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A Numerical Experiments (Cont’d)

In this Appendix Section, we provide in Appendix Section A.1 the details about the set up for our
numerical experiments. We describe the evaluated instances for the State Space Exploration and
the Multi-Objective Optimization problems. Then, in Appendix Section A.2, we provide additional
numerical results for the State Space Exploration problem studied in the main text, as well as the
numerical results for the Multi-Objective Optimization problem.

A.1 Setup Details

Our simulation study is conducted on star-shaped instances. We first describe a parameteric procedure
GENSTAR(S, c), which returns a tuple (S, s1,A, p) that constitutes an MDP on a star graph, given a
positive integer S and a non-negative integer c.

The procedure GENSTAR(S, c) returns the following (S, s1,A, p):

• State space S = {0, 1, . . . S}. State 0 is the center state, while states 1, . . . , S are the branch
states.

– From the center state, the agent can travel to any state within one state transition.
– From a branch state, the agent can either stay at that branch state or travel to the center

state within one state transition.

• The starting state s1 is the center state 0.

• Action collection {As}Ss=0. The set A0 is for the center node 0, and for each s ∈ {1, . . . S}
the set As is for the branch state s.

– The action set A0 contains S ‘good’ actions a1, . . . , aS and c ‘bad’ actions b1, . . . , bc.
– The action set As contains 2 ‘good’ actions a0, as, and c ‘bad’ actions b1, . . . , bc.

• Transition kernel p:

– For the center state 0:
∗ For each 1 ≤ s ≤ S, we have p(s|0, as) = 0.95 = 1− p(0|0, as),
∗ For each b ∈ {b1, . . . bc}, we have p(s′|0, b) = 1/(S + 1) for s′ ∈ {0, . . . , S}.

– For each branch state s:
∗ We have p(s|s, as) = 0.95 = 1 − p(0|s, as), and p(0|s, a0) = 0.95 = 1 −
p(s|s, a0).

∗ For each b ∈ {b1, . . . bc}, we have p(s′|s, b) = 1/(S + 1) for s′ ∈ {0, . . . , S}.

State Space Exploration. We generate three instances: Small, Medium, Large. We define them
with GENSTAR. To complete the description of these instances, we discuss on how the vectorial
outcomes {V (s, a)}s,a and the target frequency vector % are defined. Recall that in the State Space
Exploration problem, the vectorial outcome V (s, a) is (with certainty) equal to the sth standard basis
vector es in RS , where es has value 1 at the s-coordinate and 0 at the other. For the tuple returned by
GENSTAR(S, c), we define the target frequency % as follows. For the center state 0, we define % = 0.
For each branch state s ∈ {1, . . . , S}, we define %s = 1/S.

With the discussions above, we see that once we specify the tuple (S, s1,A, p) by GENSTAR, the
whole problem instance for the State Space Exploration problem is fully defined. The instances
Small, Medium, Large are generated as follows:

• Small: GENSTAR(5, 2),

• Medium: GENSTAR(8, 3),

• Large: GENSTAR(12, 4).

Multi-Objective Optimization. We generate three instances: Small, Medium, Large. We define
them with GENSTAR. To complete the description of these instances, we discuss on how the vectorial
outcomes {V (s, a)}s,a, the KPI target vector ρ, and L0, L1, . . . LK are defined.

To define {V (s, a)}s,a, we first need to specify K, the dimension of each V (s, a). For the center
state 0, we define υ(s) to be the K-dimensional zero vector. For each branch state s ∈ {1, . . . , S},
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we generate a random vector υ(s) ∈ RK , where dK/2e randomly chosen coordinates in υ(s) are
uniformly distributed across [0.3, 1] and the other coordinates are 0. Lastly, for each state-action pair
s, a and each k ∈ {1, . . . ,K}, we define Vk(s, a) to be the Bernoulli random variable with mean
υk(s). Next, the KPI target ρ ∈ RK is defined as ρ =

∑
s∈S w(s)υ(s), where w ∈ ∆S is a randomly

chosen probability distribution on S. Finally, we specify L0 = L1 = . . . = LK = 1.

With the discussions above, we see that once we specify the tuple (S, s1,A, p) by GENSTAR and K,
the whole problem instance for Multi-Objective Optimization is fully defined. The instances Small,
Medium, Large are generated as follows:

• Small: GENSTAR(5, 2), K = 3,

• Medium: GENSTAR(8, 3), K = 5,

• Large: GENSTAR(12, 4), K = 6.

A.2 Additional Numerical Results for State Space Exploration
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Figure 3: Regret for State Space Exploration Instances (large version of Fig 2b)

First, we provide a larger plot in Fig. 3 for Fig 2b. With a closer view, we have the following two
observations. First, while the random policy incurs Reg(T ) = Ω(1) in all the three instances, we see
that the regret decreases when the instance becomes large. Indeed, a larger state space facilitates
uniform exploration when actions are chosen uniformly at random. Second, for the plots on the
performance of TFW-UCRL2, note that the error bars in the regret curve increase slightly when the
problem size decrease. The reason should similar to the reason of the first observation. With a smaller
state space, the deviation from the target frequency at each branch state has a greater impact on the
regret bound. Hence, the variation in the frequency of visiting a branch state would affect the regret
to a higher degree when the number of branches becomes smaller.

Next, we demonstrate in Fig 4 the full picture for the simultaneous convergence of each state’s visit
frequency to its target frequency in the Large instance. By simultaneous convergence, we mean
that if we perform one trial of TFW-UCRL2 for sufficiently many time steps T , then we observe
that

∑T
t=1 1(st = s)/T → %s simultaneously for all s ∈ S (recall that S = {0, 1, . . . 12}, and

% = (0, 1/12, 1/12, ..., 1/12)). Since the error bar diminishes in each of the 13 plots, we conclude
that TFW-UCRL2 succeeds in the desired simultaneous convergence as time progresses. Interestingly,
the trend of convergence for each state is distinct from one another, even when the instance is
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Figure 4: State Space Exploration on the Large instance

symmetric. In comparison to Fig 3, which demonstrate the error bars for standard deviation of the
average error from %, Fig 4 has larger error bars.

A.3 Numerical Results for Multi-Objective Optimization

The plots in Figs 5, 6 display our simulation results on the three Multi-Objective Optimization
instances: Small, Medium, Large. Figs 5, 6 are respectively the Multi-Objective Optimization
versions of Figs 3, 4.
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Figure 5: Regret for Multi-Objective Optimization

0.0

0.1

0.2

Obj 1 by algo
Obj 1 by PM
Target for Obj 1

103 104 105
0.00

0.05
Obj 2 by algo
Obj 2 by PM
Target for Obj 2

0.0

0.1

0.2

Obj 3 by algo
Obj 3 by PM
Target for Obj 3

103 104 105
0.0

0.1
Obj 4 by algo
Obj 4 by PM
Target for Obj 4

0.00

0.05

Obj 5 by algo
Obj 5 by PM
Target for Obj 5

103 104 105
0.0

0.1

0.2

Obj 6 by algo
Obj 6 by PM
Target for Obj 6

Figure 6: Multi-Objective Optimization on the Large instance

16



In Fig 5, we observe that TFW-UCRL2 converges much more slowly in the case of Multi-Objective
Optimization than the case of State Space Exploration (see Fig 3). Indeed, for Multi-Objective
Optimization, both v, p are not known, while for State Space Exploration only p is not known. Apart
from the difference in speed of convergence, Figs 3, 5 show similar trends in the performance of the
random policy and our TFW-UCRL2.

Fig 6 showcases the simultaneously convergence of the TFW-UCRL2 to each of the 6 KPI targets as
time progresses. Recall that in the Target Set Objective problem, it suffices to have TFW-UCRL2’s
performance V̄1:T,k (solid blue line) to be above the KPI target ρk (dash black line), for each
1 ≤ k ≤ 6. However, in this instance (Large instance) the KPI targets are not realizable. Therefore in
most of the plots in Fig 6, the algorithm approaches the KPI targets from below. Overall, we observe
a much slower convergence here than the previous case of State Space Exploration. In addition, the
TFW-UCRL2’s performance V̄1:T (solid blue lines) appears to be quite different from the offline
benchmark solution

∑
s,a v(s, a)x∗(s, a) (dotted cyan line).

B Supplementary Details on CO-OMDP and TFW-UCRL2

B.1 Properties of the Reward Function g

In this Appendix Section, we demonstrate the concavity, the Lipschitz continuity and smoothness of
the reward function g. Now, recall the projection function ΠU (w) = argminu∈U‖w − u‖2. By the
compactness of U , the argmin ΠU (w) exists, and it is unique by the convexity of U .

Concavity. It suffices to show that the function f(w) := minu∈U{‖w − u‖22} is convex in w. For
any w,w′ ∈ [0, 1]K , we readily see that

f

(
w + w′

2

)
= min

u∈U

{∥∥∥∥w + w′

2
− u
∥∥∥∥2

2

}

≤
∥∥∥∥w + w′

2
− ΠU (w) + ΠU (w′)

2

∥∥∥∥2

2

(15)

≤
[

1

2
‖w −ΠU (w)‖2 +

1

2
‖w′ −ΠU (w′)‖2

]2

=
1

4
‖w −ΠU (w)‖22 +

1

4
‖w′ −ΠU (w′)‖22 +

1

2
‖w −ΠU (w)‖2 ‖w

′ −ΠU (w′)‖2

≤1

2
‖w −ΠU (w)‖22 +

1

2
‖w′ −ΠU (w′)‖22 =

1

2
(f(w) + f(w′)) . (16)

Step (15) is by the convexity of U , which ensures that (ΠU (w) + ΠU (w′))/2 ∈ U . Step (16) is by
the Cauchy-Schwartz inequality.

Lipschitz Continuity. We next demonstrate that g is (L̄/
√
K)-Lipschitz continuous w.r.t. ‖ · ‖2 on

the domain [0, 1]K , where L̄ = L0 + max1≤k≤K |LK |. The Lipschitz continuity is an immediate
consequence of expressing the gradient of g:

∇g(w) =
1

K

[
(L1, . . . , LK)> − L0 · (w −ΠU (w))

]
.

Clearly, we have ‖∇g(w)‖2 ≤ L̄/
√
K, hence establishing the required Lipschitz continuity.

Smoothness. Finally, we argue that g is (2L0/K)-smooth w.r.t. the norm ‖ · ‖2 over the domain
[0, 1]K , that is, for any w,w′ ∈ [0, 1]K we have

‖∇g(w)−∇g(w′)‖2 ≤
L0

K
[‖w − w′‖2 + ‖ΠU (w)−ΠU (w′)‖2] ≤ 2L0

K
‖w − w′‖2.

B.2 Full Expressions of radvm,k(s, a), radpm(s′|s, a)

Define (log-v)m := log(12KSAτ2(m)/δ). The full expression of radvm,k(s, a) is

radvm,k(s, a) :=

√
2v̂m,k(s, a) · (log-v)m

N+
m(s, a)

+
3 · (log-v)m

N+
m(s, a)

.
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Define (log-p)m := log(12S2Aτ2(m)/δ). The full expression of radpm(s′|s, a) is

radpm(s′|s, a) :=

√
2p̂m(s′|s, a) · (log-p)m

N+
m(s, a)

+
3 · (log-p)m
N+
m(s, a)

.

B.3 Extended Value Iteration [28]

We present the Extended Value Iteration (EVI) algorithm from [28] in Algorithm 2. When we
apply the EVI algorithm at the start of the mth episode, the input r̃ is an optimistic estimate of the
scalarized reward, where r̃(s, a) = maxv̄(s,a)∈Hv

m(s,a)∇g(V̄1:τ(m)−1(s, a))>v̄(s, a). The input Hp

is a confidence region that contains the latent transition kernel p with high probability, and ε ∈ (0, 1)
is an error parameter.

Algorithm 2 EVI(r̃, Hp; ε), mostly extracted from [28]

1: Initialize VI record u0 ∈ RS as u0(s) = 0 for all s ∈ S.
2: for i = 0, 1, . . . do
3: For each s ∈ S, compute VI record

ui+1(s) = max
a∈As

Υ̃i(s, a), where Υ̃i(s, a) = r̃(s, a) + max
p̄∈Hp(s,a)

{∑
s′∈S

ui(s
′)p̄(s′)

}
.

4: if maxs∈S {ui+1(s)− ui(s)} −mins∈S {ui+1(s)− ui(s)} ≤ ε then
5: Break the for loop.
6: end if
7: end for
8: Define stationary policy π̃ : S → As as π̃(s) = argmaxa∈As

Υ̃i(s, a).

9: Define an optimistic dual solution φ̃ = maxs∈S {ui+1(s)− ui(s)}, γ̃ = ui.
10: Return policy π̃.
11: Auxiliary output: dual variables (φ̃, γ̃).

B.4 Proof of Claim 3.2

Claim 3.2. Every stationary policy incurs an Ω(1) anytime regret on the instance in Fig 1b.

Remarks. Before proving the Claim, we comment on our problem of communicating CO-OMDPs
as compared to the problems of BwR [2, 3, 14, 17] and unichain MDPs [32, 36, 41]. It is well
established that one can achieve Reg = o(T ) with suitable stationary (possibly randomized) policies,
for BwR [2] and for single [38] or multi-objective MDPs [6]. By Claim 3.2, our communicating
CO-OMDP problem is markedly different from those two cases, and requires a different approach
from those related works.

To elaborate on the unichain case, it is shown that for a unichain multi-objective MDP instanceM,
the optimal solution x∗ of the corresponding offline benchmark (PM) satisfies

∑
a∈As

x∗(s, a) > 0
for all s ∈ S. By following the stationary policy that chooses action a ∈ As at state s with proba-
bility x∗(s, a)/

∑
a′∈As

x∗(s, a′), it can be shown that limT→∞ g( 1
T

∑T
t=1 Vt(st, at)) = opt(PM)

with the technique in [6]. With mixing time assumptions along the line of [36, 41], the previous
convergence in limit can be made non-asymptotic in a form of a regret bound, but the regret bound
would depend on certain mixing time parameters, similar to [36, 41].

In contrast, with the communicating MDP assumption, we cannot hope to achieve Reg(T ) = o(T )
by a similar approach. Indeed, solving (PM) for the instance in Fig 1b gives the optimal solution
x∗(s1, ll) = x∗(s2, rl) = 1/2, and x∗(s, a) = 0 for all other state action pairs. We cannot construct
a stationary policy in the same way as the unichain case, since

∑
a∈As0

x∗(a, s0) = 0. In fact, a
more subtle issue is that the optimal solution x∗ does not inform the agent on how to act when she
is at state s0. Indeed, as demonstrated in Claim 3.2 and also in the discussion about our Gradient
Threshold Procedure (GTP) in Section 3, the choice of action at s0 very much depend on the numbers
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of visits to ll, rl in the previous rounds, which leads to a non-stationary policy that is not implied
by the solution x∗.

Finally, apart from overcoming the difficulty in working with x∗, our method also bypasses the
mixing time assumptions in [36, 41], which requires that all deterministic stationary policies jointly
satisfy some mixing time bounds. Our method (which harnesses [28] but also crucially depends on
our GTP) only needs to assume bounded diameters, which is much less severe than the assumptions
of mixing time [28].

Proof of Claim 3.2. Denote the state space of the instance in Fig 1b as S1b = {s0, s1, s2}, and recall
that the objective function is g(w) = −

∑2
k=1(wk − 0.5)2/2. A stationary policy, be it deterministic

or randomized, induces a time homogeneous Markov chain (S1b, p) on the instance in Fig 1b, where
p(s′|s) is the probability of transiting from s ∈ S1b to s′ ∈ S1b in the Markov chain. Every state
transition occurs along an arc in the instance in Fig 1b.

We prove the claim by inspecting (S1b, p) under different cases on p. If p(sk|sk) = 0 for some
k ∈ {1, 2}, then clearly V1:t,k = 0 for every t, leading to Reg(T ) = Ω(1) for all T . Else, suppose
that p(sk|s0) = 0 for some k ∈ {1, 2}. This means that the agent cannot reach sk from s0, which
still leads to Reg(T ) = Ω(1) for all T . Else, suppose that p(s0|sk) = 0 for some k ∈ {0, 1}. This
means that the agent cannot leave the state sk once she reaches sk. Therefore, under the stationary
policy, she either never visits sk, or she does visit sk, but she will not be able to visit s3−k forever.
This means that Reg(T ) = Ω(1) for sufficiently large T .

The remaining case is when p(s|s′) > 0 for all arcs from s to s′ in the instance. In this case, all states in
S1b forms a single recurrent class. By either the Perron-Frobenius Theorem or Theorem 1.7.5 in [35],
the stationary distribution {λs}s∈S1b is entry-wise positive, and in particular λs0 > 0. This implies
that limT→∞ E[

∑T
t=1 1(at ∈ As0)]/T > 0 , which further implies that limT→∞ E[| 1T

∑T
t=1 1(at =

ll)− 1
2 |+ |

1
T

∑T
t=1 1(at = rl)− 1

2 |] < 1. The mentioned time averages exist since the Markov
chain (S1b, p) is recurrent and aperiodic. As a result, we have limT→∞ g(V̄1:T ) < 0 = opt(PM),
which means that Reg(T ) = Ω(1) for sufficiently large T .

C Supplementary Proofs for Proving Theorem 3.1

C.1 Proof of Lemma 4.1 for events Ev, Ep

Lemma 4.1. It holds that P[Ev] ≥ 1− δ/2,P[Ep] ≥ 1− δ/2.

The proof of the Lemma uses the following Theorem by [7].

Theorem C.1 ([7]). Let random variables Y1, . . . , YN ∈ [0, 1] be independently and identically
distributed. Consider their sample mean ŶN and their sample variance σ̂2

Y,N :

ŶN =
1

N

N∑
i=1

Yi, σ̂2
Y,N =

1

N

N∑
i=1

(Yi − Ŷ )2.

For any δ ∈ (0, 1), the following inequality holds:

Pr

∣∣∣ŶN − E[Y1]
∣∣∣ ≤

√
2σ̂2

Y,N log(1/δ)

N
+

3 log(1/δ)

N

 ≥ 1−3δ. �

Proof of Lemma 4.1. We first analyze event Ev. Consider a fixed objective index k, a fixed state s
and a fixed action a. We assert that

P
[
|v̂m,k(s, a)− vk(s, a)| ≤ radvm,k(s, a) for all m

]
≥ 1− δ

2KSA
. (17)

Assuming inequality (17), the bound Pr[Ev] ≥ 1− δ/2 is established by taking a union bound over
s ∈ S, a ∈ As and k ∈ [K].
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We establish inequality (17) by applying Theorem C.1 and the union bound. First, note that v̂m,k(s, a)
is the sample mean of Nm(s, a) i.i.d. random variables, which are distributed as Vk(s, a). Let σ̂2

v,m,k

be the sample variance of these Nm(s, a) i.i.d random variables. To apply the union bounds, we also
consider ΥV

1 , . . . ,Υ
V
T , which are T i.i.d samples with the same distribution as Vk(s, a). Denote Υ̂V

t ,
σ̂2

ΥV ,t respectively as the sample mean and variance of ΥV
1 , . . . ,Υ

V
t . Let δv(t) = δ/(12KSAt2).

Now,

P

|v̂m,k(s, a)− vk(s, a)| ≤

√
2σ̂2

v,m,k log(1/δv(N+
m(s, a)))

N+
m(s, a)

+
3 log(1/δv(N+

m(s, a)))

N+
m(s, a)

∀m


≥P

∣∣∣Υ̂V
t − vk(s, a)

∣∣∣ ≤
√

2σ̂2
ΥV ,t

log(1/δv(t))

t
+

3 log(1/δv(t))

t
for all t ∈ [T ]

 (18)

≥1− 3

T∑
t=1

δv(t) = 1− δ

4KSA

T∑
t=1

1

t2
≥ 1− δ

2KSA
. (19)

Step (18) is by applying a union bound over all possible values of N+
m(s, a)s. Step (19) is by

applying Theorem C.1. Finally, note that σ̂2
v,m,k ≤ v̂m,k(s, a), since V (st, at) ∈ [0, 1]. Putting in

the definition of δv(t) yields

radvm,k(s, a) ≥

√
2σ̂2

v,m,k log(1/δv(N+
m(s, a)))

N+
m(s, a)

+
3 log(1/δv(N+

m(s, a)))

N+
m(s, a)

.

Altogether, the required inequality for Ev is shown.

Next, we analyze the event Ep by in a similar way. Consider fixed states s′, s ∈ S and a fixed action
a ∈ As. We assert that

P [|p̂m(s′|s, a)− p(s′|s, a)| ≤ radpm(s′|s, a) for all m] ≥ 1− δ

2S2A
. (20)

Assuming inequality (20), the bound Pr[Ep] ≥ 1− δ/2 is established by taking a union bound over
s′, s ∈ S and a ∈ As. Let Υp

1, . . . ,Υ
p
T be T i.i.d. Bernoulli random variables with the common

mean p(s′|s, a). For each t ∈ [T ], denote Υ̂p
t , σ̂

2
Υp,t respectively as the sample mean and sample

variance of Υp
1, . . .Υ

p
t . In addition, let δp(t) = δ/(12S2At2). We have

P [|p̂m(s′|s, a)− p(s′|s, a)| ≤ radpm(s′|s, a) for all m]

≥P

∣∣∣Υ̂p
t − p(s′|s, a)

∣∣∣ ≤
√

2σ̂2
Υp,t log(1/δp(t))

t
+

3 log(1/δp(t))

t
for all t ∈ [T ]


≥1− 3

T∑
t=1

δp(t) = 1− δ

4S2A

T∑
t=1

1

t2
≥ 1− δ

2S2A
.

Hence, the Lemma is proved.

C.2 The Remaining Proof of Lemma 4.3

In this Appendix, we continue with the proof of inequality (12), which states that

|MΨ(T )| ≤MΨ(T ) := 1 + (
√
KQ/2L0) + 4

√
2L0T/(

√
KQ).

Now, recall from inequality (14) that we arrive at

(τ(mj + 1)− τ(mj−1 + 1))2

τ(mj−1 + 1)
>

√
KQ

2L0
,

which means

τ(mj + 1) ≥ τ(mj−1 + 1) +

√√
KQ

2L0
· τ(mj−1 + 1). (21)

Equipped with inequality (21) we apply the following technical Claim:
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Claim C.2. Let C > 0. Suppose the sequence {ρj}∞j=1 satisfies ρ1 ≥ C2, and ρj+1 ≥ ρj + C
√
ρ
j
.

Then for all j ≥ 1 we have

ρj ≥
C2(j − 1)2

16
. (22)

We apply the Claim with C =
√√

KQ/(2L0), and with the sequence ρj = τ(mdC2e + j) for
j = 1, 2, . . ., then we arrive at

τ(md
√
KQ/(2L0)e+j) ≥

√
KQ(j − 1)2

32L0
. (23)

Finally, recall the random variable nΨ = |M|. If nΨ ≤
√
KQ/(2L0), then clearly (12) is established.

Otherwise, we put j = nΨ − d
√
KQ/(2L0)e − 1 in inequality (23), which gives

T ≥ τ(mnΨ
) ≥ τ

(
mdC2e+[nΨ−dC2e−1] + 1

)
≥
√
KQ

32L0
·

(
nΨ −

√
KQ

32L0
− 1

)2

. (24)

Finally, unravelling the bound (24) gives the required upper bound. To complete the argument, we
return to the proof of Claim C.2:

Proof of Claim C.2. We prove the required inequality (22) by induction on j. Inequality (22) is
clearly true for j = 1, 2. Now, suppose that inequality (22) is true for some j ≥ 2, we aim to show
that it is also true for j + 1:

ρj+1 ≥ (C/4)2(j − 1)2 + C · (C/4)(j − 1)

= (C/4)2 ·
[
(j − 1)2 + 4(j − 1)

]
≥ (C/4)2 · j2.

Altogether, the claim is proved.

C.3 Proof of Proposition 4.2, which Decomposes the Regret

Proposition 4.2. Consider an execution of TFW-UCRL2 on a communicating instance with diameter
D. For each T ∈ N, suppose that there is a deterministic constantM(T ) s.t. Pr[m(T ) ≤M(T )] = 1.
Conditioned on events Ev, Ep, with probability at least 1−O(δ) we have

T∑
t=1

θ>t [v∗ − Vt(st, at)] = Õ
(

(Q
√
K + L̄D)M(T )

)
+ Õ

(
L̄(D + 1)

√
ΓSAT

)
.

The proof of Proposition 4.2 is quite long, thus we divide the proof into several Appendix Sections.
In the following, we provide a roadmap for the proof, and provide the statements of Lemmas C.3,
C.4, C.6, C.7 and Claim C.5 that constitute the main part of the proof. These Lemmas and Claim
are proved in the subsequent Appendix Sections, after we provide the auxiliary results in Appendix
Section C.3.1 for the analysis.

Lemma C.3 is the Decomposition Lemma that breaks down θ>t [v∗ − Vt(st, at)] into manageable
components for further analysis:
Lemma C.3. Consider an execution of TFW-UCRL2 on a communicating instance. Let t be a time
index, and let m be the episode index such that τ(m) ≤ t < τ(m+ 1). In addition, let (φ̃m, γ̃m) be
the auxiliary output of EVI, which is applied at the start of episode m. Conditional on events Ev, Ep,
the following inequality holds:

θ>t [v∗ − Vt(st, at)] ≤ (♣t) + (♦t) + (♥t) + (♠t) + (¶t),
where v∗ =

∑
s∈S,a∈As

v(s, a)x∗(s, a) with x∗ optimal for (PM), and

(♣t) :=
[
θτ(m) − θt

]>
Vt(st, at), (♦t) := r̃m(st, at)− θ>τ(m)Vt(st, at), (25)

(♥t) :=
[
θt − θτ(m)

]>
v∗, (♠t) := max

p̄∈Hp
m(st,at)

{∑
s′∈S

γ̃m(s′)p̄(s′)

}
− γ̃m(st), (26)

(¶t) := 1/
√
τ(m). (27)
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A proof of Lemma C.3 is provided in Appendix C.3.2. The proof is based on relating (φ̃m, γ̃m), the
auxiliary dual variable output by EVI, to the dual of (PM) with linearized reward r̃m. The error
terms (25 – 27) account for the shortfall of the global reward collected by TFW-UCRL2, compared to
the offline reward. Next, we start the bounding of the error terms by first bounding (♣,♥), which
account for the error by the delay of gradient updates:
Lemma C.4. Suppose that gradient threshold Q > 0, and Pr [m(T ) ≤M(T )] = 1 for some
deterministic constant M(T ). With probability 1,

T∑
t=1

(♣t) ≤ Q
√
KM(T ),

T∑
t=1

(♥t) ≤ Q
√
KM(T ).

Lemma C.4 is proved in Appendix C.3.3. We next bound (¶,♥,♠), similarly to the styles in [28, 22],
but with important changes to adapt to our episode schedule. The error terms (¶,♥,♠) account for
the error due to optimistic exploration, and the term (♠) also penalizes for episode changes, which
lead to sub-optimality due to the switches in stationary policies and disrupt learning.

Claim C.5. With certainty, we have
∑T
t=1(¶t) ≤

(√
2 + 1

)√
T .

Lemma C.6. Conditional on event Ev , with probability at least 1− δ we have:
T∑
t=1

(♦t) = Õ
(
L̄
√
SAT

)
.

Lemma C.7. Suppose thatM is communicating with diameter D, and P [m(T ) ≤M(T )] = 1 for
some deterministic constant M(T ). Conditional on event Ep, with probability at least 1− δ we have

T∑
t=1

(♠t) = Õ
(
L̄D ·M(T )

)
+ Õ

(
L̄ ·D

√
ΓSAT

)
.

The proofs of Claim C.5, Lemmas C.6, C.7 are provided in Appendices C.3.4, C.3.5, C.3.6 respec-
tively. Altogether, Proposition 4.2 is proved by summing the bounds for (♣,♦,♥,♠,¶). �

C.3.1 Auxiliary results for analyzing TFW-UCRL2

In order to prove Lemmas C.3, C.4, C.6, C.7 and Claim C.5, we need the following auxiliary results.
First, we state the Hoeffding inequality for analyzing the dynamics of the online processes.
Theorem C.8 ([26]). Let random variables X1, . . . , XT constitute a martingale difference sequence
w.r.t. a filtration {Ft}Tt=1, that is, E[Xt|Ft−1] = 0 for all 1 ≤ t ≤ T . Also, suppose that |Xt| ≤ B
almost surely for all t. Then the following inequality holds for any 0 < δ < 1:

Pr

[
1

T

T∑
t=1

Xt ≤ B
√

2 log(1/δ)

T

]
≥ 1− δ. �

Next, we present auxiliary results, mostly from [28]. Theorem C.9 is useful for analyzing EVI.
Lemmas C.10, C.11 and Claim C.12 are useful for proving the convergence of TFW-UCRL2.
Theorem C.9 ([28]). Consider applying EVI (Algorithm 2) with input (r̃, Hp; ε), where the un-
derlying transition kernel p of lies in Hp, and the underlying instance is communicating with
diameter D. Then (i) EVI(r̃, Hp; ε) terminates in finite time, (ii) the output dual variables γ̃ satisfies
maxs∈S γ̃s −mins∈S γ̃s ≤ D ·maxs,∈S,a∈A |r̃(s, a)|. �

Lemma C.10 (Lemma 19 in [28]). For any sequence of numbers z1, . . . , zn with 0 ≤ zm ≤
Zm−1 := max{1,

∑m−1
i=1 zi}, we have

n∑
m=1

zm√
Zm−1

≤
(√

2 + 1
)√

Zn. �

Lemma C.11 ([28]). The following inequality holds with certainty:
T∑
t=1

1√
N+
m(t)(st, at)

≤
(√

2 + 1
)√

SAT . �
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Claim C.12. The following inequality holds with certainty:
T∑
t=1

1

N+
m(t)(st, at)

≤ SA (1 + 2 log T ) .

Proof of Claim C.12. To start the proof, first denote ν′m(T )(s, a) =
∑T
t=τ(m(T )) 1((st, at) = (s, a)).

Essentially ν′m(T )(s, a) is νm(T )(s, a) capped at the end of time step T . In addition, denote

N+′

m(T )+1(s, a) =
∑T
t=1 1((st, at) = (s, a)). Similar to ν′m(T )(s, a), N+′

m(T )+1(s, a) denotes the
version of N+

m(T )+1(s, a) capped at the end of time step T . Now,

T∑
t=1

1

N+
m(t)(st, at)

=

m(T )−1∑
m=1

∑
s∈S

∑
a∈As

νm(s, a)

N+
m(s, a)

+
∑
s∈S

∑
a∈As

ν′m(T )(s, a)

N+
m(T )(s, a)

.

Now, for every state-action pair s, a, we assert that

m(T )−1∑
m=1

νm(s, a)

N+
m(s, a)

+
ν′m(T )(s, a)

N+
m(T )(s, a)

≤ 1 + 2 log
(
N+′

m(T )+1(s, a)
)
. (28)

Indeed, the asserted inequality can be proved by drawing the following general fact: For any sequence
of numbers z1, . . . , zn with 0 ≤ zm ≤ Zm−1 := max{1,

∑m−1
i=1 zi}, we have

n∑
m=1

zm
Zm−1

≤ 1 + 2 logZn. (29)

We prove the inequality (29) by induction on n. The case for n = 1 is clearly true. Now, suppose the
inequality is true for n. Then it is also true for n+ 1, since

n+1∑
m=1

zm
Zm−1

≤ 1 + 2 logZn +
zn+1

Zn
≤ 1 + 2 logZn + 2 log

(
1 +

zn+1

Zn

)
= 1 + 2 logZn+1,

where we use the fact that x ≤ 2 log(1 + x) for x ∈ [0, 1]. Hence, the induction is established and
the (29) is proved for general n.

Given (29) for general n, we can readily establish (28) by applying (29) with n = m(T ), zm =

νm(s, a) for 1 ≤ m ≤ n − 1 and zn = ν′n(s, a). Altogether, noting that N+′

m(T )+1(s, a) ≤ T , we
achieve the required inequality.

C.3.2 Proof of Lemma C.3, which decomposes the regret

First, by the definitions of (♣t), (♦t), it is clear that

θ>t Vt(st, at) = r̃m(st, at)− [(♣t) + (♦t)] .
Thus, it suffices to show that

r̃m(st, at) ≥ θ>t
∑

s∈S,a∈As

v(s, a)x∗(s, a)− [(♥t) + (♠t) + (¶t)] . (30)

To prove (30), we first focus on the application EVI. By Assumption 2.1 and by assuming the event
Ep, we know that the oracle terminates in finite time, by virtue of item (i) in Theorem C.9. Thus, the
output policy π̃m and the auxiliary output dual variables (φ̃m, γ̃m) (Line 9 in EVI, Algorithm 2) are
well-defined. Now, we assert that

r̃m(st, at) ≥ φ̃m − [(♠t) + (¶t)] . (31)

To show (31), we let ũι+1, ũι ∈ RS respectively be the terminating and the penultimate VI records,
when EVI(r̃m, Hm

p , 1/
√
τ(m)) is applied. Now, we have

φ̃m − (¶t) = max
s∈S
{ũι+1(s)− ũι(s)} −

1√
τ(m)

(32)
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≤ min
s∈S
{ũι+1(s)− ũι(s)} (33)

≤ ũι+1(st)− ũι(st)

= max
a∈Ast

{
r̃m(st, a) + max

p̄∈Hp
m(st,a)

{∑
s′∈S

ũι(s
′)p̄(s′)

}}
− ũι(st)

= r̃m(st, at) + max
p̄∈Hp

m(st,at)

{∑
s′∈S

ũι(s
′)p̄(s′)

}
− ũι(st) (34)

= r̃m(st, at) + (♠t), (35)

where step (32) is by the definition of φ̃m, step (33) is by the terminating condition of EVI, and step
(34) is by the definition of π̃m, and step (35) is by the definition of γ̃m.

In order to prove the inequality (30) and complete the proof of the Lemma, it suffices to show

φ̃m ≥ θ>t
∑

s∈S,a∈As

v(s, a)x∗(s, a)− (♥t). (36)

To this end, we first claim that the auxiliary output dual variables (φ̃m, γ̃m) are feasible to the
following linear program (lin-Dm):

(lin-Dm): min φ

s.t. φ+ γ(s) ≥ r̃m(s, a) +
∑
s′∈S

p(s′|s, a)γ(s′) ∀s ∈ S, a ∈ As

φ, γ(s) free ∀s ∈ S.

Indeed, for any s ∈ S, a ∈ As, we have

φ̃m + γ̃m(s) ≥ ũι+1(s)− ũι(s) + ũι(s) = ũι+1(s)

≥ r̃m(s, a) + max
p̄∈Hp

m(s,a)

{∑
s′∈S

ũι(s
′)p̄(s′)

}
(38)

≥ r̃m(s, a) +
∑
s′∈S

ũι(s
′)p(s′|s, a) = r̃m(s, a) +

∑
s′∈S

γ̃m(s′)p(s′|s, a),

where step (38) is by the assumption that p ∈ Hp
m, since we condition on the event Ep. Therefore, we

have φ̃m ≥ opt(lin-Dm) = opt(lin-Pm), where the linear program

(lin-Pm): max
∑

s∈S,a∈As

r̃m(s, a)x(s, a)

s.t.
∑
a∈As

x(s, a) =
∑

s′∈S,a′∈As′

P (s|s′, a′)x(s′, a′) ∀s ∈ S

∑
s∈S,a∈As

x(s, a) = 1

x(s, a) ≥ 0 ∀s ∈ S, a ∈ As
is a dual formulation of (lin-Dm). The optimal solution x∗ of the offline benchmark problem (PM)
is feasible to the problem (lin-Pm), since both (PM), (lin-Pm) have the same feasible region.

Finally, we prove the inequality (36), and hence completing the proof of the Lemma. In the following
derivation, we denote ṽm(s, a) as an optimal solution to the optimization problem:

r̃m(s, a) = max
v̄(s,a)∈Hv

m(s,a)
θ>τ(m)v̄(s, a), (40)

which is solved for computing r̃m(s, a) in Line 6 in TFW-UCRL2, Algorithm 1:

φ̃m ≥
∑

s∈S,a∈As

r̃m(s, a)x∗(s, a)
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= θ>τ(m)

∑
s∈S,a∈As

ṽm(s, a)x∗(s, a)

=
∑

s∈S,a∈As

x∗(s, a)
[
θ>τ(m)ṽm(s, a)− θ>τ(m)v(s, a)

]
+
[
θτ(m) − θt

]> ∑
s∈S,a∈As

v(s, a)x∗(s, a) + θ>t
∑

s∈S,a∈As

v(s, a)x∗(s, a) (41)

≥ −(♥t) + θ>t
∑

s∈S,a∈As

v(s, a)x∗(s, a),

where step (41) holds, since we condition on the event Ev, which ensures that θ>τ(m)ṽm(s, a) −
θ>τ(m)v(s, a) ≥ 0 for each s ∈ S, a ∈ As. Therefore, the first sum in (41) is non-negative, hence the
step is justified. Altogether, inequality (36) is shown, and the Lemma is proved. �

C.3.3 Proof of Lemma C.4, which bounds (♣,♥)

Now,
T∑
t=1

(♣t) =

m(T )−1∑
m=1

τ(m+1)−1∑
t=τ(m)

[
θτ(m) − θt

]>
Vt(st, at) +

T∑
t=τ(m(T ))

[
θτ(m) − θt

]>
Vt(st, at)

≤
m(T )−1∑
m=1

τ(m+1)−1∑
t=τ(m)

∥∥θτ(m) − θt
∥∥

2
‖Vt(st, at)‖2 +

T∑
t=τ(m(T ))

∥∥θt − θτ(m)

∥∥
2
‖Vt(st, at)‖2

(42)

≤
m(T )−1∑
m=1

Q
√
K +Q

√
K w.p. 1 (43)

=Q
√
K ·M(T ).

Step (42) is by the triangle inqeuality and the Cauchy-Scwhartz inequality. Step (43) is by our
terminating criteria, which require Ψ ≤ Q for each episode, as well as the model assumption that
V (s, a) ∈ [0, 1]K . Similar to the above, we also have:

T∑
t=1

(♥t) =


m(T )−1∑
m=1

τ(m+1)−1∑
t=τ(m)

[
θt − θτ(m)

]
+

T∑
t=τ(m(T ))

[
θt − θτ(m)

]
> ∑
s∈S,a∈As

v(s, a)x∗(s, a)

≤


m(T )−1∑
m=1

τ(m+1)−1∑
t=τ(m)

∥∥θt − θτ(m)

∥∥
2

+

T∑
t=τ(m(T ))

∥∥θt − θτ(m)

∥∥
2


∥∥∥∥∥∥

∑
s∈S,a∈As

v(s, a)x∗(s, a)

∥∥∥∥∥∥
2

≤
m(T )−1∑
m=1

Q
√
K +Q

√
K w.p. 1

=Q
√
K ·M(T ).

Altogether, the Lemma is proved. �

C.3.4 Proof of Claim C.5, which bounds (¶)

The proof uses Lemma C.10. Let’s apply n = m(T ), as well as

zm =

{
τ(m+ 1)− τ(m) if 1 ≤ m < m(T )

T − τ(m) if m = m(T )
,

where we set τ(0) = 0. Now, Z0 = 1, Zm = τ(m) for 1 ≤ m < m(T ), and Zm(T ) = T . Therefore,

T∑
t=1

(¶t) =

m(T )−1∑
m=1

τ(m+1)−1∑
t=τ(m)

1√
τ(m)

+

T∑
t=τ(m(T ))

1√
τ(m(T ))
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=

n∑
m=1

zm√
Zm−1

≤
(√

2 + 1
)√

Zm(T ) =
(√

2 + 1
)√

T .

Hence the claim is proved. �

C.3.5 Proof of Lemma C.6, which bounds (♦)

The proof of the Lemma uses the Azuma-Hoeffding inequality in Theorem C.8, as well as Lemma
C.11 by [28] and Claim C.12.

To start the proof, we define ṽm(s, a) and m(t). We express r̃m(s, a) = θ>τ(m)ṽm(s, a), where
ṽm(s, a) is an optimal solution to the optimization problem (40) in the proof of the Decomposition
Lemma, Lemma C.3. For each t, we define m(t) to be the episode index such that τ(m(t)) ≤ t <
τ(m(t) + 1)− 1. We first decompose

∑T
t=1(♦t) as follows:

T∑
t=1

(♦t) ≤
T∑
t=1

r̃m(t)(st, at)− θ>τ(m(t))Vt(st, at)

=

T∑
t=1

θ>τ(m(t))

[
ṽm(t)(st, at)− v(st, at)

]
︸ ︷︷ ︸

(†v)

+

T∑
t=1

θ>τ(m(t)) [v(st, at)− Vt(st, at)]︸ ︷︷ ︸
(‡v)

.

We bound the sums (†v, ‡v) as follows:

Bounding (†v). We bound this term by invoking the confidence bounds asserted by the event Ev.
Define the notation (log-v) := log(12KSAT 2/δ). We have

(†v) =

T∑
t=1

θ>τ(m(t))

[
ṽm(t)(st, at)− v̂m(t)(st, at) + v̂m(t)(st, at)− v(st, at)

]
≤

T∑
t=1

∥∥θτ(m(t))

∥∥
2

[∥∥ṽm(t)(st, at)− v̂m(t)(st, at)
∥∥

2
+
∥∥v̂m(t)(st, at)− v(st, at)

∥∥
2

]
(44)

≤ 2
L̄√
K

T∑
t=1

∥∥∥(radvm(t),k(st, at))
K
k=1

∥∥∥
2

(45)

≤ 4L̄

√(log-v) ·
T∑
t=1

1√
N+
m(t)(st, at)

+ 3 · (log-v) ·
T∑
t=1

1

N+
m(t)(st, at)

 (46)

≤ 4L̄
[(√

2 + 1
)√

SAT · (log-v) + 3 · (log-v) · SA (1 + 2 log T )
]
.

Step (44) is by the Cauchy-Schwartz inequality, step (45) is by the assumption that the event Ev holds,
as well as the fact that ‖θτ(m(t))‖2 ≤ L̄/

√
K, since g is (L̄/

√
K)−Lipschitz w.r.t. ‖ · ‖2. Step (46)

is by Lemma C.11 and Claim C.12, as well as (log-v) ≥ (log-v)m for all m.

Bounding (‡v). Consider random variable Xt = θ>τ(m(t)) [v(st, at)− Vt(st, at)] and filtration
Ft = σ({st, at, Vt(st, at), θt+1}tτ=1). Now, |Xt| ≤ L̄, Xt is Ft-measurable with E[Xt|Ft−1] = 0.
Thus, we apply Theorem C.8 to conclude that, with probability ≥ 1− δ,

(‡v) ≤ L̄
√

2T log(1/δ).

Altogether, we have, with probability at least 1− δ,
T∑
t=1

(♦t) ≤ L̄

(5
√

2 + 4
)√∑

s∈S
|As|T · (log-v) + 12 · (log-v) ·

∑
s∈S
|As| log T

 (47)

= O

(
L̄

√
SAT log

KSAT

δ
+ L̄SA log2 KSAT

δ

)
.

Hence, the Lemma is proved. �
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C.3.6 Proof of Lemma C.7, which bounds (♠)

First, observe that by item (ii) in Theorem C.9, we have

max
s∈S
{γ̃m(s)} −min

s∈S
{γ̃m(s)} ≤ D ·max

s,a
max

w∈Hv
m(s,a)

θ>mw ≤ L̄D

for all m. The first inequality is by part (ii) in Theorem C.9, as well as the fact that conditioned on
Ep, we have p ∈ Hp

m for all m. The second inequality is by these two inequalities: ‖θ‖2 ≤ L̄/
√
K

by the (L̄/
√
K)-Lipschitz continuity of g w.r.t. ‖ · ‖2, and ‖w‖2 ≤

√
K for all w ∈ Hv

m(s, a).

For each episode m and state s, consider replacing γ̃m(s) by γm(s) := γ̃m(s)−mins′∈S{γ̃m(s′)}.
Now, 0 ≤ maxm,s{γm(s)} ≤ L̄D, and the value of each (♠t) is preserved:

(♠t) = max
p̄∈Hp

m(t)
(st,at)

{∑
s′∈S

γ̃m(t)(s
′)p̄(s′)

}
− γ̃m(t)(st)

= max
p̄∈Hp

m(t)
(st,at)

{∑
s′∈S

γm(t)(s
′)p̄(s′)

}
− γm(t)(st),

where m(t) is the episode index such that τ(m(t)) ≤ t < τ(m(t) + 1).

Consider the following decomposition:
T∑
t=1

(♠t) =

T∑
t=1

[
max

p̄∈Hp
m(st,at)

{∑
s′∈S

γm(t)(s
′)p̄(s′)

}
−
∑
s∈S

γm(t)(s)p(s|st, at)

]
︸ ︷︷ ︸

(†p)

+

T∑
t=1

[∑
s∈S

γm(t)(s)p(s|st, at)− γm(t)(st)

]
︸ ︷︷ ︸

(‡p)

.

Bounding (†p). We proceed by unraveling Hp
m. Now, denote (log-p) := log(12S2AT 2/δ).

(†p) ≤
T∑
t=1

[
max

p̄∈Hp
m(t)

(st,at)

{∑
s∈S

γm(t)(s)p̄(s)

}
− min
p̄∈Hp

m(t)
(st,at)

{∑
s∈S

γm(t)(s)p̄(s)

}]

≤ 2

T∑
t=1

∑
s∈S

γm(t)(s)rad
p
m(t)(s|st, at)

≤ 2L̄D

T∑
t=1

∑
s∈S

[√
2p̂m(t)(s′|s, a) · (log-p)

N+
m(t)(s, a)

+
3(log-p)

N+
m(t)(s, a)

]

≤ 2L̄D

T∑
t=1

[√
2Γ · (log-p)
N+
m(t)(s, a)

+
3 · S(log-p)
N+
m(t)(s, a)

]
(48)

≤ 2(
√

2 + 1)L̄D
√

2ΓSAT · (log-p) + 6L̄DS2A(1 + 2 log T )(log-p). (49)

We justify step (48) as follows. Now, recall Γ = maxs∈S,a∈As
‖p(·|s, a)‖0. With certainty, we

have ‖p̂m(·|s, a)‖0 ≤ ‖p(·|s, a)‖0 ≤ Γ. Indeed, for each s′ ∈ S, p(s′|s, a) = 0 implies that
p̂m(s′|s, a) = 0 with certainty. By the Cauchy-Schwartz inequality,∑

s′∈S

√
p̂m(s′|s, a) =

∑
s′∈S

√
p̂m(s′|s, a) · 1(p(s′|s, a) > 0)

≤

√√√√[∑
s′∈S

p̂m(s′|s, a)

][∑
s′∈S

1(p(s′|s, a) > 0)

]
=
√
‖p(·|s, a)‖0 =

√
Γ.

Step (49) is by Proposition C.11 and Claim C.12.
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Bounding (‡p). We analyze the term by accounting for the number of episodes:

(‡p) =
[
γm(T+1)(sT+1)− γm(1)(s1)

]
+

T∑
t=1

[∑
s∈S

γm(t)(s)p(s|st, at)− γm(t+1)(st+1)

]

=
[
γm(T+1)(sT+1)− γm(1)(s1)

]
+

T∑
t=1

[
γm(t)(st+1)− γm(t+1)(st+1)

]
+

T∑
t=1

[∑
s∈S

γm(t)(s)p(s|st, at)− γm(t)(st+1)

]
w.p. 1 (50)

≤ max
t,s
{γm(t)(s)}(M(T ) + 1) +

T∑
t=1

[∑
s∈S

γm(t)(s)p(s|st, at)− γm(t)(st+1)

]
(51)

≤ max
t,s
{γm(t)(s)}(M(T ) + 1) + max

t,s
{γm(t)(s)}

√
2T log(1/δ) w.p. 1− δ

≤ L̄D(M(T ) + 1) + L̄D
√

2T log(1/δ).

Step (51) is shown by analyzing the second summation in (50), which is
∑T
t=1 γm(t)(st+1) −

γm(t+1)(st+1). In the summation, at most m(T ) ≤ M(T ) summands are non-zero, and each
non-zero summand is less than or equal to maxt,s{γm(t)(s)} ≤ L̄D.

Combining the bounds for (†p, ‡p), with probability at least 1− δ we have

T∑
t=1

(♠t) ≤ (2
√

2 + 3)L̄D
√

2ΓSAT · (log-p) + L̄ ·D(M(T ) + 1) (52)

+ 6L̄DS2A(1 + 2 log T ) · (log-p)

=O
(
L̄DM(T )

)
+O

(
L̄D

√
ΓSAT log

SAT

δ
+ L̄DS2A log2 SAT

δ

)
.

Altogether, the Lemma is proved. �
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