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Abstract

We introduce a stochastic contextual bandit model where at each time step the
environment chooses a distribution over a context set and samples the context
from this distribution. The learner observes only the context distribution while
the exact context realization remains hidden. This allows for a broad range of
applications where the context is stochastic or when the learner needs to predict the
context. We leverage the UCB algorithm to this setting and show that it achieves
an order-optimal high-probability bound on the cumulative regret for linear and
kernelized reward functions. Our results strictly generalize previous work in the
sense that both our model and the algorithm reduce to the standard setting when the
environment chooses only Dirac delta distributions and therefore provides the exact
context to the learner. We further analyze a variant where the learner observes the
realized context after choosing the action. Finally, we demonstrate the proposed
method on synthetic and real-world datasets.

1 Introduction

In the contextual bandit model a learner interacts with an environment in several rounds. At the
beginning of each round, the environment provides a context, and in turn, the learner chooses an action
which leads to an a priori unknown reward. The learner’s goal is to choose actions that maximize
the cumulative reward, and eventually compete with the best mapping from context observations
to actions. This model creates a dilemma of exploration and exploitation, as the learner needs to
balance exploratory actions to estimate the environment’s reward function, and exploitative actions
that maximize the total return. Contextual bandit algorithms have been successfully used in many
applications, including online advertisement, recommender systems and experimental design.

The contextual bandit model, as usually studied in the literature, assumes that the context is observed
exactly. This is not always the case in applications, for instance, when the context is itself a noisy
measurement or a forecasting mechanism. An example of such a context could be a weather or stock
market prediction. In other cases such as recommender systems, privacy constraints can restrict access
to certain user features, but instead we might be able to infer a distribution over those. To allow for
uncertainty in the context, we consider a setting where the environment provides a distribution over
the context set. The exact context is assumed to be a sample from this distribution, but remains hidden
from the learner. Such a model, to the best of our knowledge, has not been discussed in the literature
before. Not knowing the context realization makes the learning problem more difficult, because the
learner needs to estimate the reward function from noisy observations and without knowing the exact
context that generated the reward. Our setting recovers the classical contextual bandit setting when
the context distribution is a Dirac delta distribution. We also analyze a natural variant of the problem,
where the exact context is observed after the player has chosen the action. This allows for different
applications, where at the time of decision the context needs to be predicted (e.g. weather conditions),
but when the reward is obtained, the exact context can be measured.
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We focus on the setting where the reward function is linear in terms of action-context feature vectors.
For this case, we leverage the UCB algorithm on a specifically designed bandit instance without
feature uncertainty to recover an O(d

√
T ) high-probability bound on the cumulative regret. Our

analysis includes a practical variant of the algorithm that requires only sampling access to the context
distributions provided by the environment. We also extend our results to the kernelized setting, where
the reward function is contained in a known reproducing kernel Hilbert space (RKHS). For this
case, we highlight an interesting connection to distributional risk minimization and we show that the
natural estimator for the reward function is based on so-called kernel mean embeddings. We discuss
related work in Section 6.

2 Stochastic Bandits with Context Distributions

We formally define the setting of stochastic bandits with context distributions as outlined in the
introduction. Let X be a set of actions and C a context set. The environment is defined by a fixed, but
unknown reward function f : X ×C → R. At iteration t ∈ N, the environment chooses a distribution
µt ∈ P(C) over the context set and samples a context realization ct ∼ µt. The learner observes only
µt but not ct, and then chooses an action xt ∈ X . We allow that an adaptive adversary chooses the
context distribution, that is µt may in an arbitrary way depend on previous choices of the learner
up to time t. Given the learner’s choice xt, the environment provides a reward yt = f(xt, ct) + εt,
where εt is σ-subgaussian, additive noise. The learner’s goal is to maximize the cumulative reward∑T

t=1 f(xt, ct), or equivalently, minimize the cumulative regret

RT =

T∑
t=1

f(x∗t , ct)− f(xt, ct) (1)

where x∗t = arg maxx∈X Ec∼µt [f(x, c)] is the best action provided that we know f and µt, but not ct.
Note that this way, we compete with the best possible mapping π∗ : P(C)→ X from the observed con-
text distribution to actions, that maximizes the expected reward

∑T
t=1 Ect∼µt [f(π∗(µt), ct)|Ft−1, µt]

where Ft = {(xs, µs, ys)}ts=1 is the filtration that contains all information available at the end of
round t. It is natural to ask if it is possible to compete with the stronger baseline that chooses actions
given the context realization ct, i.e. x̃∗t = arg maxx∈X f(x, ct). While this can be possible in special
cases, a simple example shows, that in general the learner would suffer Ω(T ) regret. In particular,
assume that ct ∼ Bernoulli(0.6) , and X = {0, 1}. Let f(0, c) = c and f(1, c) = 1− c. Clearly, any
policy that does not know the realizations ct, must have Ω(T ) regret when competing against x̃∗t .

From now on, we focus on linearly parameterized reward functions f(x, c) = φ>x,cθ with given
feature vectors φx,c ∈ Rd for x ∈ X and c ∈ C, and unknown parameter θ ∈ Rd. This setup is
commonly referred to as the linear bandit setting. For the analysis we require standard boundedness
assumptions ‖φx,c‖2 ≤ 1 and ‖θ‖2 ≤ 1 that we set to 1 for the sake of simplicity. In Section 4.2,
we further consider a variant of the problem, where the learner observes ct after taking the decision
xt. This simplifies the estimation problem, because we have data {(xt, ct, yt)} with exact context ct
available, just like in the standard setting. The exploration problem however remains subtle as at the
time of decision the learner still knows only µt and not ct. In Section 4.3 we extend our algorithm
and analysis to kernelized bandits where f ∈ H is contained in a reproducing kernel Hilbert spaceH.

3 Background

We briefly review standard results from the linear contextual bandit literature and the upper confidence
bound (UCB) algorithm that we built on later (Abbasi-Yadkori et al., 2011). The linear contextual
bandit setting can be defined as a special case of our setup, where the choice of µt is restricted to
Dirac delta distributions µt = δct , and therefore the learner knows beforehand the exact context
which is used to generate the reward. In an equivalent formulation, the environment provides at time
t a set of action-context feature vectors Ψt = {φx,ct : x ∈ X} ⊂ Rd and the algorithm chooses an
action xt with corresponding features φt := φxt,ct ∈ Ψt. We emphasize that in this formulation the
context ct is extraneous to the algorithm, and everything can be defined in terms of the time-varying
action-feature sets Ψt. As before, the learner obtains a noisy reward observation yt = φ>t θ + εt
where εt is conditionally ρ-subgaussian with variance proxy ρ, i.e.

∀λ ∈ R, E[eλεt |Ft−1, φt] ≤ exp(λ2ρ2/2) .
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Also here, the standard objective is to minimize the cumulative regret RT =
∑T
t=1 φ

∗>
t θ − φ>t θ

where φ∗t = arg maxφ∈Ψt φ
>θ is the feature vector of the best action at time t.

To define the UCB algorithm, we make use of the confidence sets derived by Abbasi-Yadkori et al.
(2011) for online least square regression. At the end of round t, the algorithm has adaptively
collected data {(φ1, y1), . . . , (φt, yt)} that we use to compute the regularized least squares estimate
θ̂t = arg minθ′∈Rd

∑t
s=1(φ>s θ

′ − ys)2 + λ‖θ′‖22 with λ > 0. We denote the closed form solution
by θ̂t = V −1

t

∑t
s=1 φsys with Vt = Vt−1 + φtφ

>
t , V0 = λId and Id ∈ Rd×d is the identity matrix.

Lemma 1 (Abbasi-Yadkori et al. (2011)). For any stochastic sequence {(φt, yt)}t and estimator θ̂t
as defined above for ρ-subgaussian observations, with probability at least 1− δ, at any time t ∈ N,

‖θ − θ̂t‖Vt ≤ βt where βt = βt(ρ, δ) = ρ

√
2 log

(
det(Vt)1/2

δ det(V0)1/2

)
+ λ1/2‖θ‖2 .

Note that the size of the confidence set depends the variance proxy ρ, which will be important in the
following. In each round t+ 1, the UCB algorithm chooses an action φt+1, that maximizes an upper
confidence bound on the reward,

φt+1 := arg max
φ∈Ψt+1

φ>θ̂t + βt‖φ‖V −1
t

.

The following result shows that the UCB policy achieves sublinear regret (Dani et al., 2008; Abbasi-
Yadkori et al., 2011).

Lemma 2. In the standard contextual bandit setting with ρ-subgaussian observation noise, the regret
of the UCB policy with βt = βt(ρ, δ) is bounded with probability 1− δ by

RUCBT ≤ βT

√
8T log

(
detVT
detV0

)

The data-dependent terms can be further upper-bounded to obtainRUCBT ≤ Õ(d
√
T ) up to logarith-

mic factors in T (Abbasi-Yadkori et al., 2011, Theorem 3). A matching lower bound is given by Dani
et al. (2008, Theorem 3).

4 UCB with Context Distributions

In our setting, where we only observe a context distribution µt (e.g. a weather prediction) instead
of the context ct (e.g. realized weather conditions), also the features φx,ct (e.g. the last layer of a
neural network that models the reward f(x, c) = φ>x,ctθ) are uncertain. We propose an approach that
transforms the problem such that we can directly use a contextual bandit algorithm as for the standard
setting. Given the distribution µt, we define a new set of feature vectors Ψt = {ψ̄x,µt : x ∈ X},
where we denote by ψ̄x,µt = Ec∼µt [φx,c|Ft−1, µt] the expected feature vector of action x under µt.
Each feature ψ̄x,µt corresponds to exactly one action x ∈ X , so we can use Ψt as feature context
set at time t and use the UCB algorithm to choose an action xt. The choice of the UCB algorithm
here is only for the sake of the analysis, but any other algorithm that works in the linear contextual
bandit setting can be used. The complete algorithm is summarized in Algorithm 1. We compute the
UCB action xt with corresponding expected features ψt := ψ̄xt,t ∈ Ψt, and the learner provides xt
to the environment. We then proceed and use the reward observation yt to update the least squares
estimate. That this is a sensible approach is not immediate, because yt is a noisy observation of
φ>xt,ctθ, whereas UCB expects the reward ψ>t θ. We address this issue by constructing the feature set
Ψt in such a way, that yt acts as unbiased observation also for the action choice ψt. As computing
exact expectations can be difficult and in applications often only sampling access of µt is possible,
we also analyze a variant of Algorithm 1 where we use finite sample averages ψ̃x,µt = 1

L

∑L
l=1 φx,c̃l

for L ∈ N i.i.d. samples c̃l ∼ µt instead of the expected features ψ̄x,µ. The corresponding feature set
is Ψ̃t = {ψ̃x,µt : x ∈ X}. For both variants of the algorithm we show the following regret bound.
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Algorithm 1 UCB for linear stochastic bandits with context distributions

Initialize θ̂ = 0 ∈ Rd, V0 = λI ∈ Rd×d
For step t = 1, 2, . . . , T :

Environment chooses µt ∈ P(C) // context distribution
Learner observes µt

Set Ψt = {ψ̄x,µt : x ∈ X} with ψ̄x,µt := Ec∼µt [φx,c] // variant 1, expected version
Alternatively, sample ct,1, . . . , ct,L for L = t, // variant 2, sampled version
Set Ψt = {ψ̃x,µt : x ∈ X} with ψ̃x,µt = 1

L

∑L
l=1 φx,c̃l

Run UCB step with Ψt as context set // reduction
Choose action xt = arg maxψx,µt∈Ψt ψ

>
x,µt θ̂t−1 + βt‖ψx,µt‖V −1

t−1
// UCB action

Environment provides yt = φ>xt,ctθ + ε where ct ∼ µt // reward observation
Update Vt = Vt−1 + ψxs,µsψ

>
xs,µs , θ̂t = V −1

t

∑t
s=1 ψxs,µsys // least-squares update

Theorem 1. The regret of Algorithm 1 with expected feature set Ψt and βt = βt(
√

4 + σ2, δ/2) is
bounded at time T with probability at least 1− δ by

RT ≤ βT

√
8T log

(
detVT
detV0

)
+ 4

√
2T log

4

δ
.

Further, for finite action sets X , if the algorithm uses sampled feature sets Ψ̃t with L = t and βt = β̃t
as defined in (11), Appendix A.2, then with probability at least 1− δ,

RT ≤ β̃T

√
8T log

(
detVT
detV0

)
+ 4

√
2T log

2|X |πT
3δ

.

As before, one can further upper bound the data-dependent terms to obtain an overall regret bound of
orderRT ≤ Õ(d

√
T ), see (Abbasi-Yadkori et al., 2011, Theorem 2). With iterative updates of the

least-squares estimator, the per step computational complexity is O(Ld2|X |) if the UCB action is
computed by a simple enumeration over all actions.

4.1 Regret analysis: Proof of Theorem 1

Recall that xt is the action that the UCB algorithm selects at time t, ψt the corresponding feature
vector in Ψt and we define ψ∗t = arg maxψ∈Ψt ψ

>θ. We show that the regret RT is bounded in
terms of the regret RUCBT :=

∑T
t=1 ψ

∗>
t θ − ψ>t θ of the UCB algorithm on the contextual bandit

defined by the sequence of action feature sets Ψt.
Lemma 3. The regret of Algorithm 1 with the expected feature set Ψt is bounded at time T with
probability at least 1− δ,

RT ≤ RUCBT + 4

√
2T log

1

δ
.

Further, if the algorithm uses the sample based features Ψ̃t with L = t at iteration t, the regret is
bounded at time T with probability at least 1− δ,

RT ≤ RUCBT + 4

√
2T log

|X |πT
3δ

.

Proof. Consider first the case where we use the expected features ψ̄xt,µt . We add and subtract
(ψ̄x∗t ,µt − ψ̄xt,µt)

>θ and use ψ̄>x∗t ,µtθ ≤ ψ
∗>
t θ to bound the regret by

RT ≤ RUCBT +

T∑
t=1

Dt ,
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where we defined Dt = (φx∗t ,ct − ψ̄x∗t ,µt + ψ̄xt,µt − φxt,ct)
>θ. It is easy to verify that

Ect∼µt [Dt|Ft−1, µt, xt] = 0, that is Dt is a martingale difference sequence with |Dt| ≤ 4 and
MT =

∑T
t=1Dt is a martingale. The first part of the lemma therefore follows from Azuma-

Hoeffding’s inequality (Lemma 4, Appendix). For the sample-based version, the reasoning is similar,
but we need to ensure that the features ψ̃x,µt = 1

L

∑L
l=1 φx,c̃l are sufficiently concentrated around

their expected counterparts ψ̄x,µt for any x ∈ X and t ∈ N. We provide details in Appendix A.1.

Proof of Theorem 1. Clearly, the lemma gives a regret bound for Algorithm 1 if the regret term
RUCBT is bounded. The main difficulty is that the reward observation yt = φ>xt,ctθ + εt is generated
from a different feature vector than the feature ψt ∈ Ψt that is chosen by UCB. Note that in general,
it is not even true that φxt,ct ∈ Ψt. However, a closer inspection of the reward signal reveals that yt
can be written as

yt = ψ>t θ + ξt + ε with ξt := (φxt,ct − ψt)>θ (2)

For the variant that uses the expected features ψt = ψ̄xt,µt , our construction already ensures that
E[ξt|Ft−1, µt, xt] = E[φxt,ct − ψ̄xt,µt |Ft−1, µt, xt]

>θ = 0. Note that the distribution of ξt depends
on xt and is therefore heteroscedastic in general. However, by boundedness of the rewards, |ξt| ≤ 2
and hence ξt is 2-subgaussian, which allows us to continue with a homoscedastic noise bound.
We see that yt acts like an observation of ψ>t θ perturbed by

√
4 + σ2-subgaussian noise (for two

independent random variables X and Y that are σ1- and σ2-subgaussian respectively, X + Y is√
σ2

1 + σ2
2- subgaussian). Therefore, the construction of the confidence bounds for the least squares

estimator w.r.t. ψt remains valid at the cost of an increased variance proxy, and we are required to use
βt with ρ =

√
4 + σ2 in the definition of the confidence set. The regret bound for the UCB algorithm

(Lemma 2) and an application of the union bound completes the proof for this case. When we use the
sample-based features ψ̃x,µt , the noise term ξt can be biased, because xt depends on the sampled
features and E[ψ̃xt,µt |Ft−1, µt] 6= ψ̄xt,µt . This bias carries on to the least-squares estimator, but can
be controlled by a more careful analysis. See Appendix A.2 for details.

4.2 When the context realization is observed

We now turn our attention to the alternative setting, where it is possible to observe the realized
context ct (e.g. actual weather measurements) after the learner has chosen xt. In Algorithm 1, so
far our estimate θ̂t only uses the data {(xs, µs, ys)}ts=1, but with the context observation we have
{(xs, cs, ys)}ts=1 available. It makes sense to use the additional information to improve our estimate
θ̂t, and as we show below this reduces the amount the UCB algorithm explores. The pseudo code of the
modified algorithm is given in Algorithm 2 (Appendix B), where the only difference is that we replaced
the estimate of θ by the least squares estimate θ̂t = arg minθ′∈Rd

∑t
s=1(φ>xs,csθ

′ − ys)2 + λ‖θ′‖22.
Since now the observation noise εt = yt − φ>xt,ctθ is only σ- subgaussian (instead of

√
4 + σ2-

subgaussian), we can use the smaller scaling factor βt with ρ = σ to obtain a tighter upper confidence
bound.
Theorem 2. The regret of Algorithm 2 based on the expected feature sets Ψt and βt = βt(σ, δ/3) is
bounded with probability at least 1− δ by

RT ≤ βT

√
8T log

(
detVT
detV0

)
+ 4(1 + λ−1/2βT )

√
2T log

3

δ

The importance of this result is that it justifies the use of the smaller scaling βt of the confidence
set, which affects the action choice of the UCB algorithm. In practice, βt has a large impact on the
amount of exploration, and a tighter choice can significantly reduce the regret as we show in our
experiments. We note that in this case, the reduction to the regret bound of UCB is slightly more
involved than previously. As before, we use Lemma 3 to reduce a regret bound onRT to the regret
RUCBT that the UCB algorithm obtains on the sequence of context-feature sets Ψt. Since now, the
UCB action is based on tighter confidence bounds, we expect the regret RUCBT to be smaller, too.
This does not follow directly from the UCB analysis, as there the estimator is based on the features
ψ̄xt,µt instead of φxt,ct . We defer the complete proof to Appendix B.1. There we also show a similar
result for the sample based feature sets Ψ̃t analogous to Theorem 1.
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4.3 Kernelized stochastic bandits with context distributions

In the kernelized setting, the reward function f : X × C → R is a member of a known reproducing
kernel Hilbert space (RKHS)H with kernel function k : (X × C)2 → R. In the following, let ‖ · ‖H
be the Hilbert norm and we denote by kx,c := k(x, c, ·, ·) ∈ H the kernel features. For the analysis
we further make the standard boundedness assumption ‖f‖ ≤ 1 and ‖kx,c‖ ≤ 1. We provide details
on how to estimate f given data {(xs, µs, ys)}ts=1 with uncertain context. As in the linear case, the
estimator f̂t can be defined as an empirical risk minimizer with parameter λ > 0,

f̂t = arg min
f∈H

t∑
s=1

(
Ec∼µt [f(xs, c)]− ys

)2
+ λ‖f‖2H . (3)

In the literature this is known as distributional risk minimization (Muandet et al., 2017, Section 3.7.3).
The following representer theorem shows, that the solution can be expressed as a linear combination
of kernel mean embeddings k̄x,µ := Ec∼µ[kx,c] ∈ H.
Theorem 3 (Muandet et al. (2012, Theorem 1)). Any f ∈ H that minimizes the regularized risk
functional (3) admits a representation of the form f =

∑t
s=1 αsk̄xs,µs for some αs ∈ R.

It is easy to verify that the solution to (3) can be written as

f̂t(x, c) = kt(x, c)
>(Kt + λI)−1yt (4)

where kt(x, c) = [k̄x1,µ1
(x, c), . . . , k̄xt,µt(x, c)]

>, (Kt)a,b = Ec∼µb [k̄xa,µa(xb, c)] for 1 ≤ a, b,≤ t
is the kernel matrix and yt = [y1, . . . , yt]

T denotes the vector of observations. Likewise, the estimator
can be computed from sample based kernel mean embeddings k̃Lx,µ := 1

L

∑L
i=1 k(x, c̃i, ·, ·) ∈ H for

i.i.d. samples c̃i ∼ µ. This allows for an efficient implementation also in the kernelized setting, at the
usual cost of inverting the kernel matrix. With iterative updates the overall cost amount to O(LT 3).
The cubic scaling in T can be avoided with finite dimensional feature approximations or inducing
points methods, e.g. Rahimi and Recht (2008); Mutny and Krause (2018).

The UCB algorithm can be defined using an analogous concentration result for the RKHS setting
(Abbasi-Yadkori, 2012). We provide details and the complete kernelized algorithm (Algorithm 3) in
Appendix C. The corresponding regret bound is summarized in the following theorem.
Theorem 4. At any time T ∈ N, the regret of Algorithm 3 with exact kernel mean embeddings k̄x,c
and βt as defined in Lemma 6 in Appendix C, is bounded with probability at least 1− δ by

RT ≤ βT
√

8T log(det(I + (λρ)−1KT )) + 4

√
2T log

2

δ

Again, the data dependent log-determinant in the regret bound can be replaced with kernel specific
bounds, referred to as maximum information gain γT (Srinivas et al., 2010).

5 Experiments

We evaluate the proposed method on a synthetic example as well as on two benchmarks that we
construct from real-world data. Our focus is on understanding the effect of the sample size L used to
define the context set Ψ̃l

t. We compare three different observational modes, with decreasing amount
of information available to the learner. First, in the exact setting, we allow the algorithm to observe
the context realization before choosing an action, akin to the usual contextual bandit setting. Note
that this variant possibly obtains negative reward on the regret objective (1), because x∗t is computed
to maximize the expected reward over the context distribution independent of ct. Second, in the
observed setting, decisions are based on the context distribution, but the regression is based on
the exact context realization. Last, only the context distribution is used for the hidden setting. We
evaluate the effect of the sample sizes L = 10, 100 and compare to the variant that uses that exact
expectation of the features. As common practice, we treat the confidence parameter βT as tuning
parameter that we choose to minimize the regret after T = 1000 steps. Below we provide details on
the experimental setup and the evaluation is shown in Figure 1. In all experiments, the ‘exact’ version
significantly outperforms the distributional variants or even achieves negative regret as anticipated.
Consistent with our theory, observing the exact context after the action choice improves performance
compared to the unobserved variant. The sampled-based algorithm is competitive with the expected
features already for L = 100 samples.
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Figure 1: The plots show cumulative regret as defined in (1). As expected, the variant that does not
observe the context (hidden) is out-performed by the variant that uses the context realization for
regression (obs)4. The sample size l used to construct the feature sets from the context distribution
has a significant effect on the regret, where with l = 100 performance is already competitive with the
policy that uses the exact expectation over features (E). The exact baseline, which has access to the
context realization before taking the decision, achieves negative regret on the benchmark (a) and (b),
as the regret objective (1) compares to the action maximizing the expected reward. The error bars
show two times standard error over 100 trials for (a) and (c), and 200 trials for (b). The variance in
the movielens experiment is fairly large, likely because our linear model is miss-specified; and at
the first glance, it looks like the sample-based version outperforms the expected version in one case.
From repeated trials we confirmed, that this is only an effect of the randomness in the results.

Synthetic Example As a simple synthetic benchmark we set the reward function to f(x, c) =∑5
i=1(xi − ci)2, where both actions and context are vectors in R5. We choose this quadratic form to

create a setting where the optimal action strongly depends on the context ci. As linear parametrization
we choose φ(x, c) = (x2

1, · · · , x2
5, c

2
1, · · · , c25, x1c1, . . . , x5c5). The action set consists of k = 100

elements that we sample at the beginning of each trial from a standard Gaussian distribution. For the
context distribution, we first sample a random element mt ∈ R5, again from a multivariate normal
distribution, and then set µt = N (mt,1). Observation noise is Gaussian with standard deviation 0.1.

Movielens Data Using matrix factorization we construct 6-dimensional features for user ratings
of movies in the movielens-1m dataset (Harper and Konstan, 2016). We use the learned embedding
as ground truth to generate the reward which we round to half-integers between 0 and 5 likewise
the actual ratings. Therefore our model is miss-specified in this experiment. Besides the movie
ratings, the data set provides basic demographic data for each user. In the interactive setting, the
context realization is a randomly sampled user from the data. The context distribution is set to the
empirical distribution of users in the dataset with the same demographic data. The setup is motivated
by a setting where the system interacts with new users, for which we already obtained the basic
demographic data, but not yet the exact user’s features (that in collaborative filtering are computed
from the user’s ratings). We provide further details in Appendix D.1.

Crop Yield Data We use a wheat yield dataset that was systematically collected by the Agroscope
institute in Switzerland over 15 years on 10 different sites. For each site and year, a 16-dimensional
suitability factor based on recorded weather conditions is available. The dataset contains 8849 yield
measurements for 198 crops. From this we construct a data set D = {(xi, wi, yi)} where xi is the
identifier of the tested crop, wi ∈ R16+10 is a 16 dimensional suitability factor obtained from weather
measurements augmented with a 1-hot encoding for each site, and yi is the normalized crop yield.
We fit a bilinear model yi ≈ wTi WVxi to get 5-dimensional features Vx for each variety x and site
features w>W that take the weather conditions w of the site into account. From this model, we
generate the ground-truth reward. Our goal is to provide crop recommendations to maximize yield on
a given site with characteristics w. Since w is based on weather measurements that are not available
ahead of time, we set the context distribution such that each feature of w is perturbed by a Gaussian
distribution centered around the true w. We set the variance of the perturbation to the empirical
variance of the features for the current site over all 15 years. Further details are in Appendix D.2.
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6 Related Work

There is a large array of work on bandit algorithms, for a survey see Bubeck and Cesa-Bianchi
(2012) or the book by Lattimore and Szepesvári (2018). Of interest to us is the stochastic contextual
bandit problem, where the learner chooses actions after seeing a context; and the goal is to compete
with a class of policies, that map contexts to actions. This is akin to reinforcement learning (Sutton
and Barto, 2018), but the contextual bandit problem is different in that the sequence of contexts
is typically allowed to be arbitrary (even adversarially chosen), and does not necessarily follow a
specific transition model. The contextual bandit problem in this formulation dates back to at least Abe
and Long (1999) and Langford and Zhang (2007). The perhaps best understood instance of this model
is the linear contextual bandit, where the reward function is a linear map of feature vectors (Auer et al.,
2002). One of the most popular algorithms is the Upper Confidence Bound (UCB) algorithm, first
introduced by Auer (2002) for the multi-armed bandit problem, and later extended to the linear case
by Li et al. (2010). Analysis of this algorithm was improved by Dani et al. (2008), Abbasi-Yadkori
et al. (2011) and Li et al. (2019), where the main technical challenge is to construct tight confidence
sets for an online version of the least squares estimator. Alternative exploration strategies have been
considered as well, for instance Thompson sampling (Thompson, 1933), which was analyzed for the
linear model by Agrawal and Goyal (2013) and Abeille and Lazaric (2017). Other notable approaches
include an algorithm that uses a perturbed data history as exploration mechanism (Kveton et al.,
2019), or a mostly greedy algorithm that leverages the randomness in the context to obtain sufficient
exploration (Bastani et al., 2017). In kernelized bandits the reward function is contained given
reproducing kernel Hilbert space (RKHS). This setting is closely related to Bayesian optimization
(Mockus, 1982). Again, the analysis hinges on the construction of confidence sets and bounding a
quantity referred to as information gain by the decay of the kernel’s eigenspectrum. An analysis of
the UCB algorithm for this setting was provided by Srinivas et al. (2010). It was later refined by
Abbasi-Yadkori (2012); Valko et al. (2013); Chowdhury and Gopalan (2017); Durand et al. (2018) and
extended to the contextual setting by Krause and Ong (2011). Interestingly, in our reduction the noise
distribution depends on the action, also referred to as heteroscedastic bandits. Heteroscedastic bandits
where previously considered by Hsieh et al. (2019) and Kirschner and Krause (2018). Stochastic
uncertainty on the action choice has been studied by Oliveira et al. (2019) in the context of Bayesian
optimization. Closer related is the work by Yun et al. (2017), who introduce a linear contextual bandit
model where the observed feature is perturbed by noise and the objective is to compete with the
best policy that has access to the unperturbed feature vector. The main difference to our setting is
that we assume that the environment provides a distribution of feature vectors (instead of a single,
perturbed vector) and we compute the best action as a function of the distribution. As a consequence,
we are able to obtain O(

√
T ) regret bounds without further assumptions on the context distribution,

while Yun et al. (2017) get O(T 7/8) with identical noise on each feature, and O(T 2/3) for Gaussian
feature distributions. Most closely related is the work by Lamprier et al. (2018) on linear bandits with
stochastic context. The main difference to our setting is that the context distribution in Lamprier et al.
(2018) is fixed over time, which allows to built aggregated estimates of the mean feature vector over
time. Our setting is more general in that it allows an arbitrary sequence of distributions as well as
correlation between the feature distributions of different actions. Moreover, in contrast to previous
work, we discuss the kernelized-setting and the setting variant, where the context is observed exactly
after the action choice. Finally, also adversarial contextual bandit algorithms apply in our setting,
for example the EXP4 algorithm of Auer et al. (2002) or ILTCB of Agarwal et al. (2014). Here, the
objective is to compete with the best policy in a given class of policies, which in our setting would
require to work with a covering of the set of distributions P(C). However, these algorithms do not
exploit the linear reward assumption and, therefore, are arguably less practical in our setting.

7 Conclusion

We introduced context distributions for stochastic bandits, a model that is naturally motivated in
many applications and allows to capture the learner’s uncertainty in the context realization. The
method we propose is based on the UCB algorithm, and in fact, both our model and algorithm strictly
generalize the standard setting in the sense that we recover the usual model and the UCB algorithm if
the environment chooses only Dirac delta distributions. The most practical variant of the proposed
algorithm requires only sample access to the context distributions and satisfies a high-probability
regret bound that is order optimal in the feature dimension and the horizon up to logarithmic factors.
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A Proof Details

Lemma 4 (Azuma-Hoeffdings). LetMt be a martingale on a filtrationFt with almost surely bounded
increments |Mt −Mt−1| < B. Then

P[MT −M0 > s] ≤ exp

(
− s2

2TB2

)
A.1 Proof of Lemma 3

To bound the regret of Algorithm 1 with sampled features ψ̃x,µt , we add and subtract (ψ̃x∗t ,µt +

ψ̄xt,µt + ψ̃xt,µt)
>θ to the regret to find

RT = RUCBT +

T∑
t=1

(φx∗t ,ct − ψ̃x∗t ,µt + ψ̄xt,µt − φxt,ct)>θ +

T∑
t=1

(ψ̃xt,µt − ψ̄xt,µt)>θ

≤ RUCBT + 4

√
2T log

1

δ
+

T∑
t=1

(ψ̃xt,µt − ψ̄xt,µt)>θ .

By the same reasoning as for the expected features, we bounded
T∑
t=1

(φx∗t ,ct − ψ̃x∗t ,µt + ψ̄xt,µt − φxt,ct)>θ ≤ 4

√
2T log

1

δ
(5)

using Azuma-Hoeffding’s inequality. We are left with a sum
∑T
t=1(ψ̃xt,µt − ψ̄xt,µt)>θ that is more

intricate to bound because xt depends on the samples c̃t,l that define ψ̃xt,µt . We exploit that for
large L, ψ̃Lxt,µt − ψ̄xt,µt → 0. First consider a fixed x ∈ X . Then, by (ψ̃x,µt − ψ̄x,µt)>θ ≤ 2 and
Azuma-Hoeffding’s inequality with probability at least 1− δ,

(ψ̃x,µt − ψ̄x,µt)>θ ≤
√

8

L
log

1

δ
. (6)

We enforce this to hold for any x ∈ X and any time t ∈ N by replacing δ by 6δ
|X |π2t2 and taking the

union bound over the event where (6) holds. By our choice L = t and
∑T
t=1

1√
t
≤ 2
√
T , we have

with probability at least 1− δ, for any T ∈ N,
T∑
t=1

(ψ̃xt,µt − ψ̄xt,µt)>θ ≤ 4

√
T log

|X |π2T 2

6δ
. (7)

A final application of the union bound over the events such that (5) and (7) simultaneously hold,
gives

RT ≤ RUCBT + 4

√
2T log

|X |πT
3δ

.

A.2 Proof of Theorem 1

To bound the regret termRUCBT for the case where we uses sample-based feature vectors, the main
task is to show a high-probability bound on ‖θ − θ̂t‖Vt with observations yt = ψ̃>x,tθ + ξt + εt.
Recall that ξt = (φx,ct − ψ̃xt,µt)>θ, but now we have in general E[ξt|Ft−1, µt, xt] 6= 0, because
xt depends on the sampled features ψ̃x,µt . The following lemma bounds the estimation error of the
least-square estimator in the case where the noise term contains an (uncontrolled) biased term.

Lemma 5. Let θ̂t be the least squares estimator θ̂t defined for any sequence {(φt, yt)}t with
observations yt = φ>t θ + bt + εt, where εt is ρ-subgaussian noise and bt is an arbitrary bias. The
following bound holds with probability at least 1− δ, at any time t ∈ N,

‖θ − θ̂t‖Vt ≤ βt +

√∑T
t=1 b

2
t where βt = βt(ρ, δ) = ρ

√
2 log

(
det(Vt)1/2

δ det(V0)1/2

)
+ λ1/2‖θ‖2 .
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Proof of Lemma. Basic linear algebra and the triangle inequality show that

‖θ − θ̂t‖Vt ≤ ‖
t∑

s=1

φsεs‖V −1
s

+ ‖
t∑

s=1

φsbs‖V −1
s

+ λ1/2‖θ‖2 (8)

Recall that we assume ‖θ‖2 ≤ 1 in order to bound the last term. The noise process can be controlled
with standard results (Abbasi-Yadkori et al., 2011, Theorem 1), specifically ‖

∑t
s=1 φsεs‖V −1

s
≤ βt.

Finally, to bound the sum over the biases, set b = [b1, . . . , bt] and A = [φ1, . . . , φt]
> ∈ Rd×t. The

matrix inequality

A>(AA> + λId)
−1A ≤ It (9)

follows by using a SVD decomposition. This implies

‖
t∑

s=1

φsbs‖2V −1
s

= ‖Ab‖2(AA>+λId)−1 ≤ ‖b‖22

Applying the individual bounds to (8) completes the proof of the lemma.

We continue the proof of the theorem with the intuition to use the lemma with bt = (ψ̄x,µt−ψ̃xt,µt)>θ.
To control the sum over bias terms bt, note that by our choice L = t, similar to (7), with probability
at least 1− δ, for all t ∈ N and x ∈ X ,

|bt| ≤
√

8

t
log

π2t2|X |
6δ

.

Hence with
∑t
s=1

1
s ≤ log(t), we get

T∑
t=1

b2t ≤ 8 log(T ) log

(
π2T 2|X |

6δ

)
.

As before, the remaining terms are zero-mean, E[(φxt,ct − ψ̄xt,µt)>θ + εt|Ft−1, µt, xt] = 0, and√
4 + σ2-subgaussian. Hence, with the previous lemma and another application of the union bound

we get with probability at least 1− δ,

‖θ − θ̂t‖Vt ≤ βt +

√∑T
t=1 b

2
t + λ‖θ‖2

≤

√
2(4 + σ2) log

(
2 det(Vt)1/2

δ det(V0)1/2

)
+

√
8 log(T ) log

(
π2T 2|X |

3δ

)
+ λ . (10)

Finally, we invoke Lemma 2 with βt = β̃t, where

β̃t :=

√
2(4 + σ2) log

(
2 det(Vt)1/2

δ det(V0)1/2

)
+

√
8 log(T ) log

(
π2T 2|X |

3δ

)
+ λ (11)

to obtain a bound onRUCBT ,

RUCBT ≤ β̃T

√
8T log

(
detVT
detV0

)
. (12)

This concludes the proof.
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B UCB with Context Distributions and Observed Context

Algorithm 2 UCB for linear stochastic bandits with context distributions and observed context

Initialize θ̂ = 0 ∈ Rd, V0 = λI ∈ Rd×d
For step t = 1, 2, . . . , T :

Environment chooses µt ∈ P(C) // context distribution
Learner observes µt

Set Ψt = {ψx,µt : x ∈ X} with ψ̄x,µt = Eµt [φx,c] // expected version
Alternatively, sample ct,1, . . . , ct,L for L = t, // or sampled version
Set Ψt = {ψ̃x,µt : x ∈ X} with ψ̃x,µt := 1

L

∑L
i=1 φx,c̃i

Run UCB step with Ψt as context set // reduction
Choose action xt = arg maxx∈X ψ

>
x,µt θ̂t−1 + βt(σ)‖ψx,µt‖V −1

t−1
// UCB action

Environment samples ct ∼ µt
Learner observes yt = φ>xt,ctθ + εt and ct // reward and context observation
Update Vt = Vt−1 + φxt,ctφ

>
xt,ct , θ̂t = V −1

t

∑t
s=1 φxs,csys // least-squares update

B.1 Proof of Theorem 2

From Lemma 3 we obtain with probability at least 1− δ,

RT ≤
T∑
t=1

ψ∗>t θ − ψ̄>xt,µtθ + 4

√
2T log

1

δ
(13)

What is different now, is that the sum
∑T
t=1 ψ

∗>
t θ − ψ̄>xt,µtθ contains actions xt, that are computed

from a more precise estimator θ̂t, hence we expect the regret to be smaller. This does not follow
directly from UCB analysis, as there the estimator is computed with the features ψ̄xt,µt .

We start with the usual regret analysis, making use of the confidence bounds (Lemma 1) and the
definition of the UCB action. Denote ψt := ψ̄xt,µt in the following.

T∑
t=1

ψ∗>t θ − ψ>t θ ≤
T∑
t=1

ψ∗>t θ̂t + βt‖ψ∗t ‖V −1
t
− (φ>t θ̂t − βt‖ψt‖V −1

t
) ≤ 2βT

T∑
t=1

‖ψt‖V −1
t

(14)

From here, the standard analysis proceeds by using Cauchy-Schwarz to obtain an upper bound
on
∑T
t=1 ‖ψt‖V −1

t
and then the argument proceeds by simplifying the sum

∑T
t=1 ‖ψt‖V −1

t
. The

simplification doesn’t work here because Vt is defined on the realized features φxt,ct and not ψt.
Instead we require the following intermezzo.

T∑
t=1

‖ψt‖V −1
t

=

T∑
t=1

‖φxs,cs‖V −1
t

+ ‖ψt‖V −1
t
− ‖φxs,cs‖V −1

t
≤

T∑
t=1

‖φxs,cs‖V −1
t

+

T∑
t=1

St , (15)

where we defined St = ‖ψt‖V −1
t
− ‖φxs,cs‖V −1

t
. We show that

∑T
t=1 St is a supermartingale. For

the expected features ψ̄x,µt = Ec∼µt [φx,c], note that Jensen’s inequality yields ‖Ec∼µt [φx,c]‖V −1
t
≤

Ec∼µt [‖φx,c‖V −1
t

] for all x ∈ X . From this we obtain E[St|Ft−1, µt] ≤ 0. Finally, note that
‖φxs,cs‖V −1

t
≤ λ−1/2‖φxs,cs‖2 ≤ λ−1/2 and |St| ≤ 2λ−1/2, hence by Azuma-Hoeffdings inequal-

ity with probability at least 1− δ,
∑T
t=1 St ≤ 2λ−1/2

√
2T log 1

δ .

From here we complete the regret analysis by bounding
∑T
t=1 ‖φxs,cs‖V −1

t
with the standard argu-

ment. Write φt := φxt,ct . First using Cauchy-Schwarz and then ‖φt‖2 ≤ 1 as well as u ≤ 2 log(1+u)
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for u ≤ 1, it follows that

T∑
t=1

‖φt‖V −1
t
≤

√√√√T

T∑
t=1

‖φt‖2V −1
t

≤

√√√√2T

T∑
t=1

log(1 + ‖φt‖2V −1
t

) =

√
2T log

(
detVT
detV0

)
(16)

The last equality essentially follows from an application of the Sherman-Morrison formula on the
matrix Vt =

∑t
s=1 φxt,ctφ

>
xt,ct + λId, compare e.g. (Abbasi-Yadkori et al., 2011, Lemma 11). It

remains to assemble the results from equations (14)-(16), and a final application of the union bound
completes the proof.

With a bit of extra work, one can obtain a similar bound for the sample-based features. Using Jensen’s
inequality we get ‖ 1

L

∑L
i=1 φx,c̃i‖V −1

t
≤ 1

L

∑L
i=1 ‖φx,c̃i‖V −1

t
, but now the action xt depends on the

samples c̃t,i that define the features ψ̃xt,µt and the previous direct argument does not work. The
strategy around is the sames as in the proof of Lemma 3. For fixed x ∈ X , 1

L

∑L
i=1 ‖φx,c̃i‖V −1

t

concentrates around Ec∼µt [‖φx,c‖V −1
t

] at a rate 1/
√
L, fast enough to get O(

√
T ) regret if we set

L = t in iteration t. A careful application of the union bound (again over all x ∈ X ) completes the
proof.

C Kernelized UCB with Context Distributions

C.1 Proof of Theorem 4

To bound the regret we proceed like in the linear case. First, define f̄t(x) = Eµt [f(x, c)|Ft−1].
Analogously to Lemma 3, an application of Azuma-Hoeffding’s inequality yields with probability at
least 1− δ.

RT ≤
T∑
t=1

f̄t(x
∗
t )− f̄t(x∗t ) + 4

√
2T log

1

δ
(17)

To bound the sum, we need to understand the concentration behavior of |f̂t(x)− f̄t(x∗t )|, where we
denote f̂t(x) = Eµt [f̂t(x, c)|Ft−1, µt]. Recall that

f̂t(x, c) = kt(x, c)
>(Kt + λI)−1yt (18)

where kt(x, c) = [k̄x1,µ1
(x, c), . . . , k̄xt,µt(x, c)]

>, (Kt)i,j = Ec′∼µj [k̄xi,µi(xj , c′)] for 1 ≤ i, j,≤ t
is the kernel matrix and yt = [y1, . . . , yt]

T denotes the vector of observations. Define further
k̄t(x) = Ec∼µt [kt(x, c)].

Note that we can compute f̂t(x) = 〈f̂ , kx,µt〉 = k̄t(x)>(Kt + λI)−1yt according to the inner
product 〈·, ·〉 on H. Concentration bounds for the kernel least squares estimator, that hold for
adaptively collected data, are well understood by now, see Srinivas et al. (2010); Abbasi-Yadkori
(2012); Chowdhury and Gopalan (2017); Durand et al. (2018). For instance, as a direct corollary of
(Abbasi-Yadkori, 2012, Theorem 3.11), we obtain
Lemma 6. For any stochastic sequence {(xt, µt, yt)}t∈N, where yt = f(xt, ct) + εt with σ-
subgaussian noise εt and ct ∼ µt, the kernel-least squares estimate (3) satisfies with probability at
least 1− δ, at any time t and for any x ∈ X ,

|f̂t(x)− f̄t(x∗t )| ≤ βtσt(x) .

Here we denote,

βt = ρ

(√
2 log

(
det(I + (λρ)−1Kt)1/2

δ

)
+ λ1/2‖f‖H

)
,

σ2
t (x) =

1

λ

(
〈kx,µt , kx,µt〉 − kt(x)>(Kt + λI)−1kt(x)

)
,

and ρ =
√

4 + σ2 is the subgaussian variance proxy of the observation noise ρt = yt − f̄t(x).
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Using the confidence bounds, we define the UCB action,

xt = arg max
x∈X

f̂t(x) + βtσt(x) . (19)

It remains to bound the regret of the UCB algorithm. The proof is standard except that we use Lemma
6 to show concentration of the estimator. For details see (Abbasi-Yadkori, 2012, Theorem 4.1) or
(Chowdhury and Gopalan, 2017, Theorem 3).

Algorithm 3 UCB for RKHS bandits with context distributions

Initialize f̂0, σ0

For step t = 1, 2, . . . , T :
Environment chooses µt ∈ P(C) // context distribution
Learner observes µt

// definitions for expected version
[kt(x)]s := Ec∼µt [kxs,µs(x, c)] for s = 1, . . . , t− 1
st(x) := Ec∼µt,c′∼µt [k(x, c, x, c′)]

// definitions for sampled version
Sample c̃t,1, . . . , c̃t,L ∼ µt // sample context distribution
[kt(x)]s := 1

L

∑L
i=1 kxs,µs(x, c̃i) for s = 1, . . . , t− 1

st(x) := 1
L2

∑L
i,j=1 k(x, c̃t,i, x, c̃t,j)

f̂t(x) := kt(x)>(Kt + λI)−1yt // compute estimate
σ2
t (x) := 1

λ

(
st(x)− kt(x)>(Kt + λI)−1kt(x)

)
// confidence width

Set βt as in Lemma 6
Choose action xt ∈ arg maxx∈X f̂t−1(x) + βtσt−1(x) // UCB action

Environment provides yt = f(xt, ct) + ε where ct ∼ µt // reward observation
Store yt+1 := [y1, . . . , yt] // observation vector

// Kernel matrix update, expected version
Kt+1(x) := [〈kxa,µa , kxb,µb〉]1≤a,b≤t with 〈kxa,µa , kxb,µb〉 = Eµa,µb [k(xa, ca, xb, cb)]
kxt,µt := Ec∼µt [kxt,c] // kernel mean embeddings

// Kernel matrix update, sampled version
Kt+1(x) := [〈kxa,µa , kxb,µb〉]1≤a,b≤t with 〈kxa,µa , kxa,µa〉 = 1

L2

∑L
i,j=1 k(xa, c̃a,i, xb, c̃b,j)

kxt,µt := 1
L

∑L
i=1 kxt,c̃t,i = 1

L

∑L
i=1 k(xt, c̃t,i, ·, ·) // sample kernel mean embeddings

D Details on the Experiments

We tune βt over the values {0.5, 1, 2, 5, 10}. In the synthetic experiment we set βt = 2 for the exact
and observed variant and βt = 10 for the hidden experiment. In the both experiments based on
real-world data, we set βt = 1 for all variants.

D.1 Movielens

We use matrix factorization based on singular value decomposition (SVD) (Koren et al., 2009)
which is implemented in the Surprise library (Hug, 2017) to learn 6 dimensional features vu, wm
for users u and movies m (this model obtains a RMSE ≈ 0.88 over a 5-fold cross-validation). In
the linear parameterization this corresponds to 36-dimensional features φm,u = vuw

T
m. We use the

demographic data (gender, age and occupation) to group the users. The realized context is set to a
random user in the data set, and the context distribution is defined as the empirical distribution over
users within the same group as the chosen user.
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D.2 Crops Yield Dataset

Recall that the data set D = {(xi, wi, yi) : i = 1, . . . , 8849} consists of crop identifiers xi, nor-
malized yield measurements yi and site-year features wi ∈ R16+10 that are based on 16 suitability
factors computed from weather measurements and a 1-hot encoding for each site (out of 10). The
suitability factors are based on the work of Holzkämper et al. (2013). To obtain a model for the crop
yield responses, we train a bilinear model on the following loss (Koren et al., 2009),

L(W,V ) =

n∑
i=1

(yi − w>i WVxi)
2 + ‖vji‖2 + ‖w>xiW‖

2
2 . (20)

where V = (Vxj )
k
j=1 are the crop features Vxj ∈ R5 andW ∈ R26×6 is used to compute site features

w>i W given the suitability features wi from the dataset.

We also use an empirical noise function created from the data. Since the data set contains up to
three measurements of the same crop on a specific site and a year, we randomly pick a measurement
and use its residual w.r.t. the mean of all measurements of the same crop under exactly the same
conditions as noise. This way we ensure that the observation noise of our simulated environment is
of the same magnitude as the noise on the actual measurements.
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