
A Proof of Lemma 1

We first restate the lemma and then give the proof.

Lemma. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2 ln(dδ)

)
samples from

D(W ∗, b∗) (for some non-negative b∗) and outputs b̂(i) and Σ̂(i, i) for all i ∈ [d] that satisfy

(1− ε)‖W ∗(i, :)‖22 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖22, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2
with probability at least 1− δ.

Proof. For a fixed i ∈ [d], according to Theorem 1 of [DGTZ18], given Õ(ln(d/δ)/ε2) truncated
samples from N (b∗(i), ‖W ∗(i, :)‖22,R>0), the output of Algorithm 2 satisfies (9) with probability at
least 1− δ/d. Since b∗(i) ≥ 0, a sample x ∼ N (b∗(i), ‖W ∗(i, :)‖22) satisfies x > 0 with probability
at least 1/2. By Hoeffding’s inequality, if we take Õ(ln(d/δ)/ε2) + O(ln(d/δ)) = Õ(ln(d/δ)/ε2)

samples from D(W ∗, b∗), then we are able to obtain Õ(ln(d/δ)/ε2) truncated samples with prob-
ability at least 1− δ/d. Therefore, if we take Õ(ln(d/δ)/ε2) samples from D(W ∗, b∗), for a fixed
coordinate i ∈ [d], the output of Algorithm 1 satisfies (9) with probability at least 1− 2δ/d. Lemma 1
then follows by taking a union bound over all coordinates in [d] and re-scaling δ to δ/2.

B Proof of Lemma 3

We first restate the lemma and then give the proof.

Lemma. Let x ∼ D(W ∗, b∗), where b∗ is non-negative. Suppose that b̂ ∈ Rd is non-negative and
satisfies |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 for all i ∈ [d] and some ε > 0. Then for all i 6= j ∈ [d],∣∣∣P

x
[x(i) > b̂(i) and x(j) > b̂(j)]− P

x
[x(i) > b∗(i) and x(j) > b∗(j)]

∣∣∣ ≤ ε.
Proof. We first notice that b̂ satisfies

max(0, b∗(i)− ε‖W ∗(i, :)‖2) ≤ b̂(i) ≤ b∗(i) + ε‖W ∗(i, :)‖2, for all i ∈ [d]. (17)

To prove Lemma 3, we only need to prove that (13) holds when b̂ is substituted by its lower bound as
well as the upper bound. We focus on substituting the lower bound here (as the upper bound follows
a similar proof). We assume that ‖W ∗(i, :)‖2 6= 0 for all i ∈ [d] (the proof extends straightforwardly
to the setting when this is not true).

P
x

[x(i) > max(0, b∗(i)− ε‖W ∗(i, :)‖2) and x(j) > max(0, b∗(j)− ε‖W ∗(j, :)‖2)]

− P
x
[x(i) > b∗(i) and x(j) > b∗(j)]

(a)

≤ P
z∼N (0,Ik)

[W ∗(i, :)T z > −ε‖W ∗(i, :)‖2 and W ∗(j, :)T z > −ε‖W ∗(j, :)‖2]

− P
z∼N (0,Ik)

[W ∗(i, :)T z > 0 and W ∗(j, :)T z > 0]

= P
z∼N (0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2
z ≤ 0 and − ε < W ∗(j, :)T

‖W ∗(j, :)‖2
z ≤ 0]

+ P
z∼N (0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2
z ≤ 0 and

W ∗(j, :)T

‖W ∗(j, :)‖2
z > 0]

+ P
z∼N (0,Ik)

[
W ∗(i, :)T

‖W ∗(i, :)‖2
z > 0 and − ε < W ∗(j, :)T

‖W ∗(j, :)‖2
z ≤ 0]

≤ P
z∼N (0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2
z ≤ 0] + P

z∼N (0,Ik)
[−ε < W ∗(j, :)T

‖W ∗(j, :)‖2
z ≤ 0]

(b)

≤ 2√
2π
ε ≤ ε.

12

Here (a) is true because x(i) = ReLU
(
W ∗(i, :)T z + b∗(i)

)
and b∗ is non-negative. Inequality (b)

is true because W∗(i,:)T

‖W∗(i,:)‖2 z is a one-dimensional Gaussian distribution N (0, 1) and the probability

density of N (0, 1) has value no larger than 1/
√

2π.

C Proof of Lemma 4

We first restate the lemma and then give the proof.

Lemma. For a fixed pair of i 6= j ∈ [d], for any ε, δ ∈ (0, 1), suppose b̂ satisfies the condition in
Lemma 3, given 80 ln(2/δ)/ε2 samples, with probability at least 1− δ, | cos(θ̂ij)− cos(θij)| ≤ ε.

Proof. For a fixed pair i 6= j ∈ [d], let f(x) := 1(x(i) > b̂(i) and x(j) > b̂(j)). Since the indicator
function is bounded, Hoeffding’s inequality implies that if the number of samples n ≥ ln(2/δ)/(2ε2),
then with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
m=1

f(xm)− E
x

[f(x)]

∣∣∣∣∣ ≤ ε. (18)

By Lemma 3, the above equation implies that∣∣∣∣∣ 1n
n∑

m=1

f(xm)− E
x

[1(x(i) > b∗(i) and x(j) > b∗(j))]

∣∣∣∣∣ ≤ 2ε. (19)

By Lemma 2, we have |θ̂ij − θ∗ij | ≤ 4πε. Lemma 4 follows from the fact that cos(·) has Lipschitz
constant 1. Re-scaling ε gives the desired sample complexity.

D Proof of Theorem 1

The theorem is restated below, followed by its proof.

Theorem. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2 ln(dδ)

)
samples from

D(W ∗, b∗) (for some non-negative b∗) and outputs Σ̂ ∈ Rd×d and b̂ ∈ Rd that satisfy

‖Σ̂−W ∗W ∗T ‖F ≤ ε‖W ∗‖2F , ‖b̂− b∗‖2 ≤ ε‖W ∗‖F (20)

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
d2

ε2 ln(dδ)
)

and space Õ
(
d
ε2 ln(dδ) + d2

)
.

Proof. By Lemma 1, the first for-loop of Algorithm 1 needs Õ
(

1
ε2 ln(dδ)

)
samples and outputs Σ̂(i, i)

and b̂(i) that satisfy for all i ∈ [d],

(1− ε)‖W ∗(i, :)‖22 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖22, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 (21)

with probability at least 1− δ. Since ε ∈ (0, 1), the above equation implies that

(1− ε)‖W ∗(i, :)‖2 ≤
√

Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖2, ‖b̂− b∗‖2 ≤ ε‖W‖F . (22)

By Lemma 4, if b̂ satisfies (21), then the second for-loop of Algorithm 1 needs O(1
ε2 ln(d

2

δ)) samples
and outputs θ̂ij that satisfies

| cos(θ̂ij)− cos(θ∗ij)| ≤ ε, for all i 6= j ∈ [d] (23)

with probability at least 1− δ. Combining (22) and (23) gives that for all i, j ∈ [d],

|Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉 | ≤ 7ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2 (24)

13

with probability at least 1 − 2δ. To see why (24) is true, suppose (with loss of generality) that
cos(θij) ≥ 0, then Σ̂(i, j) can be upper bounded by

Σ̂(i, j) =

√
Σ̂(i, i)Σ̂(j, j) cos(θ̂ij)

≤ (1 + ε)2‖W ∗(i, :)‖2‖W ∗(j, :)‖2(cos(θ∗ij) + ε)

= (1 + 2ε+ ε2) 〈W ∗(i, :),W ∗(j, :)〉+ ε(1 + ε)2‖W ∗(i, :)‖2‖W ∗(j, :)‖2
≤ 〈W ∗(i, :),W ∗(j, :)〉+ 3ε 〈W ∗(i, :),W ∗(j, :)〉+ 4ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2
≤ 〈W ∗(i, :),W ∗(j, :)〉+ 7ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2. (25)

The lower bound can be derived in a similar way. Given (24), we can bound ‖Σ̂−W ∗W ∗T ‖F as

‖Σ̂−W ∗W ∗T ‖2F =
∑
i,j∈[d]

(
Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉

)2

≤
∑
i,j∈[d]

49ε2‖W ∗(i, :)‖22‖W ∗(j, :)‖22

≤ 49ε2‖W‖2F
∑
i∈[d]

‖W ∗(i, :)‖22 = 49ε2‖W ∗‖4F , (26)

which holds with probability at least 1− 2δ. Re-scaling ε and δ gives the desired bound in Theorem 1.
The final sample complexity is Õ

(
1
ε2 ln(dδ)

)
+ O(1

ε2 ln(d
2

δ)) = Õ
(

1
ε2 ln(dδ)

)
.

We now analyze the time complexity. The first for-loop runs in time O(dn), where n is the number
of input samples. Note that in Step 3 of Algorithm 3, gradient estimation requires sampling from a
truncated normal distribution. This can be done by sampling from a normal distribution until it falls
into the truncation set. The probability of hitting a truncation set is lower bounded by a constant
(Lemma 7 of [DGTZ18]). The second for-loop of Algorithm 1 runs in time O(d2n). The space
complexity is determined by the space required to store n samples and the matrix Σ̂ ∈ Rd×d, which
is O(dn+ d2).

E Proof of Corollary 1

We first restate the corollary and then give the proof.
Corollary. Suppose that W ∗ ∈ Rd×d is full-rank. Let κ be the condition number of W ∗W ∗T . For
any ε ∈ (0, 1/2] and δ ∈ (0, 1), Algorithm 1 takes n = Õ

(
κ2d2

ε2 ln(dδ)
)

samples from D(W ∗, b∗)

(for some non-negative b∗) and outputs a distribution D(Σ̂1/2, b̂) that satisfies

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε,

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
κ2d4

ε2 ln(dδ)
)

and space Õ
(
κ2d3

ε2 ln(dδ)
)

.

Proof. Let Σ = W ∗W ∗T . We will prove that given Õ
(
κ2d2

ε2 ln(dδ)
)

samples, the output of Algo-
rithm 1 satisfies

‖Σ−1/2(̂b− b∗)‖2 ≤ ε, ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ ε. (27)

The above implies that the TV distance between D(Σ̂1/2, b̂) and D(W ∗, b∗) is less than ε. To see
why, note that

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ TV

(
N (̂b, Σ̂),N (b∗,Σ)

)
≤
√

KL
(
N (̂b, Σ̂)||N (b∗,Σ)

)
/2. (28)

The first inequality follows from the data processing inequality for f -divergence given by Lemma 7
in Appendix F (see also [ABDH+18, Fact A.5]): TV(f(X), f(Y)) ≤ TV(X,Y) for any function f

14

and random variables X,Y over the same space. The second inequality follows from the Pinsker’s
inequality [Tsy09, Lemma 2.5]. The KL divergence between two Gaussian distributions can be
computed as KL

(
N (̂b, Σ̂)||N (b∗,Σ)

)
=

1

2

(
tr(Σ−1Σ̂− I)− ln(det(Σ−1Σ̂)) + ‖Σ−1/2(̂b− b∗)‖22

)
. (29)

Let λ1, ..., λd be the eigenvalues of Σ−1Σ̂. We have

tr(Σ−1Σ̂− I)− ln(det(Σ−1Σ̂)) =

d∑
i=1

(λi − 1)− ln(Πd
i=1λi) =

d∑
i=1

(λi − 1− ln(λi)). (30)

Suppose that (27) holds with ε ≤ 1/2, since Σ−1/2Σ̂Σ−1/2 and Σ−1Σ̂ have the same eigenvalues,

ε2 ≥ ‖Σ−1/2Σ̂Σ−1/2 − I‖2F =

d∑
i=1

(λi − 1)2 ≥
d∑
i=1

(λi − 1− ln(λ)), (31)

where the last inequality follows from the fact that x − 1 − ln(x) ≤ (x − 1)2 for x ≥ 1/2. Since
ε ≤ 1/2, we have (λi − 1)2 ≤ 1/4, which implies that λi ∈ [1/2, 3/2]. Substituting (31) into (30),
and combining (29) and (28) give that the TV

(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε.

The only thing left is to prove that (27) holds. According to Theorem 1, given Õ
(

1
η2 ln(dδ)

)
samples,

we have
‖Σ̂− Σ‖F ≤ η‖W ∗‖2F , ‖b̂− b∗‖2 ≤ η‖W ∗‖F . (32)

We can bound ‖Σ−1/2(̂b− b∗)‖2 and ‖Σ−1/2Σ̂Σ−1/2 − I‖F as

‖Σ−1/2(̂b− b∗)‖2 ≤ ‖Σ−1/2‖2‖b̂− b‖2 ≤ ‖Σ−1/2‖2η‖W ∗‖F ≤ η
√
κd.

‖Σ−1/2Σ̂Σ−1/2 − I‖F = ‖Σ−1/2(Σ̂− Σ)Σ−1/2‖F ≤ ‖Σ−1/2‖22‖Σ̂− Σ‖F ≤ ηκd.
Now setting η = ε/(κd) gives (27).

F Proof of Theorem 2

To establish a lower bound for parameter estimation, the key step is to construct a local packing set
such that their parameter distance is large but their KL divergence is small (and hence it is hard to
distinguish them without observing many samples). We remark that our way of constructing this
local packing is similar to the one used in proving the minimax rate for Gaussian mean estimation
(see, e.g., [Duc19]), despite the fact that our class of distributions is not Gaussian.

We will start by stating three results in information theory and statistics. Proofs of Lemma 5, 6, and 7
can be found in, e.g., [Duc19].
Lemma 5. (Gilbert-Varshamov bound). There is a subset V of the d-dimensional hypercube {0, 1}d
of size |V| ≥ exp(d/8) such that the `1-distance

‖v − v′‖1 =

d∑
j=1

1(vj 6= v′j) ≥ d/4, for any v, v′ ∈ V. (33)

Lemma 6. (Fano’s inequality). Let V be a random variable taking values uniformly in the finite set
V with cardinality |V| ≥ 2. Conditioned on V = v, we draw a sample X ∼ Pv . The KL divergence
of the distributions {Pv}v∈V satisfy

KL(Pv ‖ Pv′) ≤ β, for any v, v′ ∈ V. (34)

For any Markov chain V → X → V̂ ,

P[V̂ 6= V] ≥ 1− β + ln(2)

ln(|V|)
. (35)

15

Lemma 7. (Data processing inequality for f -divergence). Let f1 and f2 be the distributions of two
random variables x1 and x2. Let g1 and g2 be the distributions of two random variables T (x1) and
T (x2), where T (·) is any function. For any f -divergence Df (· ‖ ·), we have

Df (f1 ‖ f2) ≥ Df (g1 ‖ g2). (36)

We are now ready to prove Theorem 2, which is restated below.
Theorem. Let σ > 0 be a fixed and known scalar. Let Id be the identity matrix in Rd. Let
S := {D(W, b) : W = σId, b ∈ Rd non-negative} be a class of distributions in Rd. Any algorithm
that learns S to satisfy ‖b̂ − b∗‖2 ≤ ε‖W ∗‖F with success probability at least 2/3 requires Ω(1

ε2)
samples.

Proof. Let V ⊂ {0, 1}d be a finite set satisfying the property in Lemma 5. Given an ε ∈ (0, 1), we
can construct a finite set of distributions {Pv}v∈V as follows:

Pv = D(σId, bv), where bv = 6εσv. (37)

Clearly {Pv}v∈V belong to the class of the distributions that we are interested in. Furthermore, they
satisfy two properties:

• Property 1: ‖bv − bv′‖2 ≥ 3εσ
√
d and |V| ≥ exp(d/8).

• Property 2: KL(Pv ‖ Pv′) ≤ 18dε2.

Assuming that the above two properties hold, we can use Fano’s inequality (Lemma 6) to obtain a
sample complexity lower bound for learning {Pv}v∈V . Let V be a random variable taking values
uniformly in V . Conditioned on V = v, we draw n i.i.d. samples Xn ∼ Pnv , where Pnv represents a
product distribution of n Pv’s. Given Xn, our goal is to output an index v̂ ∈ V . By Lemma 6, any
estimator will suffer an estimation error larger than

P[V̂ 6= V] ≥ 1− 18ndε2 + ln(2)

d/8
, (38)

which follows from the fact that |V| ≥ exp(d/8) (Property 1) and KL(Pnv ||Pnv′) = nKL(Pv||Pv′) ≤
18ndε2 (Property 2). Eq. (38) implies that any estimator that estimates the index correctly with
probability at least 2/3 must observe Ω(1

ε2) samples. Furthermore, by Property 1, ‖bv − bv′‖2 ≥
3εσ
√
d, any algorithm that learns S to satisfy ‖b̂− b∗‖2 ≤ ε‖W ∗‖F = εσ

√
d can be used to estimate

V (we can just choose v̂ ∈ V such that bv̂ is closest to b̂). Therefore, any algorithm that learns S to
satisfy ‖b̂− b∗‖2 ≤ ε‖W ∗‖F with success probability at least 2/3 requires Ω(1

ε2) samples.

The only thing left is to show that Property 1 and 2 hold. Property 1 follows from Lemma 5 and the
way we construct Pv . Property 2 is true because of the following two facts.

• Fact 1: The KL-divergence between two Gaussian distributions can be computed as

KL(N (bv, σ
2Id) ‖ N (bv′ , σ

2Id)) =
‖bv − bv′‖22

2σ2
= 18dε2. (39)

• Fact 2: KL(Pv ‖ Pv′) ≤ KL(N (bv, σ
2Id) ‖ N (bv′ , σ

2Id)), which follows from Lemma 7
and the fact that KL-divergence is an instance of f -divergence.

G Proof of Theorem 3

We first restate the theorem, and then give the proof.
Theorem. Let S := {D(W, 0) : W ∈ Rd×d full rank} be a set of distributions in Rd. Any algorithm
that learns S within total variation distance ε and success probability at least 2/3 requires Ω(dε2)
samples.

16

Proof. Similar to the proof of Theorem 2, we construct a local packing of S for which their pairwise
TV distance is large while their KL-divergence is small. Let V ⊂ {0, 1}d be a finite set satisfying the
property in Lemma 5. Given an ε ∈ (0, 1), define λ = C · ε/

√
d, where C is a universal constant to

be specified later, we can construct a finite set of distributions {Pv}v∈V as follows:
Pv = D(Wv, 0), where Wv = Id + λ · diag(v). (40)

Here diag(·) : Rd → Rd×d defines a diagonal matrix. This finite set of distributions satisfies two
properties:

• Property 1: TV(Pv, Pv′) ≥ 3ε and |V| ≥ exp(d/8).

• Property 2: KL(Pv ‖ Pv′) = O(ε2).

Given the above two properties, we can use Fano’s inequality (Lemma 6) in a way similar to the
proof of Theorem 2 to conclude that any estimator that identifies Pv from i.i.d. samples with success
probability at least 2/3 must require Ω(d/ε2) samples. Since TV(Pv, Pv′) ≥ 3ε, any algorithm that
learns S within TV distance ε can be used to estimate {Pv}v∈V (we can just choose Pv that has the
smallest TV distance to the output of the algorithm). This implies that any algorithm that learns S
within TV distance ε with success probability at least 2/3 requires Ω(d/ε2) samples.

The only thing left is to show that the two properties hold for our packing set {Pv}v∈V . To prove
Property 2, note that

KL(Pv ‖ Pv′)
(a)

≤ KL(N (0,WvW
T
v) ‖ N (0,Wv′W

T
v′))

(b)
= O(λ2d) = O(ε2), (41)

where (a) follows from Lemma 7 and the fact that KL-divergence belongs to f -divergence; (b)
follows from exactly computing the KL-divergence between the two Gaussian distributions. Before
computing that, we need a few more notations. Specifically, let Sv = {i ∈ [d] : Wv(i, i) = 1 + λ}
be the set of coordinates that the corresponding diagonal entry of Wv is 1 + λ. We use Sv − Sv′ =
{i ∈ Sv : i 6= Sv′} to denote the difference between two sets. For simplicity, we write Σv = WvW

T
v .

Now we can compute the KL-divergence between the two Gaussian distributions as

2KL(N (0,WvW
T
v) ‖ N (0,Wv′W

T
v′))

= Tr
(
Σ−1
v′ Σv − Id

)
+ ln (det(Σv′))− ln (det(Σv))

= |Sv − Sv′ |
(
(1 + λ)2 − 1

)
+ |Sv′ − Sv|

(
1

(1 + λ)2
− 1

)
+ 2|Sv′ | ln(1 + λ)− 2|Sv| ln(1 + λ)

(a)

≤ |Sv|
[
(1 + λ)2 − 1− 2 ln(1 + λ)

]
+ |Sv′ |

[
2 ln(1 + λ) +

1

(1 + λ)2
− 1

]
(b)

≤ |Sv|
(

2λ+ λ2 − 2λ

1 + λ

)
+ |Sv′ |

(
2λ− 2λ+ λ2

(1 + λ)2

)
= |Sv|

3λ2 + λ3

1 + λ
+ |Sv′ |

3λ2 + 2λ3

(1 + λ)2

(c)
= O(dλ2) = O(ε2),

where (a) follows from |Sv| ≤ |Sv − Sv′ |, (b) follows from ln(1 + x) ≤ x, and (c) is true because
|Sv| ≤ d and λ ∈ (0, 1). Substituting λ = O(ε/

√
d) gives the final result.

To prove Property 1, note that |V| ≤ exp(d/8) directly follows from Lemma 5. The key challenge lies
in proving a lower bound for TV(Pv, Pv′). Note that the data-processing inequality (i.e., Lemma 7)
only implies that TV(Pv, Pv′) ≤ TV(N (0,WvW

T
v),N (0,Wv′W

T
v′)), so we cannot use the TV

distance for Gaussian to obtain a lower bound on the TV distance for rectified Gaussian. Our
proof strategy instead is to directly compute the TV distance for the specially-constructed {Pv}v∈V
(computing the exact TV distance is hard for general rectified Gaussian distributions). Specifically,
let Σv = WvW

T
v , our proof uses the following two facts:

• Fact 1: TV(N (0,Σv),N (0,Σv′)) ≥ 0.01‖Σ−1
v Σv′ − Id‖F ≥ C ′ · λ

√
d, where C ′ is a

universal constant.

17

• Fact 2: Let Qv be the probability density function of a multivariate normal distribution
N (0,Σv). Let Rd>0 = {x ∈ Rd : x > 0 coordinate-wise} be the (open) positive orthant.
Then

‖Qv −Qv′‖1 =

∫
Rd

|Qv(x)−Qv′(x)|dx = 2d
∫
Rd

>0

|Qv(x)−Qv′(x)|dx.

The first inequality in Fact 1 follows from [DMR18, Theorem 1.1]. The second inequality follows
from our definition of Σv . Specifically, the diagonal entry of Σv is either 1 or 1 +λ. By Lemma 5, we
know that Σv and Σv′ have at least d/4 different diagonal entries. Since the total variation distance
is symmetric, i.e., TV(N (0,Σv),N (0,Σv′)) = TV(N (0,Σv′),N (0,Σv)), we can w.l.o.g assume
that among the diagonal entries that Σv is different from Σv′ , Σv′ has more entries with value 1 + λ
than entries with value 1. This then implies that ‖Σ−1

v Σv′ − Id‖F = Ω(λ
√
d).

Fact 2 is true because N (0,Σv) has zero mean and diagonal covariance matrix, and hence the value
of Qv(x) is invariant to the sign of x’s coordinates.

Now we prove a lower bound on TV(Pv, Pv′), assuming that are all the d diagonal entries of Σv
and Σv′ are different. Let Ω ⊆ [d] be any subset of the d coordinates. For any Ω, let xΩ ∈ R|Ω|
be the sub-vector of x ∈ Rd over the coordinates in Ω. Let Ωc = [d] − Ω be its complement.
We can re-write TV(Pv, Pv′) as a summation of integrals, where each integral is over the space
AΩ = {x ∈ Rd : xΩ > 0, xΩc = 0}:

TV(Pv, Pv′) = ‖Pv − Pv′‖1 =
∑
Ω

∫
x∈AΩ

|Pv(x)− Pv′(x)|dx. (42)

We now give a lower bound for every integral. Let Σv,Ω ∈ R|Ω|×|Ω| be the sub-matrix of Σv over the
coordinates in Ω. Since Σv has zero mean and diagonal covariance matrix, for any Ω ⊆ [d] and any
x ∈ AΩ, we have Pv(x) = (1

2)|Ω
c|Pv,Ω(xΩ), where Pv,Ω is the probability density function of the

normal distribution N (0,Σv,Ω). By Fact 1 and 2, we have∫
x∈AΩ

|Pv(x)− Pv′(x)|dx = (
1

2
)|Ω

c| · 1

2|Ω|
TV(N (0,Σv,Ω),N (0,Σv′,Ω))

≥
C ′ · λ

√
|Ω|

2d
. (43)

Combining (42) and (43) gives

TV(Pv, Pv′) ≥
d∑
i=0

(
d

i

)
C ′ · λ

√
i

2d

≥
d∑

i=bd/2c

(
d

i

)
C ′ · λ

√
bd/2c

2d

(a)

≥
C ′ · λ

√
bd/2c

2d
1

2

d∑
i=0

(
d

i

)
(b)
=
C ′ · λ

√
bd/2c

2

(c)
= 3ε, (44)

where (a) follows from the fact that
(
d
i

)
=
(
d
d−i
)
, (b) is true because

∑
i

(
d
i

)
= 2d, and (c) holds if

we choose λ = C · ε/
√
d with a proper constant C.

So far we have proved that TV(Pv, Pv′) ≥ 3ε when all the d diagonal entries of Σv and Σv′ are
different. The proof can be easily extended when only a subset of their diagonal entries are different.
Let Ω ⊂ [d] be the subset of d diagonal entries that Σv and Σv′ are different. By Lemma 5, we know

18

that |Ω| ≥ d/4. The definition of TV distance gives

TV(Pv, Pv′) =

∫
x

|Pv(x)− Pv′(x)|dx

(a)
=

∫
xΩc

∫
xΩ

|PvΩ(xΩ)PvΩc (xΩc

)− P(v′)Ω(xΩ)P(v′)Ωc (xΩc

)|dxΩ dxΩc

(b)
=

∫
xΩ

|PvΩ(xΩ)− P(v′)Ω(xΩ)|dxΩ

∫
xΩc

PvΩc (xΩc

) dxΩc

=

∫
xΩ

|PvΩ(xΩ)− P(v′)Ω(xΩ)|dxΩ

= TV(PvΩ , P(v′)Ω). (45)

Here equality (a) uses the fact that Pv and Pv′ have independent coordinates as Σv and Σv′ are
diagonal matrices. Equality (b) follows from the definition of Ω: the diagonal entries in Ωc are the
same for Σv and Σv′ , and hence, PvΩc (xΩc

) = P(v′)Ωc (xΩc

).

By (45), we have proved that the TV distance between Pv and Pv′ equals the TV distance between the
two distributions over the coordinates in Ω. By definition, ΣvΩ ∈ R|Ω|×|Ω| and Σ(v′)Ω ∈ R|Ω|×|Ω|
have different diagonal entries, and |Ω| ≥ d/4, we can use the same proof in (44) to show that
TV(PvΩ , P(v′)Ω) ≥ 3ε for small enough λ.

H Open Problems

H.1 Negative Bias

Our algorithm relies on the assumption that the bias vector is non-negative. This assumption is
required to ensure that Lemma 2 holds, which subsequently ensures that the pairwise angles between
the row vectors of W ∗ can be correctly recovered. A weaker assumption would be allowing the bias
vector b∗ to be negative but constraining the largest negative values. Designing algorithms under this
weaker assumption is an interesting direction for future research.

When b∗ has negative components, running our algorithm can still recover part of the parameters
with a small number of samples. Specifically, let Ω := {i ∈ [d] : b∗(i) ≥ 0} be the set of coordinates
that b∗ is non-negative; let b∗Ω ∈ R|Ω| and W ∗Ω ∈ R|Ω|×k be the sub-vector and sub-matrix associated
with the coordinates in Ω. Then given O(1

ε2 ln(dδ) samples, the output of our algorithm b̂ ∈ Rd and
Σ̂ ∈ Rd×d satisfies

‖Σ̂Ω×Ω −W ∗ΩW ∗TΩ ‖F ≤ ε‖W ∗Ω‖2F , ‖b̂Ω − b∗Ω‖2 ≤ ε‖W ∗Ω‖F ,
with probability at least 1− δ. The above guarantee is the same as Theorem 1. The reason is that our
algorithm only uses the i-th and j-th coordinates of the samples to estimate 〈W ∗(i, :),W ∗(j, :)〉 and
b∗(i), b∗(j). As a result, Theorem 1 still holds for this part of the parameters.

For the rest part of the parameters, if the negative components of b∗ are small (in absolute value),
then the error of our algorithm will be also small. Let Ωc be the complement of Ω. We assume that
there is a value η ≥ 0 such that the negative coordinates of b∗ satisfy

b∗(i) ≥ −η‖W ∗(i, :)‖2, for all i ∈ Ωc.

Given Õ(ln(d)/ε2) samples, the output of our algorithm satisfies

|̂b(i)− b∗(i)| ≤ max(η, ε)‖W ∗(i, :)‖2, for all i ∈ Ωc.

One can show a similar result for 〈W ∗(i, :),W ∗(j, :)〉, where i ∈ Ωc and j ∈ [d]:

|Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉 | ≤ 7 max(η, ε)‖W ∗(i, :)‖2‖W ∗(j, :)‖2.
Comparing the above two equations with (21) and (24), we see that the error from the negative bias
is small if η = O(ε). If η is large, i.e., if b∗ have large negative components, then estimating those
parameters becomes difficult (as indicated by Claim 2). In that case, maybe one should directly
estimate the distribution without estimating the parameters. This is an interesting direction for future
research.

19

H.2 Two-Layer Generative Model

One natural generalization of our problem is to consider distributions defined by a two-layer generative
model:
Definition 3. Given A ∈ Rd×p, W ∈ Rp×k, and b ∈ Rp, we define D(A,W, b) as the distribution
of a random variable x ∈ Rd generated as follows:

x = A ReLU(Wz + b), where z ∼ N (0, Ik). (46)

Given i.i.d. samples x ∼ D(A,W, b), can we recover the parameters A,W, b (up to permutation
and scaling of the columns of A)? While this problem seems hard in general, we find an interesting
connection between this problem and non-negative matrix factorization. A non-negative matrix has
all its entries being non-negative. Note that in our problem, the A matrix does not need to be a
non-negative matrix.

Connection to Non-negative Matrix Factorization (NMF). In MNF, we are given a non-negative
matrixX ∈ Rd×n and an integer p > 0, the goal is to find two non-negative matricesA ∈ Rd×p,M ∈
Rp×n such that X = AM . This problem is NP-hard in general [Vav09]. Arora et al. [AGKM12]
give the first polynomial-time algorithm under the “separability” condition [DS04]:
Definition 4. The factorization X = AM is called separable9 if for each i ∈ [p], there is a column
f(i) ∈ [n] of M such that M(:, f(i)) ∈ Rp has only one non-zero positive entry at the i-th location,
i.e., M(i, f(i)) > 0 and M(j, f(i)) = 0 for j 6= i.

If the separability condition holds, then the algorithm proposed in [AGKM12] is guaranteed to find a
separable non-negative factorization in time polynomial in n, p, d.

In our problem, we are given n samples {xi}ni=1 from D(A,W, b). Stacking these samples to form a
matrix X ∈ Rd×n as

X = AM, where M(:, i) = ReLU(Wzi + b), i ∈ [n]. (47)

Note that M ∈ Rp×n is a non-negative matrix while A can be an arbitrary matrix. Nevertheless, if
M satisfies the separability condition (Definition 4), and A has full column rank (i.e., the columns of
A are linearly independent), then we can still use the same idea of [AGKM12] to exactly recover A
and M (up to permutation and scaling of the column vectors in A). Once M ∈ Rp×n is recovered,
estimating W and b is the same problem as learning one-layer ReLU generative model, and hence
can be done by our algorithm (Algorithm 1) assuming that b is non-negative.

The pseudocode is given in Algorithm 4. We first create a set S by normalizing each sample and
removing zero and duplicated vectors. The next step is to check for each vector v ∈ S, whether v
can be represented as a conical sum (i.e., non-negative linear combination) of the rest vectors in S.
This can be done by checking the feasibility of a linear program. For example, checking whether
vector v can be expressed as a conical sum of two vectors w1, w2 is equivalent to checking whether
the following linear program is feasible:

min
c1≥0, c2≥0

c1 + c2 s.t. c1w1 + c2w2 = v.

We only keep a vector if it cannot be written as the conical sum of the other vectors. Those vectors
are then stacked to form Â. Let Â† = (ÂT Â)−1ÂT be the pseudo-inverse of Â. The last step is to
compute {Â†xi}ni=1 and treat them as samples from one-layer ReLU generative model so that we
can run Algorithm 1 to estimate W ∗W ∗T and b∗.
Claim 3. Define X ∈ Rd×n and M ∈ Rp×n as in (47). Without loss of generality, we assume that
the column vectors of A∗ have unit `2-norm. Let Â be the output of Algorithm 4. If A∗ has full
column rank, and M satisfies the separability condition in Definition 4, then there is a way to permute
the column vectors of Â so that Â = A∗.

Proof. After Step 1-7, Algorithm 4 produces a set S which contains all nonzero and normalized
samples. Besides, the vectors in S are unique because the duplicated ones are removed in Step 7. To
prove Â = A∗ (up to permutation of the columns), we only need to prove that

9Here we define separability with respect to the M matrix while [AGKM12, Definition 5.1] defines it with
respect to the A matrix, but they are equivalent definitions.

20

Algorithm 4: Learning a two-layer ReLU generative model

Input: n i.i.d. samples x1, · · · , xn ∈ Rd from D(A∗,W ∗, b∗), b∗ is non-negative, A∗ has
linearly independent column vectors.

Output: Â ∈ Rd×p, Σ̂ ∈ Rp×p, b̂ ∈ Rp.
1 S ← ∅;
2 for i← 1 to n do
3 if xi 6= 0 then
4 S ← S ∪ {xi/‖xi‖2};
5 end
6 end
7 Remove duplicated vectors from S;
8 for v ∈ S do
9 if v is a conical sum of the rest vectors in S then

10 Remove v from S;
11 end
12 end
13 Â← stack vectors from S;
14 Σ̂, b̂← run Algorithm 1 with samples {Â†xi}ni=1.

• (a) All the (normalized) column vectors of A∗ are in S.

• (b) Except the column vectors in A∗, every vector in S can be represented as a conical sum
of the rest vectors in S.

• (c) Any column vector in A∗ cannot be represented as a conical sum of the rest vectors in S.

(a) is true because the M matrix satisfies the separability condition. According to Definition 4, for
every column vector of A∗, there is at least one sample x ∈ Rd which is a scaled version of that
column vector.

To prove (b), first note that all the vectors in S can be represented as a conical combination of the
column vectors of A∗. This is because M is a non-negative matrix and the samples are X = A∗M .
From (a), we know that all the column vectors of A∗ are also in S. Therefore, all the samples, except
those that are scaled versions of A∗’s columns, can be written as a conical combination of the rest
vectors in S.

We will prove (c) by contradiction. If a column vector of A∗ can be written as a conical combination
of the rest vectors in S, then it means that this column vector can be represented as a conical
combination of the column vectors in A∗. This will violate the fact that A∗ has full column rank.
Hence, any column vector in A∗ cannot be represented as a conical sum of the rest vectors in S.

According to Claim 3, if M satisfies the separability condition, and A∗ has full column rank, then
Algorithm 4 can exactly recover A∗ (up to permutation and scaling of the column vectors in A∗).
OnceA∗ is recovered, estimatingW and b is the same problem as learning one-layer ReLU generative
model, which can be done by Algorithm 1. One problem with the above approach is that it requires
the M ∈ Rp×n matrix to satisfy the separability condition. This is true when, e.g., W has full row
rank, and the number of samples is Ω(2k). Developing sample-efficient algorithms for more general
generative models is definitely an interesting direction for future research.

We simulate Algorithm 4 on a two-layer generative model with k = p = 5 and d = 10. We generate
A∗ ∈ R10×5 as a random Gaussian matrix, W ∗ ∈ R5×5 as a random orthogonal matrix, and let b∗
be zero. Given n, we run 100 times of Algorithm 4, and each time we use a different set of random
samples with size n. Table 1 lists the fraction of runs that Algorithm 4 successfully recovers A∗. We
see that the probability of success increases as we are given more samples.

21

Number of samples n 50 100 150
Probability of success in 100 runs 0.30 0.78 0.99

Table 1: We simulate a two-layer generative model: A∗ ∈ R10×5 is a random Gaussian matrix,
W ∗ ∈ R5×5 is a random orthogonal matrix, and b∗ = 0. For a fixed number of samples, we run
100 times of Algorithm 4 with different input samples. This table shows the fraction of runs that
Algorithm 4 successfully recovers A∗.

H.3 Learning from Noisy Samples

It is an interesting direction to design algorithms that can learn from noisy samples, e.g., samples
of the form x = ReLU(W ∗z + b∗) + ξ, where ξ ∼ N (0, σ2Id) represents the noise. In that case,
Algorithm 1 would not work because both parts of our algorithm (i.e., learn from truncated samples,
and estimate the pairwise angles) require clean samples. Nevertheless, the above problem is easy when
b∗ = 0. This is because we can estimate ‖W ∗(i, :)‖2 using the fact that Ez,ξ[x(i)2] = ‖W ∗(i, :)‖22/2,
and estimate θ∗ij using the following fact [CS09]:

E
z,ξ

[x(i)x(j)] =
1

2π
‖W ∗(i, :)‖2‖W ∗(j, :)‖2(sin

(
θ∗ij)− (π − θ∗ij) cos(θ∗ij)

)
.

22

	Introduction
	Related Work
	Identifiability
	Algorithm
	Intuition
	Estimate W(i,:)2 and b(i)
	Estimate ij
	Estimate WWT and b

	Lower Bounds
	Experiments
	Conclusion
	Acknowledgements
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Open Problems
	Negative Bias
	Two-Layer Generative Model
	Learning from Noisy Samples

