ∈Sn
Z(x+ b∗(x, y, σ)1n, y, σ)

∗∗
= argmax

σ∈Sn
W (x+ b∗(x, y, σ)1n, y, σ)

∗∗∗
= argmax

σ∈Sn
(
∑
i

xiyσ(i))
2

(6)

Where in (*) we used the translation invariance property of Z, in (**) we used (4) and in (***) we
used (5)

Now let us discuss the term (
∑
i xiyσ(i))

2 with the rearrangement inequality (3):

• If
∑
i xiyn+1−i ≥ 0, then everything is positive in (3) so that we have (

∑
i xiyσ(i))

2 ≤
(
∑
i xiyi)

2 for any σ ∈ Sn. In this case the identity is the optimal permutation.

• If
∑
i xiyi ≤ 0 then everything is negative in (3) so that we have (

∑
i xiyσ(i))

2 ≤
(
∑
i xiyn+1−i)

2. In this case the anti-identity is the optimal permutation.

• If
∑
i xiyn+1−i < 0 and

∑
i xiyi > 0 then using (3) again,

(
∑
i

xiyσ(i))
2 ≤ max{(

∑
i

xiyn+1−i)
2, (
∑
i

xiyi)
2)}

In this case the optimal permutation is achieved whether by the identity or the anti-identity
permutation.
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2 Computing GW in the 1d case

As seen in the previous theorem finding the optimal permutation σ∗ can be found in O(n log(n)).
Moreover the final cost can be written using binomial expansion:

∑
i,j

(
(xi − xj)2 − (yσ∗(i) − yσ∗(j))2

)2
= 2n

∑
i

x4
i − 8

∑
i

x3
i

∑
i

xi + 6(
∑
i

x2
i )

2

+ 2n
∑
i

y4
i − 8

∑
i

y3
i

∑
i

yi + 6(
∑
i

y2
i )2

− 4(
∑
i

xi)
2(
∑
i

yi)
2

− 4n
∑
i

x2
i y

2
σ∗(i) + 8

∑
i

((
∑
i

xi)xiy
2
σ∗(i) + (

∑
i

yi)x
2
i yσ∗(i))

− 8(
∑
i

xiyσ∗(i))
2

(7)

which can be computed in O(n) operations.

3 Claims about GW

This section aims at proving some claims in the paper about GW . Let us recall the notations of the
paper.

We consider discrete measures µ ∈ P(Rp) and ν ∈ P(Rq) with p ≤ q on euclidean spaces such that
µ =

∑n
i=1 aiδxi and ν =

∑m
i=1 bjδyj , where a ∈ Σn and b ∈ Σm are histograms.

Let cX : Rp × Rp 7→ R+ (resp. cY : Rq × Rq 7→ R+) measuring the similarity between the points
in µ (resp. ν). The Gromov-Wasserstein (GW ) distance is defined as:

GW 2
2 (cX , cY , µ, ν) = min

π∈Π(a,b)
J(cX , cY , π) (8)

where

J(cX , cY , π) =
∑
i,j,k,l

∣∣cX(xi, xk)− cY (yj , yl)
∣∣2πi,jπk,l

3.1 GW when squared euclidean distances are used

When cX , cY are distances it has been shown in [1] that GW defines a distance on the space of metric
measure spaces quotiented by the measure-preserving isometries. More precisely, GW is symmetric,
satisfies the triangle inequality and GW 2

2 (cX , cY , µ, ν) = 0 iff there exists f : supp(µ)→ supp(ν)
such that

f#µ = ν (9)

∀x, x′ ∈ supp(µ)2, cX(x, x′) = cY (f(x), f(x′)) (10)

In the paper we claim the following lemma:
Lemma 3.1. Using previous notations with cX(x, x′) = ‖x− x′‖22,p , cY (y, y′) = ‖y− y′‖22,q . Then
GW 2

2 (cX , cY , µ, ν) = 0 iff there exists a measure preserving isometry from supp(µ) to supp(ν)
which satisfies (9) and (10)

Proof. If such an function exists by considering the coupling π = (Id × f)#µ it is clear that π is
optimal and has a null cost so that GW 2

2 (cX , cY , µ, ν) = 0. Conversely, GW 2
2 (cX , cY , µ, ν) = 0

4



implies that cX(x, x′) = cY (y, y′) for all (x, y), (x′, y′) in the support of an optimal plan π∗. This
suffices to prove the existence of a measure preserving isometry (see (a) in Proof of Theorem 5.1 in
[1])

3.2 Equivalence between GM and GW in the discrete case

This paragraph aims at proving the equivalence between GM and GW . We will prove the following
theorem (that is more general than the one used in the paper which only considers one-dimensional
measures):

Theorem 3.2. Equivalence between GW and GM for discrete measures

With µ, ν defined previously and cX(x, x′) = ‖x− x′‖22,p , cY (y, y′) = ‖y − y′‖22,q . Let us suppose
also that m = n and ∀i ∈ {1, ..., n}, ai = bi = 1

n

Then GW2(cX , cY , µ, ν) = GM2(cX , cY , µ, ν).

Proof. The proof is essentially based on theoretical results from [2]. This paper considers the
following energy minimizing problem:

min
X∈F

E(X) (11)

where F ⊂ Rn×n is a collection of matchings between the vertices of two graphs. More precisely the
paper focuses on E(X) of the form E(X) = −tr(BXTAX) and F = Sn the set of all permutations
of {1, ..., n}. In fact, the GM problem defined in the paper is equivalent to (11) by considering
Aij = ‖xi − xj‖22,p and Bij = ‖yi − yj‖22,q
Authors consider the set of doubly stochastic matrices (which is the convex-hull of Sn):

DS = {X ∈ Rn×n s.t. X1 = XT 1 = 1 , X ≥ 0}

Minimizing E(X) over DS is equivalent to solving the GW distance when ai = bj = 1
n . The paper

claims that if E(X) is a conditionally concave energy then min
X∈Sn

E(X) and min
X∈DS

E(X) coincide.

This is verified when both A and B are conditionally positive (or negative) definite of order 1 (Theo 1
in [2]). Yet A and B defined previously satisfy this property (see examples under Definition 2 in [2])
and so GW and GM coincide.

4 Properties of SGW

‖.‖ is a norm on Rp. To state the properties of SGW , we will need the Arzela-Ascoli Theorem. Let
(X, d) be a compact metric space and C(X,Rp) the space of all continuous functions from X to Rp.
We recall:

• A family F ⊂ C(X,Rp) is bounded means that there exists a positive constant M < ∞
such that ‖f(x)‖ ≤M for all x ∈ X and f ∈ F
• A family F ⊂ C(X,Rp) is equicontinuous means that for every ε > 0 there exists δ > 0

(which depends only on ε) such that for x, y ∈ X:

d(x, y) < δ ⇒ ‖f(x)− f(y)‖ < ε ∀f ∈ F .

The Arzela-Ascoli Theorem states that if (fn)n∈N is a sequence in C(X,Rp) that is bounded and
equicontinuous then it has a uniformly convergent subsequence.

We recall the theorem (measures µ and ν are defined discrete measures with the same number of
atoms):

Theorem 4.1. Properties of SGW
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• For all ∆, SGW∆ and RISGW are translation invariant. RISGW is also rota-
tional invariant when p = q, more precisely if Q ∈ O(p) is an orthogonal matrix,
RISGW (Q#µ, ν) = RISGW (µ, ν)

• SGW and RISGW are pseudo-distances on P(Rp), i.e they are symetric, satisfy the
triangle inequality and SGW (µ, µ) = RISGW (µ, µ) = 0 .

• For µ, ν ∈ P(Rp) × P(Rp), if SGW (µ, ν) = 0 then µ and ν are isomorphic for the
distance induced by the `1 norm on Rp. In particular this implies GW2(d‖.‖1,p , µ, ν) = 0.

The invariance by translation is clear since the costs are invariant by translation of the support of the
measures. The pseudo-distances properties are straightforward thanks to the properties of GW .

Theorem 4.2. For µ, ν ∈ P(Rp)×P(Rp), if SGW (µ, ν) = 0 then µ and ν are isomorphic for the
distance induced by the `1 norm on Rp. In particular this implies that GW2(d‖.‖1,p , µ, ν) = 0.

Proof. In the proof ‖.‖ denotes the `1 norm and ‖.‖2 denotes the `2 norm. We note Mµ =
maxx∈supp(µ) ‖x‖2 and Mν = maxy∈supp(ν) ‖y‖2. The objective is to prove that if SGW (µ, ν) = 0
there exists a surjective function f : supp(µ)→ supp(ν) such that f is an isometry for the `1 norm
(∀x, x′ ∈ supp(µ), ‖f(x)− f(x′)‖ = ‖x− x′‖) and pushes µ into ν (f#µ = ν).

The proof is divided into four parts. In the first one, we construct an "almost orthogonal" basis on
which measures are isomorphic. Building upon this result we define a sequence of functions from
supp(µ) to supp(ν) and show that it has a convergent subsequence. We conclude by proving that the
limit of the subsequence is actually a good candidate for being the isometry we are looking for.

There exists an "almost orthogonal" basis on which measures are isomorphic Suppose that
SGW (µ, ν) = 0. Then by the Gromov-Wasserstein properties for almost all θ ∈ Sp−1:

∃Tθ : R 7→ R, surjective s.t. Tθ#(Pθ#µ) = Pθ#ν

∀x, x′ ∈ supp(Pθ#µ), |Tθ(x)− Tθ(x′)| = |x− x′|
(Qθ)

We want to construct a basis (e1, ..., ep) as orthogonal as possible such that for all i we have Qei . In
order to do so, we consider for n ∈ N∗,

Bnp = {(e1, ..., ep) ∈ (Sp−1)p s.t. |〈ei, ej〉| <
1

n
}

and

Q = {(e1, ..., ep) ∈ (Sp−1)p s.t. ∀i ∈ {1, ..., p},Qei}

We also note λ⊗pp−1 the product measure λp−1 ⊗ ...⊗ λp−1. Bnp is an open set as inverse image by a
continuous function of an open set. Then λ⊗pp−1(Bnp ) > 0. Moreover, since for almost all θ ∈ Sp−1

we have Qθ then λ⊗pp−1(Q) > 0 and so λ⊗pp−1(Bnp ∩Q) > 0.

In this way we can consider (e1(n), ..., ep(n)) ∈ Bnp ∩ Q. If n > p − 1 the Gram matrix of
(e1(n), ..., ep(n)) is strictly diagonal dominant, thus invertible, such that (e1(n), ..., ep(n)) is a basis.
In the following n > p−1 and (e1(n), ..., ep(n)) is the basis constructed with the previous procedure.
The idea is to construct the isometry thanks to this "almost" orthogonal basis.

In the proof xi denotes the ith coordinate of x in the standard euclidean basis. For x ∈ Rp, we can
write in the new basis:

x =

p∑
i=1

[〈x, ei(n)〉+R(x, ei(n))]ei

with R(x, ei(n))
def
= xi − 〈x, ei(n)〉 and |R(x, ei(n))| = o( 1

n ).
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Indeed,

x =

p∑
i=1

xiei =⇒ for j 〈x, ej〉 =

p∑
i=1

xi〈ei, ej〉

=⇒ xj − 〈x, ej〉 =
∑
i6=j

xi〈ei, ej〉

=⇒ |R(x, ej(n))| = |
∑
i 6=j

xi〈ei, ej〉|

=⇒ |R(x, ej(n))| ≤ 1

n

∑
i6=j

|xi| ≤
Cp,µ
n

with some constant Cp,µ that only depends on µ and p (it is actually in the form C ∗Mµ since all
norms are equivalent). Also in the same way for s, y ∈ Rp ×Rp we can rewrite their scalar product:

〈s, y〉 =

p∑
i=1

〈s, ei(n)〉〈y, ei(n)〉+ R̃(s, y) (12)

with:

R̃(s, y)
def
= 〈s, y〉 −

p∑
i=1

〈s, ei(n)〉〈y, ei(n)〉 =
∑
i 6=j

〈s, ei(n)〉〈y, ei(n)〉〈ej(n), ei(n)〉

+
∑
i,j

〈s, ei(n)〉R(y, ej(n))〈ej(n), ei(n)〉

+
∑
i,j

〈y, ej(n)〉R(s, ei(n))〈ej(n), ei(n)〉

+
∑
i,j

R(y, ej(n))R(s, ei(n))〈ej(n), ei(n)〉

and with the same calculus than for R we have |R̃(s, y)| = o( 1
n ).

Construction of a "good" sequence Using previous notations we define:

∀n > p− 1, ∀x ∈ supp(µ), fn(x) = (Te1(n)(〈x, e1(n)〉), ..., Tep(n)(〈x, ep(n)〉)) (13)

Clearly all fn are surjectives and continuous since all Tek(n) are, thanks to Qek(n). We will show
that we can derive from (fn)n∈N a good candidate for being the isometry we are looking for. The
sequence satisfies the following properties:
Lemma 4.3. Properties of (fn)n∈N

∀n ∈ N,∀x, x′ ∈ supp(µ)2,
∣∣‖fn(x)− fn(x′)‖ − ‖x− x′‖

∣∣ = o(
1

n
) (14)

∀s ∈ Rp, |Ffn#µ(s)−Fν(s)| = o(
1

n
) (15)

For clarity purposes, we prove this lemma at the end of the proof. In the next paragraph we will show
that we can extract a convergent subsequence from (fn)n∈N thanks to Arzela-Ascoli Theorem.

We can extract from (fn)n∈N a convergent subsequence We will show that (fn)n∈N is equicon-
tinuous. Let ε > 0, using (14) there exists a N ∈ N such that we have for all x, x′ ∈ supp(µ):

‖fn(x)− fn(x′)‖ ≤ ε+ ‖x− x′‖ for all n ≥ N

Now let δ < ε. Suppose that ‖x− x′‖ < δ then

‖fn(x)− fn(x′)‖ < ε+ δ < 2ε for all n ≥ N

7



Without loss of generality we can reindex (fn)n∈N for n large enough (n ≥ N ) so that (fn)n∈N is
equicontinuous with the previous argument.

Moreover (fn)n∈N is also bounded. Indeed for all n ∈ N since Tek(n) is a surjective isometry
from supp(Pek(n)#µ) to supp(Pek(n)#ν) then it is necessarily a bijection. So for all x ∈ supp(µ)
there exists a y0(x, n) ∈ supp(ν) such that Tek(n)(〈x, ek(n)〉) = 〈y0(x, n), ek(n)〉. In this way
|Tek(n)(〈x, ek(n)〉)| = |〈y0(x, n), ek(n)〉| ≤ ‖y0(x, n)‖2 ≤Mν by Cauchy-Swartz.

So we have for n ∈ N, x ∈ supp(µ),

‖fn(x)‖22 =

p∑
k=1

|Tek(n)(〈x, ek(n)〉)|2 ≤ pMν

Since on Rp all norms are equivalent it is sufficient to state the existence of a constant C such that
∀x ∈ Rp, n ∈ N, ‖fn(x)‖ ≤ C.

To summarize (fn)n∈N is a bounded and equicontinuous sequence so by Arzela-Ascoli Theorem
(fn)n∈N has a uniformly convergent subsequence: fφ(n) u

→
n→∞

f

Moreover eq. (4) states that for all s ∈ Rp, Ffn#µ(s) →
n→∞

Fν(s). In this way (Ffn#µ(s))n∈N

is a convergent real valued sequence, so every adherence value goes to the same limit, hence
Ffφ(n)#µ(s) →

n→∞
Fν(s).

The function f is a measure preserving isometry from supp(µ) to supp(ν) Let ε1 > 0, s ∈ Rp,
there exists from previous statements N0, N1 ∈ N such that for n ≥ N0, |Ffφ(n)#µ(s)−Fν(s)| < ε1
and n ≥ N1, |Ffφ(n)#µ(s)−Ff#µ(s)| < ε1.

Let n ≥ max(N0, N1)

|Ff#µ(s)−Fν(s)| ≤ |Ffφ(n)#µ(s)−Fν(s)|+ |Ffφ(n)#µ(s)−Ff#µ(s)|
< 2ε1

As this result holds true for any ε1 > 0 we have Ff#µ(s) = Fν(s) and by injectivity of the Fourrier
transform f#µ = ν such that f is measure preserving.

In the same way for any x, x′ ∈ supp(µ), ε2 > 0 and n large enough∣∣‖f(x)− f(x′)‖ − ‖x− x′‖
∣∣ ≤ ∣∣‖fφ(n)(x)− fφ(n)(x

′)‖ − ‖f(x)− f(x′)‖
∣∣

+
∣∣‖fφ(n)(x)− fφ(n)(x

′)‖ − ‖x− x′‖
∣∣

< 2ε2

using fφ(n) u
→

n→∞

f and (14). As this result holds true for any ε2 > 0 we have ‖f(x) − f(x′)‖ =

‖x− x′‖ for any x, x′ ∈ supp(µ).

To conclude f is a surjective isometry that preserves the measures so µ and ν are isomorphic. By the
properties of GW the Gromov-Wasserstein distance defined previously also vanishes.

In the previous proof we admitted the lemma 4.3 that we now prove:

Proof. Proof of Lemma 4.3

We have to show that:

∀n ∈ N,∀x, x′ ∈ supp(µ)2,
∣∣‖fn(x)− fn(x′)‖ − ‖x− x′‖

∣∣ = o(
1

n
)

8



∀s ∈ Rp, |Ffn#µ(s)−Fν(s)| = o(
1

n
)

For x, x′ ∈ supp(µ):

‖fn(x)− fn(x′)‖ =

p∑
k=1

|Tek(n)(〈x, ek(n)〉)− Tek(n)(〈x′, ek(n)〉)|

(∗)
=

p∑
k=1

|〈x, ek(n)〉 − 〈x′, ek(n)〉|

=

p∑
k=1

|〈x− x′, ek〉|

where in (*) we used Qek(n) since 〈x, ek(n)〉 ∈ supp(Pek(n)#µ) (idem for x′). In this way:

∣∣‖fn(x)− fn(x′)‖ − ‖x− x′‖
∣∣ =

∣∣ p∑
k=1

|〈x− x′, ek(n)〉| − |xk − x′k|
∣∣

≤
p∑
k=1

∣∣|〈x− x′, ek(n)〉| − |xk − x′k|
∣∣

≤
p∑
k=1

|〈x− x′, ek(n)〉 − (xk − x′k)|

=

p∑
k=1

|R(x− x′, ek(n))| = o(
1

n
)

Hence ∣∣‖fn(x)− fn(x′)‖ − ‖x− x′‖
∣∣ = o(

1

n
) (16)

Moreover we have by definition of the Fourrier transform, for s ∈ RP ,

Ffn#µ(s) =

ˆ
e−2iπ〈s,fn(x)〉dµ(x)

=

ˆ
e−2iπ

∑p
k=1 skTek(n)(〈x,ek(n)〉)dµ(x)

=

p∏
k=1

ˆ
e−2iπskTek(n)(〈x,ek(n)〉)dµ(x)

(17)

Then using (Qθ) we have for all k ∈ {1, ..., p}, and any real t ∈ R

FTek(n)#(Pek(n)#µ)(t) = FPek(n)#ν(t)

=⇒
ˆ
e−2iπtTek(n)(〈ek(n),x〉)dµ(x) =

ˆ
e−2iπt〈ek(n),y〉dν(y)

So by applying this results for t = sk we have:
ˆ
e−2iπskTek(n)(〈x,ek(n)〉)dµ(x) =

ˆ
e−2iπsk〈ek(n),y〉dν(y) (18)

Combining (18) and (17):

Ffn#µ(s) =

p∏
k=1

ˆ
e−2iπsk〈ek(n),y〉dν(y) (19)
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So:

|Ffn#µ(s)−Fν(s)| = |
ˆ
e−2iπ〈s,fn(x)〉dµ(x)−

ˆ
e−2iπ〈s,y〉dν(y)|

∗
= |

ˆ
e−2iπ〈s,fn(x)〉dµ(x)−

ˆ
e−2iπ[

∑p
k=1〈s,ek(n)〉〈ek(n),y〉+R̃(s,y)]dν(y)|

∗∗
= |

p∏
k=1

ˆ
e−2iπsk〈ek(n),y〉dν(y)−

ˆ
e−2iπR̃(s,y)e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉dν(y)|

= |
ˆ
e−2iπ

∑p
k=1 sk〈ek(n),y〉dν(y)−

ˆ
e−2iπR̃(s,y)e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉dν(y)|

∗∗∗
= |

ˆ
e−2iπ

∑p
k=1(〈s,ek(n)〉+R(s,ek(n)))〈ek(n),y〉dν(y)

−
ˆ
e−2iπR̃(s,y)e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉dν(y)|

= |
ˆ
e−2iπ

∑p
k=1 R(s,ek(n))〈ek(n),y〉e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉dν(y)

−
ˆ
e−2iπR̃(s,y)e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉dν(y)|

=
∣∣ˆ e−2iπ

∑p
k=1〈s,ek(n)〉〈ek(n),y〉(e−2iπ

∑p
k=1 R(s,ek(n))〈ek(n),y〉 − e−2iπR̃(s,y))dν(y)

∣∣
≤
ˆ
|e−2iπ

∑p
k=1 R(s,ek(n))〈ek(n),y〉 − e−2iπR̃(s,y)|dν(y)

=

ˆ
|e−2iπR̃(s,y)(e−2iπ(

∑p
k=1 R(s,ek(n))〈ek(n),y〉−R̃(s,y)) − 1)|dν(y)

≤
ˆ
|e−2iπ(

∑p
k=1 R(s,ek(n))〈ek(n),y〉−R̃(s,y)) − 1|dν(y)

=

ˆ
|2ie−iπ(

∑p
k=1 R(s,ek(n))〈ek(n),y〉−R̃(s,y)) sin(π(

p∑
k=1

R(s, ek(n))〈ek(n), y〉 − R̃(s, y))|dν(y)

≤
ˆ
| sin(π(

p∑
k=1

R(s, ek(n))〈ek(n), y〉 − R̃(s, y))|dν(y)

≤ π
ˆ

(

p∑
k=1

|R(s, ek(n))〈ek(n), y〉|+ |R̃(s, y)|)dν(y)

∗∗∗∗
= o(

1

n
)

where in (*) we used the expression in the new base of the scalar product 〈s, y〉, in (**) we used (19),
in (***) the expression of sk w.r.t the new base and in (****) the fact that each term is o( 1

n ) In this
way:

|Ffn#µ(s)−Fν(s)| = o(
1

n
) (20)
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For the invariance by rotation if p = q then Vp(Rp) is bjective with O(p) so for Q ∈ O(p):

RISGW (Q#µ, ν) = min
∆∈Vp(Rp)

SGW∆(Q#µ, ν)

= min
∆∈O(p)

SGW∆(Q#µ, ν)

= min
∆∈O(p)

E
θ∼λq−1

[GW (d2, Pθ#(∆Q#µ), Pθ#ν)]

= min
∆′∈O(p)

E
θ∼λq−1

[GW (d2, Pθ#∆′#µ, Pθ#ν)]

= RISGW (µ, ν)

(21)

On the other side for ν a change of formula on theta gives the result.

5 Algorithm for SGW

Sliced Gromov-Wasserstein for discrete measures
1: p < q, µ = 1

n

∑n
i=1 δxi ∈ P(Rp) and ν = 1

n

∑n
i=1 δyj ∈ P(Rq)

2: ∀i, xi ← ∆(xi), sample uniformly (θl)l=1,...,L ∈ Sq−1

3: for l = 1, . . . , L do
4: Sort (〈xi, θl〉)i and (〈yj , θl〉)j in increasing order
5: Solve (1) for reals (〈xi, θl〉)i and (〈yj , θl〉)j , σθl is the solution (σθl ∈ Anti-Id or Id )
6: end for
7: return 1

n2L

L∑
l=1

n∑
i,k=1

(
〈xi−xk, θl〉2−〈yσθl (i)−yσθl (k), θl〉

2
)2

In practice, the computation trick presented in Equation (7) can be used to make the complexity of
the computation in line 7 linear with n.

6 SW∆ and RISW

Analogously to SGW we can define for the Sliced-Wasserstein distance SW∆(µ, ν) for µ, ν ∈
P(Rp)× P(Rq) with p 6= q and its rotational invariant counterpart as:

SW∆(µ, ν) =

 
Sq−1

SW (Pθ#µ∆, Pθ#ν)dθ

RISW (µ, ν) = min
∆∈Vq(Rp)

SW∆(µ, ν)
(22)

where SW is the Sliced-Wasserstein distance. The complexity for computing SW∆ is O(Ln(p+ q+
log(n))) which is exactly the same complexity as SGW∆. With these formulations, we can perform
the same experiment as for RISGW on the spiral dataset. The optimisation on the Stiefel manifold is
performed using Pymanopt as for SGW . Results are reported in Figure 1. As one can see, RISW
is rotational invariant on average whereas SW is not. One can also note that, due to the sampling
process of the spiral dataset, the variance is quite large. This can be explained by the fact that, unlike
SGW , the Sliced-Wasserstein may realign the distributions without taking the rotation into account.

7 Supplementary results for the SGW GAN Section

We give here supplementary results for the SGW GAN experiment in Fig. 2, where we consider
first a generator that outputs 2D samples, with a two dimensional target, and then a generator that
generates 3D samples form a 2D target distribution. Here again, the results are reported for 1000
epochs.
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Figure 1: Illustration of SW , RISW on spiral datasets for varying rotations on discrete 2D spiral
datasets. (left) Examples of spiral distributions for source and target with different rotations. (right)
Average value of SW and RISW with L = 20 as a function of rotation angle of the target. Colored
areas correspond to the 20% and 80% percentiles.

Figure 2: Using SGW in a GAN loss. The three rows depicts three different examples. First row is
2D (Generator) to 2D (Target) , Second 3D to 2D. First column is initialization, second one is at 100
Epochs, third one at 1000. Last column depicts the target distribution.
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