
Appendix A Correctness and Security Analysis of Protocols

A.1 Security Model

The gold standard model for proving the security of cryptographic protocols nowadays is the Universal
Composability (UC) framework [9] and it is the security model that we use in this work. Protocols
that are proven UC-secure enjoy strong securities guarantees and can be arbitrary composed without
compromising the security. In short, it is the most adequate model to use when the protocols need
to be executed in complex environments such as the Internet, and it additionally allows a modular
design of bigger protocols. In this work protocols with two parties, Alice and Bob, are considered
and in the following we present an overview of the UC framework for this setting. We refer interested
readers to the book of Cramer et al. [16] for more details and the most general definitions.

Apart from the protocol participants, Alice and Bob, there are also an adversary A, an ideal world
adversary S (also known as the simulator) and an environment Z (which captures everything that
happens outside of the instance of the protocol that is being analyzed, and therefore is the one giving
the inputs and getting the outputs from the protocol). All these entities are assumed to be interactive
Turing machines. The network is assumed to be under adversarial control and therefore A is the one
that delivers the messages between Alice and Bob. In addition to controlling the network scheduling,
A can also corrupt Alice or Bob, in which case he gains the total control over the corrupted party and
learn its complete state. For defining the security of the protocol, an ideal functionality F is defined,
which captures the idealized version of what the protocol is supposed to achieve and communicates
directly with Alice and Bob to receive the inputs and delivering the outputs of the protocol (in the
ideal world, that is all that Alice and Bob do). Then to prove the security of the protocol π, we
show that for every possible adversary A there exists a simulator S such that no environment Z can
distinguish between a real world execution with Alice, Bob and the adversary A running the protocol
π and the ideal world execution with the ideal functionality F , the simulator S and the dummy
version of Alice and Bob that just forward the inputs and outputs between F and S. Formally:

Definition A.1 ([9]) A protocol π UC-realizes an ideal functionality F if, for every possible ad-
versary A, there exists a simulator S such that, for every possible environment Z , the view of the
environment Z in the real world execution with A, Alice and Bob executing the protocol π (with
security parameter λ) is computationally indistinguishable from the view of Z in the ideal world exe-
cution with the functionality F , the simulator S and the dummy Alice and Bob, where the probability
distribution is taken over the randomness used by all entities.

Adversarial Model: We consider honest-but-curious adversaries. Honest-but-curious adversaries
follow the protocol instructions correctly, but try to learn additional information. We only consider
static adversaries, for which the set of corrupted parties is chosen before the start of the protocol
execution and does not change. A version of the UC theorem for the case of honest-but-curious
adversaries is given in Theorem 4.20 of Cramer et al. [16].

Setup Assumption: It is a well-known fact that secure two-party computation (and also secure
multi-party computation) can only achieve UC-security using a setup assumption [10, 11]. Multiple
setup assumptions were used previously to achieve UC-security for secure computation protocols,
including: the availability of a common reference string [10, 11, 43], the availability of a public-key
infrastructure [4], the random oracle model [36, 5], the existence of noisy channels between the
parties [25, 29], and the availability of signature cards [37] or tamper-proof hardware [39, 23, 26].
In this work the commodity-based model [7] is used as the setup assumption. In this model there
exists a trusted initializer that pre-distributed correlated randomness to Alice and Bob during a setup
phase. This setup phase is run before the protocol execution (and in fact can be performed even
before Alice and Bob get to know their inputs), and the trusted initializer does not participate in any
other point of the protocol. The commodity-based model was used in many previous works, e.g.,
[48, 28, 27, 38, 50, 20, 17, 18, 33, 19]. The trusted initializer is modeled by the ideal functionality
FDTI described in Figure 3.

Simplifications: The simulation strategy in our proofs is in fact very simple: all the computations
are performed using secret sharings and all the protocol messages look uniformly random from
the point of view of the receiver, with the single exception of the openings of the secret sharings.
Nevertheless, the messages that open a secret sharing can be straightforwardly simulated using the
outputs of the respective functionalities. In the ideal world, the simulator S has the leverage of being

14



Functionality FDTI
FDTI is parametrized by an algorithm D. Upon initialization run (DA, DB)

$← D and deliver DA

to Alice and DB to Bob.

Figure 3: The Trusted Initializer Functionality.

Functionality FDMM

FDMM is executed with Alice and Bob is parametrized by the size q of the ring and the dimensions
(i, j) and (j, k) of the matrices.

Input: Upon receiving a message from Alice/Bob with her/his shares of JXK
q

and JY K
q
, verify

if the share of X is in Zi×j
q and the share of Y is in Zj×k

q . If it is not, abort. Otherwise, record
the shares, ignore any subsequent message from that party and inform the other party about the
receipt.

Output: Upon receipt of the inputs from both Alice and Bob, reconstruct X and Y from the
shares, compute Z = XY and create a secret sharing JZKq . Before the deliver of the output shares,
a corrupt party fix its share of the output to any constant value. In both cases the shares of the
uncorrupted parties are then created by picking uniformly random values subject to the correctness
constraint.

Figure 4: The Distributed Matrix Multiplication Functionality.

the one responsible for simulating all the ideal functionalities other than the one whose security is
being analyzed (including the trusted initializer functionality FDTI ), and he can easily use this fact to
perform a perfect simulation. For this reason the real and ideal world are indistinguishable for any
environment Z and achieve perfect security.

The messages of the ideal functionalities are formally public delayed outputs, i.e., first the simulator
is asked whether it allows the message to be delivered (this is due to the fact that in the real world
the adversary controls the scheduling of the network), and the message is only delivered when S
agrees. And formally, every instance has a session identification. We omit those information from
descriptions for the sake of readability.

Security of the Building Blocks: The protocol for secure distributed matrix multiplication πDMM

UC-realizes the distributed matrix multiplication functionality FDMM described in Figure 4 [24, 19].
The protocol for secure comparison πDC UC-realizes the functionality FDC described in Figure 5
[34, 19]. The protocol for secure bit-decomposition πdecomp UC-realizes the functionality Fdecomp

described in Figure 6 [19]. The LR classification protocol πLR UC-realizes the functionality FLR

described in Figure 7 [19].

The correctness of the equality test protocol πEQ follows from the fact that in the case that x = y,
then all ri’s will be equal to 1 and therefore z =

∏
i ri will also be 1. If x 6= y, then for at least one

value i, we have that ri = 0, and therefore z = 0. For the simulation, S executes an internal copy
of A interacting with an instance of πEQ in which the uncorrupted parties use dummy inputs. Note
that all the messages that A receives look uniformly random to him. Since the share multiplication
protocol is substituted by FDMM using the UC composition theorem, and S is the one responsible for
simulating FDMM in the ideal world, S can leverage this fact in order to extract the share that any
corrupted party have of the value xi + yi, let the extracted value of the corrupted party be denoted
by vi,C . The simulator then pick random values xi,C , yi,C ∈ {0, 1} such that xi,C + yi,C = vi,C
mod 2 and submit these values to FEQ as being the shares of the corrupted party for xi and yi (note
that the result of FEQ only depends on the values of xi + yi mod 2). S is also able to fix the output
share of the corrupted party in FEQ so that it matches the one in the instance of πEQ. This is a perfect

15



Functionality FDC

FDC is parametrized by the bit-length ` of the values being compared.

Input: Upon receiving a message from Alice/Bob with her/his shares of JxiK2
and JyiK2

for all
i ∈ {1, . . . , `}, record the shares, ignore any subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x and y from the bitwise shares.
If x ≥ y, then create and distribute to Alice and Bob the secret sharing J1K2 ; otherwise the secret
sharing J0K2 . Before the deliver of the output shares, a corrupt party fix its share of the output to
any constant value. In both cases the shares of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness constraint.

Figure 5: The Distributed Comparison Functionality.

Functionality Fdecomp

Fdecomp is parametrized by the bit-length ` of the value x being converted from an additive secret
sharing JxK

q
in Zq to additive bitwise secret sharings JxiK2

in Z2 such that x = x` · · ·x1.

Input: Upon receiving a message from Alice or Bob with her/his share of JxKq , record the share,
ignore any subsequent messages from that party and inform the other party about the receipt.

Output: Upon receipt of both shares, reconstruct x, compute its bitwise representation x` · · ·x1,
and for i ∈ {1, . . . , `} distribute new secret sharings JxiK2

of the bit xi. Before the output deliver,
the corrupt party fix its shares of the outputs to any constant values. The shares of the uncorrupted
parties are then created by picking uniformly random values subject to the correctness constraints.

Figure 6: The Bit-Decomposition Functionality.

Functionality FLR

FLR computes the classification according to a logistic regression model with the threshold value
set to 0.5. The input feature vector x is secret shared between Alice and Bob.

Input: Upon receiving the weight vector w, the intercept value b and his shares JxiKq
of the

elements of x from Bob, or her shares JxiKq of the elements of x from Alice, store the information,
ignore any subsequent message from that party, and inform the other party about the receipt.

Output: Upon getting the inputs from both parties, reconstruct the feature vector x, compute the
value sign (〈x,w〉+ b) and output it to Bob as the class prediction.

Figure 7: The Logistic Regression Classification Functionality.

16



Functionality FEQ

FEQ is parametrized by the bit-length ` of the values being compared.

Input: Upon receiving a message from Alice/Bob with her/his shares of JxiK2
and JyiK2

for all
i ∈ {1, . . . , `}, record the shares, ignore any subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x and y from the bitwise shares.
If x = y, then create and distribute to Alice and Bob the secret sharing J1K2 ; otherwise the secret
sharing J0K2 . Before the deliver of the output shares, a corrupt party fix its share of the output to
any constant value. In both cases the shares of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness constraint.

Figure 8: The Equality Test Functionality.

simulation strategy, no environment Z can distinguish the ideal and real worlds and therefore πEQ
UC-realizes FEQ.

The correctness of the secure feature extraction protocol πFE follows directly from the fact that each
xij is equal to 1 if, and only if, aj = bi, and therefore xi =

∑
j xij is equal to 1 if, and only if,

bi is equal to some element of A. In the ideal world, the simulator S runs internally a copy of A
and an execution of πFE with dummy inputs for the uncorrupted parties. All the messages from the
uncorrupted parties look uniformly random from A’s point of view, and therefore the simulation is
perfect. S uses the leverage of being responsible for simulating FEQ (πEQ is substituted by FEQ using
the UC composition theorem) in order to extract the inputs of any corrupted party and forward it to
FFE. No environment Z can distinguish the ideal world from the real one, and thus πFE UC-realizes
FFE.

In the case of the conversion protocol π2toQ the correctness of the protocol execution follows
straightforwardly: since x = xa + xB mod 2, then z = xA + xB − 2xAxB is such that z = x for
all possible values xA, xB ∈ {0, 1}. As for the security, the simulator S runs internally a copy of
the adversary A and simulates to him an execution of the protocol π2toQ using dummy inputs for
the uncorrupted parties. As all the messages from the uncorrupted parties look uniformly random
from the adversary point of view, and so the simulation is perfect. The simulator can use the fact
that it is the one simulating the multiplication functionality FDMM (the secret sharing multiplication
is substituted by FDMM using the UC composition theorem) in order to extract the share of any
corrupted party and fix the input to/output from F2toQ appropriately, so that no environment Z can
distinguish the real and ideal worlds. Hence π2toQ UC-realizes F2toQ.

The AdaBoost classification protocol πAB is trivially correct for the case of binary features and
output class, and decision stumps. In the simulation, S runs an internal copy of A interacting with
a simulated instance of πAB that uses dummy inputs for the uncorrupted parties. πIP is substituted
by FDMM using the UC composition theorem. S uses the leverage of simulating FDMM in order
to extract the shares of the feature vector belonging to a corrupted party, as well as the weighted
probability vectors y and z if Bob is corrupted. S can then give these extracted inputs to FAB. No
environment can distinguish the real and ideal worlds since the simulation is perfect, and thus πAB
UC-realizes FAB.

Security of the Privacy-Preserving Text Classification Solutions:

The protocol πTC−LR simply executes sequentially the protocols πFE, π2toQ and πLR. Given that these
protocols UC-realize FFE, F2toQ and FLR, respectively, they can be substituted by the functionalities
using the UC composition theorem. Note that the sequential composition of those functionalities
trivially perform the same computation as FTC−LR, and no information other than the output of
the classification is revealed (all the intermediate values are kept as secret sharings). In the ideal
world S simulates an internal copy of the adversary A running πTC−LR and using dummy inputs for
the uncorrupted parties. The simulator S can easily extract all the information (from the corrupted
parties) that it needs to provide to FTC−LR by using the leverage of being responsible for simulating

17



Functionality FFE

FFE is parametrized by the sizes m of Alice’s set and n of Bob’s set, and the bit-length ` of the
elements.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from Bob
with his set B = {b1, b2, . . . , bn}, record the set, ignore any subsequent messages from that party
and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, define the binary feature vector x of length
n by setting each element xi to 1 if bi ∈ A, and to 0 otherwise. Then create and distribute to Alice
and Bob the secret sharings JxiK2 . Before the deliver of the output shares, a corrupt party fix its
share of the output to any constant value. In both cases the shares of the uncorrupted parties are
then created by picking uniformly random values subject to the correctness constraint.

Figure 9: The Secure Feature Extraction Functionality.

Functionality F2toQ

F2toQ is parametrized by the size of the field q.

Input: Upon receiving a message from Alice/Bob with her/his share of JxK
2
, record the share,

ignore any subsequent messages from that party and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x, then create and distribute to
Alice and Bob the secret sharing JxKq . Before the deliver of the output shares, a corrupt party fix
its share of the output to any constant value. In both cases the shares of the uncorrupted parties are
then created by picking uniformly random values subject to the correctness constraint.

Figure 10: The Secret Sharing Conversion Functionality.

Functionality FAB

FAB computes the classification according to AdaBoost with multiple decision stumps. All the
features are binary and the output class is also binary. The input feature vector x is secret shared
between Alice and Bob. The model specified by Bob can be expressed in a simplified way by two
weighted probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1) and z = (z1,0, z1,1, . . . , zn,0, zn,1).
For the i-th decision stump: yi,k is the weighted probability (i.e., a probability multiplied by the
weight of the i-th decision stump) that the model assigns to the output class being 0 if xi = k, and
zi,k is defined similarly for the output class 1.

Input: Upon receiving the vectors y and z and his shares JxiKq
of the elements of the feature

vector x from Bob, or her shares JxiKq of the elements of x from Alice, store the information,
ignore any subsequent message from that party, and inform the other party about the receipt.

Output: Upon getting the inputs from both parties, reconstruct the feature vector x and let
w = (1− x1, x1, 1− x2, x2, . . . , 1− xn, xn). If 〈w, z〉 ≥ 〈w, y〉, output the class prediction 1 to
Bob; otherwise output 0.

Figure 11: The AdaBoost Classification Functionality.

18



Functionality FTC−LR

FTC−LR computes the privacy-preserving text classification according to a logistic regression
model with the threshold value set to 0.5. It is parametrized by the sizes m of Alice’s set and n of
Bob’s set, and the bit-length ` of the elements.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from Bob
with his set B = {b1, b2, . . . , bn}, the weight vector w and the intercept value b, record the values,
ignore any subsequent messages from that party and inform the other party about the receipt.

Output: Upon getting the inputs from both parties, define the feature vector x of length n as
follows: xi = 1 if bi ∈ A; and xi = 0 otherwise. Compute the value sign (〈x,w〉+ b) and output
it to Bob as the class prediction.

Figure 12: The Functionality for Privacy-Preserving Text Classification with Logistic Regression.

Functionality FTC−AB

FTC−AB computes the privacy-preserving text classification according to AdaBoost with multiple
decision stumps. It is parametrized by the sizes m of Alice’s set and n of Bob’s set, and the
bit-length ` of the elements. All the features are binary and the output class is also binary. The
model specified by Bob can be expressed in a simplified way by two weighted probability vectors
y = (y1,0, y1,1, . . . , yn,0, yn,1) and z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th decision stump:
yi,k is the weighted probability (i.e., a probability multiplied by the weight of the i-th decision
stump) that the model assigns to the output class being 0 if the feature xi = k, and zi,k is defined
similarly for the output class 1.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from Bob
with his set B = {b1, b2, . . . , bn}, y and z, record the values, ignore any subsequent messages
from that party and inform the other party about the receipt.

Output: Upon getting the inputs from both parties, define the feature vector x of length n as
follows: xi = 1 if bi ∈ A; and xi = 0 otherwise. Let w = (1−x1, x1, 1−x2, x2, . . . , 1−xn, xn).
If 〈w, z〉 ≥ 〈w, y〉, output the class prediction 1 to Bob; otherwise output 0.

Figure 13: The Functionality for Privacy-Preserving Text Classification with Adaboost.

FFE, F2toQ and FLR in the ideal world. Therefore no environment Z can distinguish the real world
from the ideal world, and πTC−LR UC-realizes FTC−LR.

Similarly, the protocol πTC−AB just runs sequentially the protocols πFE, π2toQ and πAB, that can be
substituted by FFE, F2toQ and FAB using the UC composition theorem. The result of the computation
is trivially the same as in FTC−AB, and no additional information is revealed. S runs internally a
copy of A interacting with a simulated instance of πTC−AB (using dummy inputs for the uncorrupted
parties) and can easily extract from the corrupted parties all the information that it must provide
to FTC−AB by using the leverage of being responsible for simulating FFE, F2toQ and FAB in the
ideal world. No environment Z can distinguish the real and ideal worlds, and therefore πTC−AB
UC-realizes FTC−AB.

19


