
A Experimental details for comparing influence vs. actual effects on
constructed groups

A.1 Model training

For all experiments in Section 3, we trained a logistic regression model (or softmax for multiclass)
using sklearn.linear_model.LogisticRegression.fit, fitting the intercept but only applying
L2-regularization to the weights. To choose the regularization strength λ, we conducted 5-fold cross-
validation across 10 possible values of λ/n logarithmically spaced between 1.0×10−4 and 1.0×10−1,
inclusive, selecting the regularization that yielded the highest cross-validation accuracy (except on
the CDR dataset, where we selected regularization based on cross-validation F1 score to account for
class imbalance as per Hancock et al. (2018)’s procedure).

A.2 Group construction

For each dataset, we constructed groups of various sizes relative to the entire dataset by considering
100 sizes linearly spaced between 0.25% and 25% of the dataset. For each of these 100 sizes, we
constructed one group with each of the following methods:

1. Shared features: We selected a single feature uniformly at random and sorted the dataset
along this selected feature. Next, we selected an training point uniformly at random. We
then constructed a group of size s that consisted of the s unique training points that were
closest to the chosen point, as measured by their values in the selected feature. We randomly
sampled a feature and initial training point for each different group constructed in this way.

2. Feature clustering: We clustered the dataset with respect to raw features via
scipy.cluster.hierarchy.fclusterdata with t set to 1, as well as with
sklearn.cluster.KMeans.fit with n_clusters taking on values 4, 8, 16, 32, 64, 128.
Since hierarchical clustering determines cluster sizes automatically with a principled heuris-
tic and we try a range of values for n_clusters in k-means, this recovers clusters with
a large range of sizes. The clustering with n_clusters = 4 also guarantees (via the
pigeonhole principle) that there is at least one cluster which contains at least 25% of the
dataset. From all the clusters that are at least the size of the desired group, we chose one
uniformly at random and chose the group uniformly at random and without replacement
from the training points in this cluster.

3. Gradient clustering: We followed the same procedure as “Feature clustering,” except that we
clustered the dataset with respect to∇θ`(x, y; θ̂(1)), i.e. each training point was represented
by the gradient of the loss on that point.

4. Random within class: We considered all classes with at least as many training points as the
size of the desired group. From these classes, we chose one uniformly at random. Then, we
chose the group uniformly at random and without replacement from all training points in
this class.

5. Random: We picked a group uniformly at random and without replacement from the entire
dataset.

The above methods gave us a total of 500 groups (100 groups per method) for each dataset, with
the exception of the “random within class” method for MNIST. Since MNIST has 10 classes, each
with only 10% of the data, we skipped over groups of size > 10% just for the “random within class”
groups.

In addition, we selected 3 random test points and the 3 test points with highest loss; we intend these
to represent the average case and the more extreme case that may be relevant to model developers
who want to debug errors that their model outputs. For each of these 6 test points, we selected groups
that had large positive influence on its test loss. More specifically, we proceeded in 3 stages:

1. We considered 33 group sizes linearly spaced between 0.25% and 2.5% of the dataset,
and for any size s out of these 33, we selected a group uniformly at random and without
replacement from training points in the top 1.5× 2.5% of the dataset, ordered according to
their influence on the test point of interest.
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2. This was similar to the first stage, but with 33 sizes spaced between 0.25% and 10% and
groups chosen from the top 1.5× 10% of the dataset.

3. Finally, we considered 34 sizes spaced between 0.25% and 25%, with groups chosen from
the top 1.5× 25% of the dataset.

Larger groups tend to have lower average influence than smaller groups, since by necessity, the
group must contain points farther from the top. This multi-stage approach ensured that we would
select small groups with both a high average influence and also with a low average influence, so that
we could compare them to larger groups and mitigate confounding the group size with its average
influence.

Finally, we repeated this last method of group construction for groups with large negative influence
on test point loss.

Using these 6 test points, we generated 1,200 groups (100 subsets per group, with 6 test points, and
drawing from the positive and negative tails). In total, we therefore generated 1,700 groups per
dataset (except MNIST).

A.3 Comparison of influence and actual effect

To produce Figure 1, we selected groups as described in Appendix A.2. We retrained the model
once for each group, excluding the group in order to calculate its actual effect. To compute all
groups’ influences, we first calculated the influence of every individual training point using the
procedure of Koh and Liang (2017). Then, to compute the influence on test prediction or loss of some
group, we simply added the relevant individual influences (in CDR, we weighted these individual
influences according to that point’s weight; see Appendix B.1). To compute the influence on self-loss
of some group, we summed up the gradients of the loss of each training point to compute g1(w), we
calculated the inverse Hessian vector product H−1

λ,1g1(w) and took its dot product with g1(w) (again,
we modified this with appropriate weighting for individual points in CDR).

B Dataset details

We used the same versions of the Diabetes, Enron, Dogfish, and MNIST datasets as Koh and Liang
(2017), since the examination of the accuracy of influence functions for large perturbations is a
natural extension of their studies of small perturbations. Additionally, we applied influence to more
natural settings in CDR and MultiNLI; here, we discuss their preprocessing pipelines.

B.1 CDR

Hancock et al. (2018) established the BabbleLabble framework for data programming, following
the following pipeline: They took labeled examples with natural language explanations, parsed
the explanations into programmatic labeling functions (LFs) via a semantic parser, and filtered out
obviously incorrect LFs. Then, they applied the remaining LFs to unlabeled data to create a sparse
label matrix, from which they learned a label aggregator that outputs a noisily labeled training set.
Finally, they ran L2-regularized logistic regression on a set of basic linguistic features with the noisy
labels.

They demonstrated their method on three datasets: Spouse, CDR, and Protein. The Protein dataset
was not publicly available, and the vast majority of Spouse was labeled by a single LF, hence
we chose to use CDR. This dataset’s associated task involved identifying whether, according to a
given sentence, a given chemical causes a given disease. For instance, the sentence “Young women
on replacement estrogens for ovarian failure after cancer therapy may also have increased risk of
endometrial carcinoma and should be examined periodically.” would be labeled True, since it
indicates that estrogens may cause endometrial carcinoma (Hancock et al., 2018). The sentences and
ground truth labels were sourced from the 2015 BioCreative chemical-disease relation dataset (Wei
et al., 2015).

In our application, we began with their 28 LFs and the corresponding label matrix. For simplicity, we
did not learn a label aggregator; instead, if an example x was given labels yi1 , yi2 , . . . , yik by k LFs
i1, . . . , ik, then we created k copies of x, each with weight 1/k. The subset of points corresponding
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to LF i1 then included one instance of x with weight 1/k. This weighting was taken into account
in model training as well as in calculations of influence and actual effect. In addition, we used
L1-regularization for feature selection, reducing the number of features to 328 while still achieving
similar F1 score to (Hancock et al., 2018); they reported an F1 of 42.3, while we achieved 42.0. After
feature selection, we remove the L1-regularization and train a L2-regularized logistic regression
model. We assume that the feature selection step is static and not affected by removing groups of
data (though in general this assumption is not true); we therefore do not include feature selection in
our influence calculations.

We note that in BabbleLabble, a given LF can never output positive on one example but negative on
another. Hence, some LFs are positive (unable to output negative and only able to abstain or output
positive), while the others are negative (unable to output positive and only able to abstain or output
negative).

B.2 MultiNLI

Williams et al. (2018) created the MultiNLI dataset for the task of natural language inference: deter-
mining if a pair of sentences agree, contradict, or are neutral. To do so, they presented crowdworkers
with initial sentences and asked them to generate follow-on sentences that were neutral or in agree-
ment/contradiction. For example, a crowdworker may be presented with “Met my first girlfriend that
way.” and write the contradicting sentence “I didn’t meet my first girlfriend until later.” (Williams
et al., 2018). Thus, each of the 380 crowdworkers generated a subset of the dataset. We used these
subsets in our application of influence.

The training set consisted of 392,702 examples from five genres. The development set consisted
of 10,000 “matched” examples from the same five genres as the training set, as well as 10,000
“mismatched” examples from five new genres. The test set was put on Kaggle as an open competition,
hence we do not have its labels and could not use it; therefore, we use the development set as the test
set.

The continuous bag-of-words baseline in Williams et al. (2018) first converted the raw text of each
sentence in the pair into a vector by treating the sentence as a continuous bag of words and simply
averaging the 300-dimensional GloVe vector embeddings. This converted a pair of sentences into
vectors a, b. They then concatenated [a, b, a− b, a� b] into a 1200D vector, where a� b denotes the
element-wise product. Finally, they treated this as input to a neural network with three hidden layers
and fine-tuned the entire model, including word embeddings (more details in (Williams et al., 2018)).

For our application, we truncated their baseline and just used the concatenation of a and b as the
representation for every example. By running logistic regression on this, we achieved test accuracy of
50.4% (vs. their baseline’s 64.7%; the performance difference comes from the additional dimensions
in their vector embeddings and the finetuning through the neural network). Future work could explore
influence in the setting of more complex and higher-performing models.

C Additional experiments

As in Figure 1, in each of the plots below, the grey reference line has slope 1, and the red borders
represent points that are not plotted because they are outside the x- or y-axis range.

C.1 Representative test points

Figure C.1 is similar to Figure 1 in the main text: it shows the influences vs. actual effects of groups
on test points, but with test points that are closer to the median (within the 40th to 60th percentile) of
the test loss distribution.

C.2 Regularization

In Section 4, our bounds show that influence ought to be closer to actual effect as regularization
increases. Here, we support this claim empirically on Diabetes, Enron, Dogfish, and MNIST (small).5
To do so, for each dataset, we selected a range of values for λ/n, and we selected subsets as described
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Figure C.1: Influences vs. actual effects of the same coherent groups in Figure 1, but on test points
closer to the median (within the 40th to 60th percentile) of the test loss distribution. We consider these
to represent average test points. On these, influence on the test prediction remains well-correlated
with the actual effect.
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Figure C.2: The effect of regularization for a representative test point. Red frame lines indicate the
existence of points exceeding those bounds. We did not include the test prediction for MNIST (small)
because the margin is not well-defined for a multiclass model.

in Appendix A.2. We then computed the influence and actual effect of each of these subsets on a
representative test point’s prediction, that point’s loss, and on self-loss (Figure C.2).

5This experiment required us to retrain the model for every value of λ and for every subset. Thus, for
computational purposes, we omitted CDR and MultiNLI, and we selected a random 10% subset of MNIST’s
training set to use in place of all of MNIST.
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Figure C.3: As regularization increases, correlation increases between the influences and actual
effects on test prediction (Left), test loss (Middle), and self-loss (Right).

In Figure C.3, we observe the trend that correlation generally increases as λ does. Specifically, we
computed the Spearman ρ between the influence and actual effect for each dataset, each value of λ,
and each evaluation function f(·) of interest (i.e., test prediction, test loss, or self-loss).

C.3 The effect of loss curvature on the accuracy of influence

One takeaway from the results on test loss in Figure 1-Mid is that the curvature of f(θ) can signifi-
cantly increase approximation error; this is expected since the influence If (w) linearizes f(·) around
θ̂(1). When possible, choosing a f(·) that has low curvature (e.g., the linear prediction) will result in
higher accuracy. We can mitigate this by using influence to approximate the parameters θ̂(1−w) and
then plug that estimate into f(·) (Figure C.4), though this can be more computationally expensive.

Note that Figure C.4 shows that this technique does not help much for measuring self-loss. However,
in the context of LOOCV, the computational complexity of the Newton approximation for self-loss
(described in Section 4) is similar to that of the influence approximation, so we encourage the use of
the Newton approximation for LOOCV (as in Rad and Maleki (2018)); Figure C.4 shows that this
leads to more accurate approximations for self-loss.

C.4 Additional analysis of influence functions applied to natural groups of data

In Section 5, we considered the CDR and MultiNLI datasets, which contain the natural subsets of LFs
and crowdworkers, respectively. To draw inferences about these subsets, we took the L2-regularized
logistic regression model described in Appendix A, calculated the influence of the LF/crowdworker
subsets, and retrained the model once for each LF/crowdworker.

CDR. As discussed in Appendix B.1, an LF is either positive or negative, where a positive LF
can only give positive labels or abstain, and similarly for negative LFs. Because of this stark class
separation, we indicate whether an LF is positive or negative, and we consider LF influence on the
positive test examples separately from their influence on the negative test examples. To measure an
LF’s influence and actual effect on a set of test points, we simply add up its influence and actual
effect on the set’s individual test points.

In Figure C.5, we note that influence is a good approximation of an LF’s actual effect, just as with
other kinds of subsets as well as other datasets (Figure 1). Furthermore, we observe that positive LFs
improve the overall performance of the positively labeled portion of the test set while hurting the
negatively labeled portion of the test set, and vice versa for negative LFs. This dichotomous effect
further motivates the analysis of influence on the positive test set separately from the negative test set,
since the process of adding these two influences to study the influence on the entire test set would
obscure the full story.
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Figure C.4: The top 3 rows show influence on test loss (with the same test points as in Figure 1),
while the bottom 3 show self-loss. Within each set, the first row shows the influence vs. actual
effect (as in Figure 1); the second shows the predicted effect obtained by estimating the change in
parameters via influence and then evaluating f(·) directly on those parameters; and the third shows
the Newton approximation.

Next, we define an LF’s coverage to be the proportion of the examples that it does not abstain on,
which can be measured through the number of examples in its corresponding subset. In Figure C.6,
we observe that the magnitude of influence correlates strongly with coverage.

Finally, we define an LF’s precision to be the number of examples it labels correctly divided by the
number of examples it does not abstain on. Because the dataset had many more negative than positive
examples, positive LFs had lower precision than negative LFs. Surprisingly, even when this effect
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Figure C.5: We observe both correlation and underestimation for LFs on the positive and negative
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Figure C.6: The magnitude of LF influence correlates with coverage. This figure is an extension of
Figure 4-Left: there, we showed the influence of positive LFs on the positive test set and the influence
of negative LFs on the negative test set. Here, we additionally show the influence of positive LFs on
the negative test set and vice versa.

was taken into account and we considered positive LFs separately from negative ones, precision did
not correlate with influence (Figure C.7).
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Figure C.7: LF influence does not correlate with precision. Similar to Figure C.6, this figure is an
extension of Figure 4-Mid: there, we showed the influence of positive LFs on the positive test set and
the influence of negative LFs on the negative test set. Here, we additionally show the influence of
positive LFs on the negative test set and vice versa.
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MultiNLI. As discussed in Appendix B.2, the training set consisted of five genres, and the test set
consisted of a matched portion with the same five genres, as well as a mismatched portion with five
new genres. For succinctness, we refer to the influence/actual effect of the set of examples generated
by a single crowdworker as that crowdworker’s influence/actual effect.

First, we note in Figure C.8 that influence is a good approximation of a crowdworker’s actual effect
for both matched and mismatched test sets, consistent with our findings in Figure 1 for other subset
types and datasets.
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Figure C.8: We observe strong correlation between crowdworkers’ influence and actual effects.

Unlike in CDR (Figure C.6), we do not find strong correlation between a crowdworker’s influence
and the number of examples they contributed; it is possible to contribute many examples but have
relatively little influence (Figure C.9).
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Figure C.9: Size does not correlate strongly with influence. The hidden point is the crowdworker that
contributed 35,000 examples. This is the figure presented in Figure 4-Right.

The most prolific crowdworker contributed 35,000 examples and had large negative influence on
the test set. A closer analysis revealed that they had positive influence on the fiction genre but
lowered performance on many other genres, despite contributing roughly equally to each genre.
This genre-specific trend tended to hold more broadly among the workers: there appear to be two
categories of genres (fiction, facetoface, nineeleven vs. travel, government, verbatim, letters, oup)

19



such that each worker tended to have positive influence on all genres in one category and negative
influence on all genres in the other (Figure C.10). Moreover, the number of examples a worker
contributed to a given genre was not a good indicator for their influence on that genre (Figure C.11).
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Figure C.10: Workers tended to have positive influence on fiction, facetoface, and nineeleven and
negative influence on travel, government, verbatim, letters, and oup (or vice versa). In this plot, we
allowed for full color saturation when the magnitude of the total influence on the test set (matched)
exceeded 0.8.
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Figure C.11: Influence on a genre does not correlate with number of contributions to that genre.

D Additional analysis on influence vs. actual effect on a test point

D.1 Counterexamples

For Figure 3, we constructed two binary datasets in which the influence of a certain class of subsets
on the test prediction of a single test point exhibits pathological behavior.

Rotation effect. In Figure 3-Left, our aim was to show that there can be a dataset with subsets such
that the cone constraint discussed in Section 4.4 does not hold.

The rotation effect described in Corollary 1 is due to the angular difference between the change in
parameters predicted by the influence approximation, ∆θinf(w)

def
= H−1

λ,1g1(w) = H
− 1

2

λ,1 vw, and the

change in parameters predicted by the Newton approximation, ∆θNt(w) = H
− 1

2

λ,1

(
D(w) + I

)
vw. If

∆θinf(w) and ∆θNt(w) are linearly independent, then for any pair of target values a, b ∈ R, we can
find some xtest such that If (w) = xtest

>∆θinf(w) = a and INt
f (w = xtest

>∆θNt(w) = b.

To exploit this, we constructed the MoG dataset as an equal mixture of two standard (identity
covariance) Gaussian distributions in R60, one for each class, and with means (−1/2, 0, . . . , 0) and
(1/2, 0, . . . , 0), respectively. In particular:

1. We sampled 60 examples from each class for a total of n = 120 training points, and set the
regularization strength λ = 0.001.
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2. We then computed ∆θinf(w) and ∆θNt(w) for each pair of training points and chose the
120 pairs of training points with the largest angles between ∆θinf(w) and ∆θNt(w).

3. Finally, we solved a least-squares optimization problem to find xtest for which If (w) and
INt
f (w) are approximately decorrelated.

Note that we adversarially chose which subsets to study in this counterexample, since our main
goal was to show that there existed subsets for which the cone constraint did not hold. For the next
counterexample, we instead study all possible subsets in the restricted setting of removing copies of
single points.

Scaling effect. In Figure 3-Right, our aim was to construct a dataset such that even if we only
removed subsets comprising copies of single distinct points, a low influence need not translate into a
low actual effect.

To do so, we constructed the Ortho dataset that contains 2 repeated points of opposite classes on each
of the 2 canonical axes of R2 (for a total of 4 distinct points). By varying their relative distances
from the origin, we can control the influence of removing one of these points as well as the rate
that the scaling factor d(w) from Proposition 4 grows as we remove more copies of the same point.
Furthermore, because the axes are orthogonal, we can control d(w) independently for each repeated
point. We fix the test point xtest = (1, 1). Maximizing d(w) for one axis and minimizing it for the
other produces the two distinct lines in Figure 3-Right.

D.2 Scaling effects when removing multiple points

In the general setting of removing subsets of different points, the analogous failure case to a varying
scaling factor d(w) (Figure 3-Right) is the varying scaling effect that the error matrix D(w) in
Proposition 2 can have on different subsets w. The range of this effect is bounded by the spectral
norm of D(w). This norm is precisely equal to d(w) in the single-point setting, and it is large
when we remove a subset w whose Hessian H1(w) is almost as large as the full Hessian Hλ,1 in
some direction. As with d(w), the spectral norm of D(w) decreases with λ (Proposition 2), so as
regularization increases, we expect that the influence of a group will track its actual effect more
accurately.

D.3 The relationship between influence and actual effect on the loss of a test point

In the margin-based setting, the loss `(xtest, ytest; θ) is a monotone function of the linear prediction
θ>xtest. Thus, measuring f(θ) = `(xtest, ytest; θ) will display the same rank correlation as measur-
ing f(θ) = θ>xtest above, so the same results about correlation in the test prediction setting carry
over.

However, the second-order f -curvature term 1
2∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w) from Proposition 2
is always non-negative, even if the influence is negative. Under the assumption that Errf,3(w) and
ErrNt-act(w) are both small because they decay as O(1/λ3), this implies that underestimation is only
preserved when the influence is positive, as we observed empirically in Figure 1-Mid.

E Proofs

E.1 Notation

We first review the notation given in Section 2 and introduce new definitions that will be useful in the
sequel. We define the empirical risk as

Ls(θ)
def
=

[
n∑
i=1

si`(xi, yi; θ)

]
+
λ

2
‖θ‖22,

such that the optimal parameters are θ̂(s) def
= arg minθ∈ΘLs(θ).
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Given sample weight vectors r, s ∈ Rn, we define the derivatives

gr(s)
def
=

n∑
i=1

si∇θ`(xi, yi; θ̂(r))

Hr(s)
def
=

n∑
i=1

si∇2
θ`(xi, yi; θ̂(r)).

If the argument s is omitted, it is assumed to be equal to r. For example,

H1
def
=

n∑
i=1

∇2
θ`(xi, yi; θ̂(1)).

If H has a λ subscript, then we add λI . For example,

Hλ,1
def
= H1 + λI.

For a given dataset, we define the following constants:

C` = max
1≤i≤n

∥∥∥∇θ`(xi, yi, θ̂(1))
∥∥∥

2
,

σmin = smallest singular value of H1,

σmax = largest singular value of H1.

To avoid confusion with the vector 2-norm, we will use the operator norm ‖·‖op to denote the matrix
2-norm.

In the sequel, we study the order-3 tensor ∇3
θf(θ̂(1)). We define its product with a vector (which

returns a matrix) as a contraction along the last dimension:〈
∇3
θf(θ̂(1)), v

〉
ij

def
=
∑
k

∂3f(θ̂(1))

∂θi∂θj∂θk
vk.

E.2 Assumptions

We make the following assumptions on the derivatives of the loss `(x, y, θ) and the evaluation
function f(θ).
Assumption 1 (Positive-definiteness and Lipschitz continuity of H). The loss `(x, y, θ) is convex
and twice-differentiable in θ, with positive regularization λ > 0. Further, there exists CH ∈ R such
that ∥∥∇2

θ`(x, y, θ1)−∇2
θ`(x, y, θ2)

∥∥
op
≤ CH ‖θ1 − θ2‖2

for all (x, y) ∈ X × Y and θ1, θ2 ∈ Θ. This is a bound on the third derivative of `, if it exists.
Assumption 2 (Bounded derivatives of f ). f(θ) is thrice-differentiable, with Cf , Cf,3 ∈ R such that

Cf = sup
θ∈Θ
‖∇θf(θ)‖2 , Cf,3 = sup

v∈Θ,‖v‖2=1

∥∥∥〈∇3
θf(θ̂(1)), v

〉∥∥∥
op
.

These assumptions apply to all the results that follow below.

E.3 Bounding the error of the one-step Newton approximation

Proposition 1 (Restated). Let the Newton error be ErrNt-act(w)
def
= I∗f (w)− INt

f (w). Then under
Assumptions 1 and 2,

|ErrNt-act(w)| ≤ n‖w‖21CfCHC2
`

(σmin + λ)3
.

ErrNt-act(w) only involves third-order or higher derivatives of the loss, so it is 0 for quadratic losses.
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Proof. This proof is adapted to our setting from the standard analysis of the Newton method in
convex optimization (Boyd and Vandenberghe, 2004).

First, note that ErrNt-act(w) = I∗f (w)− INt
f (w) = f(θ̂(1− w))− f(θ̂Nt(1− w)). We will bound

the norm of the difference of the parameters
∥∥∥θ̂(1− w)− θ̂Nt(1− w)

∥∥∥
2
; the desired bound on f

then follows from the assumption that f has gradients bounded by Cf and is therefore Lipschitz.

Since L1−w(θ) is strongly convex (with parameter σmin + λ) and minimized by θ̂(1− w), we can
bound the distance

∥∥∥θ̂(1− w)− θ̂Nt(1− w)
∥∥∥

2
in terms of the norm of the gradient at θ̂Nt(1− w):∥∥∥θ̂(1− w)− θ̂Nt(1− w)

∥∥∥
2
≤ 2

σmin + λ

∥∥∥∇θL1−w

(
θ̂Nt(1− w)

)∥∥∥
2
.

Therefore, the problem reduces to bounding
∥∥∥∇θL1−w

(
θ̂Nt(1− w)

)∥∥∥
2
.

We start by expressing the Newton step ∆θNt(w) in terms of the first and second derivatives of the
empirical risk L1−w(θ):

g1(w) =

n∑
i=1

wi∇θ`(xi, yi; θ̂(1))

= −
n∑
i=1

(1− wi)∇θ`(xi, yi; θ̂(1))

= −∇θL1−w(θ̂(1)),

Hλ,1(1− w) =

n∑
i=1

(1− wi)∇2
θ`(xi, yi; θ̂(1))

= ∇2
θL1−w(θ̂(1)),

∆θNt(w) = Hλ,1(1− w)−1g1(w)

= −
[
∇2
θL1−w(θ̂(1))

]−1

∇θL1−w(θ̂(1)),

where the second equality for g1(w) comes from the fact that at the optimum θ̂(1), the sum of the
gradients

∑n
i=1∇θ`(xi, yi; θ̂(1)) is 0.

With these expressions, we bound the norm of the gradient∇θL1−w(θ̂Nt(1− w)):∥∥∥∇θL1−w

(
θ̂Nt(1− w)

)∥∥∥
2

=
∥∥∥∇θL1−w

(
θ̂(1) + ∆θNt(w)

)∥∥∥
2

=
∥∥∥∇θL1−w

(
θ̂(1) + ∆θNt(w)

)
−∇θL1−w

(
θ̂(1)

)
−∇2

θL1−w

(
θ̂(1)

)
∆θNt(w)

∥∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2
θL1−w

(
θ̂(1) + t∆θNt(w)

)
−∇2

θL1−w

(
θ̂(1)

))
∆θNt(w) dt

∥∥∥∥
2

≤ nCH
2
‖∆θNt(w)‖22

=
nCH

2

∥∥∥∥[∇2
θL1−w(θ̂(1))

]−1

∇θL1−w(θ̂(1))

∥∥∥∥2

2

≤ nCH
2(σmin + λ)2

∥∥∥∇θL1−w(θ̂(1))
∥∥∥2

2

≤
n ‖w‖21 CHC2

`

2(σmin + λ)2
.

Putting together the successive bounds gives the result.
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E.4 Characterizing the difference between the Newton approximation and influence

Before proving Proposition 2, we first prove a lemma about the spectrum of the error matrix D(w).

Lemma 1. The matrix D(w)
def
=
(
I − H

− 1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I has singular values bounded
between 0 and σmax

λ .

Proof. We first show that H−
1
2

λ,1H1(w)H
− 1

2

λ,1 has singular values bounded between 0 and σmax

σmax+λ .

The lower bound of 0 comes from the fact that H−
1
2

λ,1H1(w)H
− 1

2

λ,1 is symmetric and H1(w) � 0.

To show the upper bound, first note that H1(w) � H1(w) + H1(1 − w) = H1 (recalling that
w ∈ {0, 1}n), and let UΣU> be the singular value decomposition of H1. Since Hλ,1 = H1 + λI ,
we have

H
− 1

2

λ,1H1(w)H
− 1

2

λ,1 =
(
H1 + λI

)− 1
2H1(w)

(
H1 + λI

)− 1
2

�
(
H1 + λI

)− 1
2H1

(
H1 + λI

)− 1
2

=
(
U(Σ + λI)U>

)− 1
2UΣU>

(
U(Σ + λI)U>

)− 1
2

= U(Σ + λI)−
1
2 Σ(Σ + λI)−

1
2U>,

so its maximum singular value is upper bounded by σmax

σmax+λ .

The bound on the singular values of H−
1
2

λ,1H1(w)H
− 1

2

λ,1 implies that the singular values of

I − H
− 1

2

λ,1H1(w)H
− 1

2

λ,1 lie in
[

λ
σmax+λ , 1

]
. In turn, this implies that the singular values of(

I −H−
1
2

λ,1H1(w)H
− 1

2

λ,1

)−1
lie in

[
1, σmax+λ

λ

]
. Subtracting 1 from each end (for the identity matrix)

gives the desired result.

Proposition 2 (Restated). Under Assumptions 1 and 2, the Newton-influence error ErrNt-inf(w) is

ErrNt-inf(w) = ∇θf(θ̂(1))>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w) +
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w) + Errf,3(w),︸ ︷︷ ︸
Error from curvature of f(·)

with D(w)
def
=
(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I and H1(w)
def
=
∑n
i=1 wi∇2

θ`(xi, yi; θ̂(1)). The error
matrix D(w) has eigenvalues between 0 and σmax

λ , where σmax is the largest eigenvalue of H1. The
residual term Errf,3(w) captures the error due to third-order derivatives of f(·) and is bounded by
|Errf,3(w)| ≤ ‖w‖31Cf,3C3

` /6(σmin + λ)3.

Proof. From the second-order Taylor expansion of f about θ̂(1), there exists 0 ≤ ξ ≤ 1 such that

INt
f (w) = f(θ̂Nt(1− w))− f(θ̂(1))

= f(θ̂(1) + ∆θNt(w))− f(θ̂(1))

= ∇θf(θ̂(1))>∆θNt(w) +
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w)+

1

6
∆θNt(w)>

〈
∇3
θf(θ̂(1) + ξ∆θNt(w)),∆θNt(w)

〉
∆θNt(w)

= ∇θf(θ̂(1))>∆θNt(w) +
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w) + Errf,3(w), (6)

where we define Errf,3(w)
def
= 1

6∆θNt(w)>
〈
∇3
θf(θ̂(1) + ξ∆θNt(w)),∆θNt(w)

〉
∆θNt(w) to be

the error due to third-order and higher derivatives of f .
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We can express the difference between the first-order Taylor term∇θf(θ̂(1))>∆θNt(w) above and
the first-order influence approximation If (w) = q′w(0) = ∇θf

(
θ̂(1)

)>
H−1
λ,1g1(w) as

∇θf(θ̂(1))>∆θNt(w)− If (w)

= ∇θf(θ̂(1))>∆θNt(w)−∇θf
(
θ̂(1)

)>
H−1
λ,1g1(w)

= ∇θf(θ̂(1))>
(
Hλ,1(1− w)−1 −H−1

λ,1

)
g1(w)

= ∇θf(θ̂(1))>
((
Hλ,1 −H1(w)

)−1 −H−1
λ,1

)
g1(w)

= ∇θf(θ̂(1))>H
− 1

2

λ,1

(
H

1
2

λ,1

(
Hλ,1 −H1(w)

)−1
H

1
2

λ,1 − I
)
H
− 1

2

λ,1 g1(w)

= ∇θf(θ̂(1))>H
− 1

2

λ,1

((
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I
)
H
− 1

2

λ,1 g1(w)

= ∇θf(θ̂(1))>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w). (7)

Substituting (7) into (6), we have that

INt
f (w)− If (w) = ∇θf(θ̂(1))>H

− 1
2

λ,1D(w)H
− 1

2

λ,1 g1(w)

+
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w) + Errf,3(w),

as desired.

We can bound Errf,3(w) as follows:

|Errf,3(w)| ≤ Cf,3
6
‖∆θNt(w)‖32

≤
‖w‖31 Cf,3C3

`

6(σmin + λ)3
.

Applying Lemma 1 to bound the spectrum of D(w) completes the proof.

E.5 The influence on self-loss

We first state two linear algebra facts that will be useful in the sequel.

Lemma 2. Let A � 0, B � 0 ∈ Rd×d be a pair of symmetric positive-definite and positive-
semidefinite matrices, respectively. Let σA,1 be the largest eigenvalue of A, σA,d the smallest
eigenvalue of A, and similarly let σB,1 and σB,d be the largest and smallest eigenvalues of B,
respectively. Then

σB,d
σA,1

I � A− 1
2BA−

1
2 � σB,1

σA,d
I.

Proof. Note that 1
σA,1

is the smallest eigenvalue of A−1, while 1
σA,d

is its largest. The lemma follows
from the fact that the smallest singular value of the product of two matrices is lower bounded by the
product of the smallest singular values of each matrix, and similarly the largest singular value of the
product is upper bounded by the product of the largest singular values of each matrix.

The next fact is a consequence of the variational definition of eigenvalues.

Lemma 3. Given a symmetric matrix A ∈ Rd×d and a vector v ∈ Rd, we have the following bounds
on the quadratic form v>Av:

σd ‖v‖22 ≤ v
>Av ≤ σ1 ‖v‖22 ,

where σd is the smallest eigenvalue of A, and σ1 is the largest.

We are now ready to analyze the effect of removing a subset w of k training points on the total loss
on those k points.
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Proposition 3 (Restated). Under Assumptions 1 and 2, the influence on the self-loss f(θ) =∑n
i=1 wi`(xi, yi; θ) obeys

If (w) + Errf,3(w) ≤ INt
f (w) ≤

(
1 +

3σmax

2λ
+
σ2

max

2λ2

)
If (w) + Errf,3(w).

Proof. Since f(θ) =
∑n
i=1 wi`(xi, yi; θ), we have that

∇θf(θ̂(1)) =

n∑
i=1

wi∇θ`(xi, yi; θ̂(1))

= g1(w),

∇2
θf(θ̂(1)) =

n∑
i=1

wi∇2
θ`(xi, yi; θ̂(1))

= H1(w).

Substituting these and ∆θNt(w) = Hλ,1(1− w)−1g1(w) into Proposition 2, we obtain

INt
f (w)− If (w)− Errf,3(w)

= ∇θf(θ̂(1))>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w) +
1

2
∆θNt(w)>∇2

θf(θ̂(1))∆θNt(w)

= g1(w)>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w) +
1

2
g1(w)>Hλ,1(1− w)−1H1(w)Hλ,1(1− w)−1g1(w)

= g1(w)>H
− 1

2

λ,1

D(w) +
1

2
H

1
2

λ,1Hλ,1(1− w)−1H1(w)Hλ,1(1− w)−1H
1
2

λ,1︸ ︷︷ ︸
def
= Λ(w)

H− 1
2

λ,1 g1(w),

where D(w)
def
=
(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I has singular values bounded between 0 and σmax

λ .

From Lemma 2, Λ(w) has singular values bounded between 0 and σmax(σmax+λ)
2λ2 .

Applying Lemma 3 and using If (w) = g1(w)>H−1
λ,1g1(w), we obtain

0 ≤ g1(w)>H
− 1

2

λ,1 [D(w) + Λ(w)]H
− 1

2

λ,1 g1(w)

≤
(
σmax

λ
+
σmax(σmax + λ)

2λ2

)
g1(w)>H−1

λ,1g1(w)

=

(
3σmax

2λ
+
σ2

max

2λ2

)
If (w),

which gives us

If (w) + Errf,3(w) ≤ INt
f (w) ≤

(
1 +

3σmax

2λ
+
σ2

max

2λ2

)
If (w) + Errf,3(w).

Note that Errf,2(w)
def
=

σ2
max

2λ2 If (w) can be bounded as

|Errf,2(w)| =
∣∣∣∣σ2

max

2λ2
If (w)

∣∣∣∣
≤ σ2

max

2λ2
· |If (w)|

≤ σ2
max

2λ2
·
∣∣∣g1(w)>H−1

λ,1g1(w)
∣∣∣

≤
‖w‖21 C2

` σ
2
max

2(σmin + λ)λ2
,
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and ErrNt-act(w) = I∗f (w)− INt
f (w) grows as O(1/λ3) from Proposition 1, so we can also write

If (w) +O
( 1

λ3

)
≤ I∗f (w) ≤

(
1 +

3σmax

2λ

)
If (w) +O

( 1

λ3

)
.

E.6 The influence on a test point

Corollary 1 (Restated). Suppose f(θ) = θ>xtest, and define vtest
def
= H

− 1
2

λ,1 xtest and vw
def
=

H
− 1

2

λ,1 g1(w). Then under Assumptions 1 and 2, INt
f (w) = If (w) + vtest

>D(w)vw, where D(w) =(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I is the error matrix from Proposition 2.

Proof. Since f(θ) = θ>xtest is linear, we have that for any θ ∈ Θ,
∇θf(θ) = xtest,

∇2
θf(θ) = 0,

Cf,3 = 0.

This in turn implies that Errf,3(w) = 0. Substituting these expressions into Proposition 2 gives us
the desired result.

Proposition 4 (Restated). Consider a binary classification setting with y ∈ {−1,+1} and a margin-
based model with loss `(x, y; θ) = φ(yθ>x) for some φ : R → R+. Suppose f(θ) = θ>xtest

and that the subset w comprises ‖w‖1 identical copies of the training point (xw, yw). Then under
Assumptions 1 and 2, the Newton approximation INt

f (w) is related to the influence If (w) according
to

INt
f (w) =

If (w)

1− ‖w‖1 · φ′′(ywθ̂(1)>xw) · x>wH−1
λ,1xw

.

This implies the Newton approximation INt
f (w) is bounded between If (w) and

(
1 + σmax

λ

)
If (w).

Proof. From Corollary 1,

INt
f (w) = If (w) + xtest

>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w).

With the additional assumptions on w and `(x, y; θ), we have that

∇θ`(x, y; θ) = yφ′(yθ>x)x,

g1(w) =

n∑
i=1

wi∇θ`(xi, yi; θ̂(1))

=

n∑
i=1

wiyiφ
′(yiθ̂(1)>xi)xi

=

n∑
i=1

wiyiφ
′
ixi

= ‖w‖1 ywφ
′
kxw,

where in the last equality we use the assumption that we are removing ‖w‖1 copies of the point
(xw, yw). Similarly,

∇2
θ`(x, y; θ) = φ′′(yθ>x)xx>,

H1(w) =

n∑
i=1

wi∇2
θ`(xi, yi; θ̂(1))

=

n∑
i=1

wiφ
′′(yiθ̂(1)>xi)xix

>
i

= ‖w‖1 φ
′′
kxwx

T
w.
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We thus have

D(w) =
(
I −H−

1
2

λ,1H1(w)H
− 1

2

λ,1

)−1 − I

=
(
I −H−

1
2

λ,1 ‖w‖1 φ
′′
kxwx

T
wH
− 1

2

λ,1

)−1

− I

=
H
− 1

2

λ,1 ‖w‖1 φ′′kxwxTwH
− 1

2

λ,1

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

=
‖w‖1 φ′′kH

− 1
2

λ,1 xwx
T
wH
− 1

2

λ,1

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

,

where the third equality comes from the Sherman-Morrison formula. Substituting D(w) into Corol-
lary 1, we obtain

INt
f (w) = If (w) + xtest

>H
− 1

2

λ,1D(w)H
− 1

2

λ,1 g1(w)

= If (w) +
‖w‖1 φ′′kxtest

>H−1
λ,1xwx

T
wH
−1
λ,1g1(w)

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

= If (w) +
xtest

>H−1
λ,1 ‖w‖1 ywφ′kxw · ‖w‖1 φ′′kxTwH

−1
λ,1xw

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

= If (w) +
xtest

>H−1
λ,1g1(w) · ‖w‖1 zTkH

−1
λ,1zk

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

= If (w) +
If (w) · ‖w‖1 zTkH

−1
λ,1zk

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

=
If (w)

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

.

To bound the denominator, we first use the trace trick to rearrange terms

‖w‖1 φ
′′
kx

T
wH
−1
λ,1xw = tr

(
‖w‖1 φ

′′
kx

T
wH
−1
λ,1xw

)
= tr

(
H
− 1

2

λ,1 ‖w‖1 φ
′′
kxwx

T
wH
− 1

2

λ,1

)
= tr

(
H
− 1

2

λ,1H1(w)H
− 1

2

λ,1

)
.

Since H−
1
2

λ,1H1(w)H
− 1

2

λ,1 has rank one under our assumptions, it only has at most one non-zero
eigenvalue. We can therefore apply Lemma 1 to conclude that

‖w‖1 φ
′′
kx

T
wH
−1
λ,1xw = tr

(
H
− 1

2

λ,1H1(w)H
− 1

2

λ,1

)
≤ σmax

σmax + λ
,

which in turn implies that 1− ‖w‖1 φ′′kxTwH
−1
λ,1xw ≥

λ
σmax+λ , so

1

1− ‖w‖1 φ′′kxTwH
−1
λ,1xw

≤ σmax + λ

λ
= 1 +

σmax

λ
.
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