Supplementary Material

4 Proof of Proposition 2.1

Let L = max; L; and
0z = (0x1,...,0,7,0y,,...,0y,).
First, for any z and &, and using the symmetry of W = {w;; }, we have

Vyg(z+ 8,) — Vg(z) =
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1

vyfl(x1 +0x1,¥1 + 0y, ) — Vyfl(XT’ y1)
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Then with some rearrangement, denoting V f; = V[x] f; and using the triangle inequality, we can obtain
y
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where in the last inequality we use

J
2
j=1
= [WT g ]| < IWI (6 - a]

J
< (me) Cem—— [

since [[W|| < max; }°,,; wji = max; Zij:1 wj; in view of that W' is symmetric, w;; = 0 and w;; > 0 by

J

Z wjiéxi

i=j

2
=6 -+ Ga] W,
2

I

T
Finally, using the definition of w;; (6), we have max; 37| w;; = max; Z;;]. wj; = Max; Zl%uwﬂ =: 1%,
and further by the inequality H [0y o0 8] H » < 116z||F, we obtain that Vg is Lipschitz continuous with

constant
w w 2w
Ly=L+4(— 4 — ) =L+ —.
oo <4N)+ (4u> T
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5 Proof of Theorem 2.4]

The proof involves constructing a function / such that h(x) = h(x) for all x € B, but where h has a globally
Lipschitz gradient.

To do this, first define a window function w : R™ — R,

L Il < p
w(x)=42— % + 5= sin (72"‘)7"“) ., p<|Ix] <2p
0, %Il = 2p,
where ||-|| = ||-||5. Note that
0, [l <p
Vu () = § g eint (<) o<l <2
0, [[x[l > 2p
and
Vi (x)
0. x|l <o
— 2 gin2 (ruxn) I
_ ) TRl ’
2 o (mixl) _ _2n . 27 || x| T
+ (pl\le Sm( , ) PRI Sm( ; )) xxt, o< xll<2p
0. x| > 2p

where I denote the n-by-n identity matrix. It is easy to verify that w € C? and |w (x)| < 1. To bound the

gradient Vw, we have
2 2
V|| = H,ixsne (““X”)H <2
p x|l P p

For the Hessian V2w with p < ||x|| < 2p, we have
2
et g (20
p x| P

+H< 2 (7erH> 2t (271”)(”)) T
< sin — oz sin XX
p x| p P 1]l p

< 4—1—2271'.
p

In fact, | V2w|| < % for all x since V2w = 0 for ||x|| < p and ||x|| > 2p. Now, we define h (x) =
h (x) w (x), which has the following properties:

e Since h = hin By, h satisfies the Lojasiewicz inequality in B,.
e Since h,w € C? heC?
e Since infgn h > —oo and infrr w > —o0, infrn h > —00.

e To globally bound the Lipschitz constant of the gradient of h, note that

HV%H = Hw NV2h 4 Vi (Vo) + V- (V) +h- v%H

IN

[w] VR[] + 2|Vl [VA] + [l || Vw]|

4L 44 2m) L
Lot 2, H2m Lo
p P

IN

Now consider the gradient descent algorithm with stepsize y satisfying (8). Define

Tn = {x(0) € B, : all {x(k)} C B, and all limit points of {x(k)}
are in B, when gradient descent is run on h starting at x(0) }
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and
T; = {x(0) € B, : all {x(k)} C B, and all limit points of {x(k)}

are in B, when gradient descent is run on / starting at x(0)}.

Similarly, define
Yn ={x(0) € B, : {x(k)} converges to a strict saddle
when gradient descent is run on A starting at x(0) }
and
;5 = {x(0) € B, : {x(k)} converges to a strict saddle
when gradient descent is run on / starting at x(0)}.
Using the above properties, we see that Theorem can be applied to TL, and so we conclude that 35 has
measure zero.

Now, after running gradient descent on h from a random initialization as in the theorem statement, condition
on observing that {x(k)} C B, and all limit points of {x(k)} are in B,, i.e., that x(0) € T}. Because
{x(k)} C B, and all limit points of {x(k)} are in B,, and because {x(k)} matches the sequence that would
be obtained by running gradient descent on h, we can apply Theorem|2.3 to conclude that {x(k)} converges to
a critical point of h, and since this critical point belongs to B, and h = h inside B,, we conclude that this is
also a critical point of h.

Finally, using the definition of conditional probability, we have
P(x(0) e 2y NT,)  P(x(0) € X3 NT5)
P(x(0) € Zx|x(0) € Tn) = = )
(c(0) € Enbe(0) € ) = =560y ¢ 7y POx(0) € T0)

where the second equality follows from the fact that h = hinside B, if a sequence of iterations stays bounded
inside B, and converges to a strict saddle when gradient descent is run on h, the same will hold when gradient

descent is run on h, and vice versa. Since X; has zero measure and because x(0) is chosen randomly from a
probability distribution supported on a set S C B, with S having positive measure, P(x(0) € ¥; NT;) = 0.
Also, by assumption, P(x(0) € T) > 0. Therefore, P(x(0) € 35|x(0) € T,) = —2— = 0.

nonzero

6 Proof of Theorem 2.5

Recall that running the DGD+LOCAL algorithm to minimize the objective function f(x,y) in (3) is
equivalent to running gradient descent on g(z) in (7). The proof is completed by invoking Theorem and
Theoremwith h replaced by g. From Proposition[2.1] we have that Vg is Lipschitz continuous with constant
Ly =L+ 7“’, and so choosing p to satisfy (9) ensures that p < L—lg as required in Theoremand Theorem

7 Proof of Theorem 2.6/

equivalent to running gradient descent on g(z) in (7). Similar to the approach taken in proving Theorem [2.4, to
deal with the local Lipschitz condition, the proof involves constructing a function g such that g(z) = g(z) for
all z € B, but where g has a globally Lipschitz gradient.

Recall that running the DGD+LOCAL algorithm (5) to minimize the objective function f(x,y) in (3) is

To do this, recall the window function w defined in Section|[5]of the Supplementary material. Now, recall that

J J
9(z)=>_ <fj(xj’y1') +) wyillx’ — Xi||§>

j=1 i=1
and define
J o/ J v _
glz)=> (fj(szyj) + ) wyllx — X1|§> : (20)
j=1 i=1
where

~ . , T
Fi,y5) = i y)w([(x)T 7))
Since fj(xj,yj) = f;(x?,y;) for (x?,y;) € B,, we have that § (z) = g(z) forall z € B,,.

We have the following properties for g:
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e Since g = g in B,, g satisfies the Lojasiewicz inequality in B,.

Since f; € C? forall j and w € C?,§ € C?.

Since infgr~ f; > —oo for all j and infrn w > —o0, infrn g > —o0.

e To globally bound the Lipschitz constant of the gradient of g, note that

VB = w28+ V8 (V)T T (V)T + - Vo
< Jwl [Vl 2 IVl IV £+ 1] ][V
< Loy B2 R0 o oy,

p

Therefore, given the form of g in (20), we can conclude from Proposition that globally, Vg is
Lipschitz continuous with constant

ALy

+

Ly = (max Lyj+ (4 + 2m) Lo’j) + kel
J

p? w
Now consider the gradient descent algorithm with stepsize u satisfying (I0). Define

Ty, ={z(0) € B, : all {z(k)} C B, and all limit points of {z(k)}
are in B, when gradient descent is run on g starting at z(0) }

and

T; = {z(0) € B, : all{z(k)} C B, and all limit points of {z(k)}

are in B, when gradient descent is run on g starting at z(0)}.

Similarly, define

¥, = {z(0) € B, : {z(k)} converges to a strict saddle when

gradient descent is run on g starting at z(0) }

and

Y5 = {z(0) € B, : {z(k)} converges to a strict saddle when
gradient descent is run on g starting at z(0) }.

Using the above properties, we see that Theorem can be applied to g, and so we conclude that ¥; has
measure zero.

Now, after running gradient descent on g from a random initialization as in the theorem statement, condition
on observing that {z(k)} C B, and all limit points of {z(k)} are in B,, i.e., that z(0) € T,. Because
{z(k)} C B, and all limit points of {z(k)} are in B, and because {z(k)} matches the sequence that would be
obtained by running gradient descent on g, we can apply Theorem[2.3/to conclude that {z(k)} converges to a
critical point of g, and since this critical point belongs to B, and g = g inside B,, we conclude that this is also
a critical point of g.

Finally, using the definition of conditional probability, we have
P(z(0) € ¥,NTy)
P(2(0) € Ty)
_ P(z(0) € ¥5NTy)
P(z(0) € Ty)

P(2(0) € Xg[2(0) € Ty)

where the second equality follows from the fact that g = g inside B,,: if a sequence of iterations stays bounded
inside B, and converges to a strict saddle when gradient descent is run on g, the same will hold when gradient
descent is run on g, and vice versa. Since Xz has zero measure and because z(0) is chosen randomly from a
probability distribution supported on a set S C B, with S having positive measure, P(z(0) € X3 NT5) = 0.
Also, by assumption, P(z(0) € Ty) > 0. Therefore, P(z(0) € %4|z(0) € Ty) = —2_ =0

nonzero
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8 Proof of Proposition

First note that

J
min g(z =Z<fj x!,v;) +Zwﬂllx xl) @

J

ZEmln f] 7yJ Z 7yj _r)rtnbl}f(an) (22)
J

<

1 x5 j=1

On the other hand, we have

J J
min o(s z( Oy 43 w0 xwa)

i=1
J
< . min ]Z( 7YJ Zwﬂ [Ix’ _X|>

11— =x-
z:X X =1

J

=miny_ f;(x,y;) = min f(x,y).
v :

Thus, we have
min g(z) = min f(x,y).
z Xy

The proof is completed by noting that (22) achieves the equality only at z with x! = ... = x7 since the

topology defined by W is connected.

9 Proof of Proposition 2.3]

The critical points of the objective function in (7) satisfy

Vaig(z) = Vi fi(x',y;) +Z2wﬂ -x') =0, 23)
Vng() vny]( 7YJ)—OVJ€[J] (24)

Now taking the inner product of both sides in with x? and also the inner product of both sides in (24) with
y’ and using the property (12, we have

J
D 2w(x! % —x') =0
i=1

for all j € [J]. Using the symmetric property of W, we then have

J J
ZZw]Jx —x'|?=0.

Jj=11i=1

Therefore,
x'=x, ifwij #0

for any ¢, 7 € [J]. Since the topology defined by W is connected, we finally have

1 J
X =---=x".

10 Proof of Theorem 2.7

We rewrite Cy as:

J
Cf = {va : ZvaJ(XaYJ) = O,Vyjfj(x,yj) = O,Vj € [‘]]} :

Jj=1

16



The critical points of the objective function in (7) satisfy

J
Vi 9(2) = Vi f5 (7, y5) + Y 2(wis + wyi) (x) —x') =0,

1=1
Vyig(z) = Vy, f;(x’,y;) =0,V j € [J].

With this, we rewrite C, as

J
Cy = {Z Vai () y5) + > 2(wi; + wyi) (x) — x') =0,

=1
Uy, £ y,) = 0,V j € [J]}.

Thus, for any z = (x',...,x”,y) € Cy withx* = - = x’ = x, we have that (x, y) is a critical point of (3),

ie., (x,y) € Cy. In what follows, we check how the Hessian information (especially the smallest eigenvalue of
the Hessian) of (x,y) is transformed to z.

J

At any point (x,y), the Hessian quadratic form of f forany gx andqy = [qy, -+ qy,] " is given by

J
VQ qx qx — v2 . qx qx )
w3 (e =S vnde ] ]
At any point z, the Hessian quadratic form of g for any

a=[an - au 4qy, - aqy,]
is given by
J ] ] J
V2g(@)](a.a) = > V229N 437 2w)illays — a3
q.
j=1 Y s Jj=1

Now suppose Amin (V2 f(X,y)) < 0 (Where Amin denotes the smallest eigenvalue), i.e., there exist qx, qy such

that
2 ax QAx
v eyl [y <o
Choosing g1 = - -+ = Q.7 = qQx, we have [V2g(z)](q, q) < 0, i.e., Amin(V3g(z)) < 0.

11  Proof of Theorem [3.1]
Denote by h(U, V) = 3||UVT — Y||3. Let C denote the set of critical points of h:
C= {(U,V) S(UVT-Y) V=0, (UV" -Y)TU = 0} .

Our goal is to characterize the behavior of all the critical points that are not global minima. In particular, we
want to show that every critical point of h is either a global minimum or a strict saddle. Towards that end, we
first recall the following result concerning the degenerate critical points.

Lemma 11.1. [32] Theorem 8 with X = 1] Any pair (U, V) € C that is degenerate (i.e., rank(UV™T) < 1) is

either a global minimum of h (i.e., UV T =Y, where Y, is a rank-r approximation of Y ) or a strict saddle
(i.e,, Amin(VZR(U,V)) < 0).

Note that the above result holds for any matrix Y. When rank(Y) < r, then Y, = Y. It follows from
Lemma|11.1]that the behavior of all degenerate critical points is quite clear. For the remaining non-degenerate
critical points, using the same argument in [42} Theorems 2—4], we first establish the following results concerning
the critical points that are also balanced (i.e., UtTu=vTv).

Lemma 11.2. [42| Theorems 2—4] Any pair (U, V') € C satisfying UTU = VTV is either a global minimum
of h or a strict saddle.

The above result also holds for any matrix Y. With this result, we now show that non-degenerate critical points
behave similarly to degenerate ones.

Lemma 11.3. Any pair (U, V) € C that is non-degenerate (i.e., rank(UV™) = 1) is either a global minimum
of h or a strict saddle.
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Proof of Lemma[T1.3] Suppose (U, V) is not a global minimum of . Let UV" = PEQ" be a reduced SVD
of UV, Since rank(UV™T) = 7 and both U and V have only 7 columns, we know rank(U) = rank(V) = r.
Denote by D = (UTU)'UTPEY2 and G = (VTV)"'VTQX!/2. With this, we have

DGT = (UTu)'uTPEQTV(VTV) T =1,

and
U=UD=PX"? V=VG=Qx'%

The above constructed pair (U, V) satisfies
uvi=uv', u'u=Vv"V.
Since (U, V) € C, we have
Vhu(U, V) = Vhy (U, V)D = 0, Vhy (U, V) = Vhy(U, V)G =0,

which implies that (U V) is also a critical point (but not a global minimum since by assumption (U, V) is not
a global minimum) of h. Since (U V) is also balanced, it follows from Lemmathat there exists AU and
AV such that

[VZh(U, V)]|(A,A) < 0.
Now construct Ay = EﬁD’l and Av = &{,G’l. Then, we have
[V’h(U, V)|(A,A) = [Au VT + UAY|Z +2(UVT — Y, AyAy)
= [AgVT + UAY[} +2(0V" — Y, A5Ay)
= [V*W(U,V)|(A,A) <0,
which implies that (U, V) is a strict saddle. O

Lemma together with Lemma implies that any pair (U, V') € C is either a global minimum of & or a
strict saddle.

12 Proof of Theorem 3.2

We begin by arguing that DGD+LOCAL converges almost surely (when z(0) is chosen randomly inside B,) to
a second-order critical point of (I8). To do this, our goal is to invoke Theorem We note that each f; defined
in satisfies infu,v, f; > —oo and is twice-continuously differentiable. Also, since the functions f; are
semi-algebraic, g satisfies the Lojasiewicz inequality globally. The functions fj do not have globally Lipschitz
gradlent However, we can find quantities Lo ;, L1,5, L2, such that | f; (x,¥;)| < Lo,;, |Vf; (%, ¥)| < L5,
and | V2 f;(x 3 ¥)||, £ La,j forall (x,y;) € B, For Lo,;:

If; (%, ¥)| = [UV] = Y%
< (I0VS llr + 1Y)
< (I01eIV|le + 1Y;5]10)?
< (49 + [Y5l#)*
< 320" +2||Y; |7

FOI‘LLJ'Z
Vu|UV] - Y;
w5 vl = [ooiove “VE]
_ UVT Y;)V;
= )TU

/\

(HUVT e+ 1Y VJHF + [V, U Ur + Y] U|Ir)

2 (89" + 2[Y ;|7 + 80" + 20| Y| )
320" + 8p|| Y, .
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For L3 ;, we can bound the Lipschitz constant of V f; in Bs, as follows. Denote D = {]]3) Y } . Then

x [V?£;(U,V;)|(D,D)

1,2 .
SIV25U. V) = 5 max

max |[DuVj +UDY || +2(UV], DuDY,) - 2(Y;, DuDy,)

D] m=
5 2 2 2

< 2(Iv; U|%)(|D

7|“5r|1@><:1(2(\| il + Ul (IPulle

HDv, [I7) + 1Yl (IPullE + Dy, |[7))
< gllagl(l()pQ +1Y; 1) (IDullF +Dv, |7) = 100* + Y, F,

~ Dl

where the last inequality holds because | U||% + ||V ||3 < 4p*. Therefore we can bound the Lipschitz constant
of Vf; as L; < 20p? 4 2||Y || for all (U, V) such that [|[U||% + || V;]|% < 4p*. Now,
4L11j (4+271’) Lo}j
+ 2

Lo +
! P

4 4+ 27
— 200"+ 2Y; | + (326" + 801 1) + (p—z)<32p4 Loy,
8+4
= 205° + 2Y; [ -+ 1289° + 320 1 + (128 + 647 + LIy

(8 +4m)
2

Thus, choosing p to satisfy ensures that is met.

From Theorem [2.6] we then conclude that conditioned on observing that {z(k)} C B, and all limit points
of {z(k)} are in B,, DGD+LOCAL converges to a critical point of the objective function in (I8), and the
probability that this critical point is a strict saddle point is zero. We refer to this point as z*.

= (276 + 647)p” + 34Y; | r + 1Y%

Next, note that the assumption of Proposition[2.2]is satisfied if Y has rank at most r. In particular, there exist
U, V such that UVT =Y and so we may take x* = vec(U) and y} = vec(V;) to achieve f;(x*,y}) = 0,
which is the smallest possible value for each f;. Propositionthus guarantees that has at least one critical
point that is not a strict saddle (and in fact that it is a global minimizer that falls on the consensus subspace).
Next, note that the symmetric property required for Proposition [2.3|is satisfied. To see this, observe that
Vu|UV] = Y;|E =2(UV] - Y;)V;

and T 2 T T

Vv;IUV; = Y[z =2(UV; -Y;) U.
Thus,

(Vul[UV] = Y[, U) =2-u(U(UV; —Y;)V;)
=2-r(V; (UV} = Y;)"U) = (Vv,[[UV] = Y[}, V;).

Proposition [2.3thus guarantees that (I8) has no critical points outside of the consensus subspace. Since we have
argued that DGD+LOCAL converges to a second-order critical point z* of (18), it follows that z* must be on
the consensus subspace; that is, z* = (U™, ..., U”*, Vi,..., V) with U™ = ... = U = U*.

Next, Theoremlz guarantees that z* (in which U = ... = U7* = U*) corresponds to a critical point
(U*,V*) of the centralized problem (135), which is exactly equivalent to problem (I3). Here, V* is the
concatenation of V1,..., V% as in (T4). Theorem@tells us that problem has two types of critical points:
global minimizers and strict saddles. If (U*, V*) were a strict saddle point of (I3), Theorem[2.7]tells us that z*
must then be a strict saddle of (I8). However, z* is almost surely a second-order critical point of (I8), where
the Hessian has no negative eigenvalues. It follows that (U™, V*) must almost surely be a global minimizer of

problem (13).

13 Experiments

In our first experiment, we generate a rank-r ground truth matrix Y = [Yl Y, - YJ] €

RPX I (Zj m; = m), where r = 10, n = 50, J = 10, and m; = 20 for all j, by multiplying two standard
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= 2, 1P, (U/V] - Yl 10° - X [Po,(UV] — Y])”?«“%
SRR 108 R, [ X UV =Yl
—3, 0 - 35, U 10710 Su—2 U - S U £
10°15 o <, 3
N, |
10720 N
0%k g
10-30 L I h
2 4 6 8 10 2 4 6 8 10
iteration «1 04 iteration «1 04
(a) Distributed matrix completion (b) Stochastic distributed matrix completion
p p
5
100K = XIS AU VT - )3
10'5' Z] HU7V‘T7Y7H§_‘ ;
107 10¢ —>, U7 = 53U E
-15EF T, E
10 - E
1020 o ]
1025E
10—30 1 1 1 1

2 4 6 8 10

iteration «10%
(c) Distributed matrix sensing

Figure 2: (a) Convergence of DGD+LOCAL for distributed matrix completion. (b) Convergence of
stochastic DGD+LOCAL—in each iteration, one node is randomly chosen to perform the update—for
distributed matrix completion. (c) Convergence of DGD+LOCAL for distributed matrix sensing.

Gaussian matrices (i.e., each entry is i.i.d. from A/ (0, 1)) of size n X 7 and r x m. We solve (13) via (I7) with
stepsize 4 = 1073, In the left panel of Figure , we plot the optimality distance E;}:l HUj V]T -Y; Hi, and
2

J i1 j

CONSensus error » 5, HUJ D

E
result that for the low-rank matrix factorization problem DGD+LOCAL achieves both global optimality and

exact consensus.

as a function of the number of iterations and verify our theoretical

In our second experiment, we set J = 10 and consider the quadratic least squares optimization problem

minimize £ ZJ: (xj — b-)T A, (xj — b-) (25)
D) pa J J J

x1,x2,...,x

where A is a5 x 5 randomly generated symmetric matrix with eigenvalues uniformly distributed in (0, 1) and
b, is a5 x 1 standard Gaussian vector. We use standard DGD (because this problem has no local variables y ;)

with a stepsize 102 to solve and plot the value of objective function % Z}]:l (xj — b]-)T A (xj - b]’)

2

J i J il|e - . -

and consensus error y =1 Hx] - 71] X H in the right panel of Figure|l} We observe convergence only to
- -

a neighborhood of the optimal solution with a consensus error proportional to the stepsize.

We also conduct experiments on matrix completion and matrix sensing problems in the distributed setup. For
matrix completion, given a rank-r random matrix Y € R™*™ partitioned into J submatrices, i.e., Y =

[Yi Y2 --- Y| withY; of size n X m; and >_; m; = m, we solve the optimization problem
J .
minimize (U, vV ) 26
U1,~-<,UJ,V1,~“,VJ]_Zf] ( J ( )

=1
where

fi (Uj»Vj) = % > [(UjVjT)l,k - (Yj)l,kr

(1,k)€Qy

and Q; = {(l k) 2 (Yy),, is observed}, using DGD+LOCAL with random initialization. In our experiment,

we select n = 50, m; = 5 forall j, J = 5, m = 25, r = 2, and the total number of entries observed in Y to be
3r(n +m).

As shown in Fig[2a the objective value, recovery error, and consensus error all converge quickly to 0. Similar
results are shown in Fig[2b, where we applied a “stochastic” version of DGD+LOCAL (in each iteration one
node is randomly chosen to perform the update) to the same matrix completion problem. For matrix sensing, we
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use the formulation

J
. 2
minimize A; (UJV-T) —vil, 27
Ul,--~,UJ,V1,---,Vj].;H J J Y 2 27

where U7 € R™*", V; € R™*", y; € RP and A; : R™*™ — RP. For this problem, the sensing mechanism
is local to each matrix block:

(Aj (UJ’V].T))i — <A;Z,UJ'V]T>, AL ER™™ Wi=1, Ji=1p.

We choose n = 50, m; = 5,J = 5,r = 2, p = 2r(n + m;) and use DGD+LOCAL with a random
initialization to solve the matrix sensing problem and show the objective value, recovery error, and consensus
error in Fig Again, the objective value, recovery error, and consensus error all converge to 0. Both the matrix
completion and matrix sensing problems satisfy the symmetric gradient condition of Proposition which
explains the convergence to the consensus subspace.
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