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A Experiments on Image Captioning

A.1 Dataset and Evaluation Metrics

MSCOCO [5] is a popular dataset for image captioning. It contains 123,287 images, each of which is
paired with 5 descriptive sentences. Following common practice [16, 2, 15, 14], we report results
with the help of the MSCOCO captioning evaluation toolkit [5], and use the publicly-available splits
provided by Karpathy and Li [8], where the validation set and test set both contain 5,000 images.
The toolkit includes the commonly-used evaluation metrics SPICE, CIDEr, BLEU, METEOR and
ROUGE in image captioning task. SPICE [1] and CIDEr [19] are customized for evaluating image
captioning systems, based on scene-graph matching and n-gram matching, respectively. BLEU [17]
and METEOR [4] are originally designed for machine translation, and ROUGE [11, 12] measures
the quality of summaries.

A.2 Baselines and Implementation Details

We design five representative baselines, which are built on the models in previous work. Especially,
since our main contribution is to provide a new kind of image representations, those baselines use
different kinds of image representations, and we keep the backbone of those models as neat as
possible.

The baselines are described as follows:

• Visual Attention. The Visual Attention model is adapted from the spatial attention model in
Lu et al. [16]. It uses the 49 grid visual features I ∈ RLI×dh from the last convolutional layer of
ResNet-152 as the image representation. The decoder is a LSTM model initialized with two zero
vectors: h0 = 0, c0 = 0, which is the same for the other baselines, with the exception that Visual
Regional Attention contains two LSTM decoders. For each decoding step, the decoder takes the
caption embedding wet , added with the averaged visual features Ia = 1

LI

∑LI

i=1 Ii as input to the
LSTM:

ht = LSTM (ht−1, w
e
t + Ia) (1)

Then, the LSTM output ht is used as a query to attend to the visual features:

αt = softmax
(
wα tanh

(
WII

T ⊕Whht
))
, ct = αtI (2)

∗Equal contribution.
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where the wα, WI and Wh are the learnable parameters. ⊕ denotes the matrix-vector addition, which
is calculated by adding the vector to each column of the matrix. Finally, the LSTM output and the
attended visual features are used to predict the next word:

yt ∼ pt = softmax (Wp (ht + ct)) (3)
To augment Visual Attention with MIA, both the visual features in Eq. (1) and Eq. (2) are replaced
with the MIA-refined image representations. For “Visual Attention w/ IN”, we only use MIA-refined
visual features IN for the same replacement.

•Concept Attention. The Concept Attention model is built by adapting the semantic attention model
in You et al. [22]. We predict 49 textual concepts T ∈ RLT×dh using a textual concept extractor
proposed by Fang et al. [6]. Similar to You et al. [22], the averaged visual features Ia is fed to the
decoder at the first time step, which means h1 = LSTM(h0, Ia). For the subsequent decoding steps,
the input is a sum of the caption embedding wet and the averaged textual concepts Ta = 1

LT

∑LT

i=1 Ti:

ht = LSTM (ht−1, w
e
t + Ta) (4)

An attention operation is performed over the textual concepts, with ht as the query:
αt = softmax

(
wα tanh

(
WTT

T ⊕Whht
))
, ct = αtT (5)

Then, like Eq. (3), a softmax layer predicts the output word distribution. For the deployment of
MIA, the original textual concepts are replaced with refined image representations or refined textual
concepts TN , in similar fashion as for the original visual features.

• Visual Condition. The Visual Condition model is adapted from the LSTM-A4 model in Yao et al.
[21], jointly considers the visual features and textual concepts. Specifically, Visual Condition refers
to the averaged textual concepts Ta at the first decoding step, while takes the sum of the averaged
visual features Ia and the word embedding wet as input for the subsequent steps:

h1 = LSTM (h0, Ta) (6)
ht = LSTM (ht−1, w

e
t + Ia) , t ≥ 2 (7)

The LSTM output ht is then followed with a softmax layer to predcit the next word:
yt ∼ pt = softmax (Wpht) (8)

After being processed by MIA, the refined image representations are used as replacement for both the
visual features and textual concepts in Eq. (6) and Eq. (7), respectively.

• Concept Condition. The Concept Condition model is adapted from the LSTM-A5 model in Yao
et al. [21]. In contrast to Visual Condition, it reverses the order of input visual features and textual
concepts, which can be defined as follows:

h1 = LSTM (h0, Ia) (9)
ht = LSTM (ht−1, w

e
t + Ta) , t ≥ 2 (10)

The prediction of the next caption word and the utilization of MIA are also similar to Visual Condition.

• Visual Regional Attention. The Visual Regional Attention model is adapted from the Up-Down
model in Anderson et al. [2]. It uses the 36 region-based visual features, which are extracted by a
variant of Faster R-CNN [18]. The Faster R-CNN is provided by Anderson et al. [2] and is pre-trained
on Visual Genome [10]. Two stacked LSTMs are adopted for caption generation, both of which are
initialized with zero hidden states: h10 = 0, c10 = 0;h20 = 0, c20 = 0. At each decoding step, the first
LSTM takes the caption embedding wet , concatenated with the averaged visual features Ia as input:

h1t = LSTM1

(
h1t−1, [w

e
t ; Ia]

)
(11)

Then, the first LSTM output h1t is used as a query to attend to the region-based visual features:

αt = softmax
(
wα tanh

(
WII

T ⊕Whh
1
t

))
, ct = αtI (12)

After that, the second LSTM takes the first LSTM output h1t , concatenated with the attended visual
features ct as input, followed by a softmax layer to predict the target word:

h2t = LSTM2

(
h2t−1, [h

1
t ; ct]

)
(13)

yt ∼ pt = softmax
(
Wph

2
t

)
(14)

For the MIA-augmented model, we replace the region-based visual features in Eq. (11) and Eq. (12)
with MIA-refined image representations.
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B Experiments on Visual Question Answering

B.1 Dataset and Evaluation Metrics

We evaluate the models on VQA version 2.0 [7], which is comprised of image-based question-answer
pairs labeled by human annotators, where the images are collected from the MSCOCO dataset [13].

VQA v2.0 is an updated version of previous VQA 1.0 with much more annotations and less dataset
bias. VQA v2.0 is split into train, validation and test sets. There are 82,783, 40,504 and 81,434
images, (443,757, 214,354 and 447,793 corresponding questions) in the training, validation and test
set, respectively. The questions are categorized into three types, namely Yes/No, Number and other
categories. Each question is accompanied with 10 answers composed by the annotators. Answers
with the highest frequency are treated as the ground-truth. Evaluation is conducted on the test set, the
reported accuracies are calculated by the standard VQA metric [3], with occasional disagreement
between annotators being considered.

B.2 Baselines and Implementation Details

We choose Up-Down [2] and BAN [9] for comparison, where the former is the winner of VQA
challenge 2017 and the latter is the state-of-the-art on VQA v2.0 dataset. They both use region-based
visual features as image representations and GRU-encoded hidden states as question representations,
and make classification based on their combination. However, Up-Down only uses the final sentence
vector to obtain the weight of each visual region, while BAN uses a bilinear attention to obtain the
weight for each pair of visual region and question word. For equipping with our MIA, we simply
replace the original visual features with semantic-grounded image representations provided by MIA.

C Further Experimental Analysis

C.1 Effect of Guiding Scheme

We can either start with the textual concepts guiding the integration of the visual features or let the
latter to take the initiative. Even if the role of visual features and textual concepts are equivalent in
mutual attention, the choice of guiding scheme could make a difference. We examine the performance
of Visual Attention and Concept Attention when the visual features first attend to the textual concepts.
As shown in Table 1, the model scores are inferior to that of the alternative scheme. Especially, the
performance of the Visual Attention has even been impaired. The rationale for such phenomenon
is presumably the limited visual receptive field of the original visual features, which makes them
inadequate to integrate the textual concepts. As to the textual concepts, they are inherently good at
describing integrated visual regions, as they contain high-level semantic information.

Table 1: Evaluation of different guiding scheme.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Visual Attention 72.6 56.0 42.2 31.7 26.5 54.6 103.0 19.3
IN -> TN 73.2 56.8 42.8 32.0 25.5 53.9 99.0 18.7
TN -> IN 74.5 58.4 44.4 33.6 26.8 55.8 106.7 20.1

Concept Attention 72.6 55.9 42.5 32.5 26.5 54.4 103.2 19.4
IN -> TN 73.2 56.5 43.0 32.9 26.6 54.7 105.5 19.5
TN -> IN 73.8 57.4 43.8 33.6 27.1 55.3 107.9 20.3
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C.2 Effect of Incorporating MIA with Scene-Graph based Models

SGAEfuse [20], which learns finer representations of an image through scene-graphs, is the state-
of-the-art image captioning system at the time of our submission. We incorporate the scene-graph
based features with MIA-refined image representations, and see whether MIA can still help SGAE.
As presented in Table 2, MIA also boosts the performance of SGAE, indicating that MIA learns very
effective representations even for scene-graphs.

Table 2: Evaluation of on the scene-graph based model.

Methods BLEU-4 METEOR ROUGE CIDEr SPICE

SGAEfuse 39.3 28.5 58.8 129.6 22.3
w/ MIA 39.6 29.0 58.9 130.1 22.8

C.3 SPICE Sub-Category Results

For a better understanding of the differences of the generated captions by different methods, we report
the breakdown of SPICE F-scores (see Table 3). As we can see, the IN , TN and MIA promotes the
baselines over almost all sub-categories. Especially, the IN is good at associating related parts in the
image, which is demonstrated by the increased scores in Count and Size. and the TN collects relevant
textual concepts, providing comprehensive context that is detailed in objects. Encouragingly, when
incorporating IN and TN at the same time, i.e., w/ MIA, the advantages of the IN and TN are united
to produce a balanced improvement. It proves the effectiveness of our approach.

Table 3: Variation of model performance under the breakdown of SPICE F-scores. We can find that
the w/ TN has a higher Object scores than the baselines, and the w/ IN reaches better scores in Count
and Size. As we can see, incorporating Mutual Iterative Attention (MIA) directly on the baselines,
leads to overall improvements.

Methods SPICE

All Objects Attributes Relations Color Count Size

Visual Attention 19.3 35.2 9.1 5.3 10.7 3.0 3.3
w/ IN 19.6 35.8 9.3 5.5 9.9 7.2 4.2
w/ MIA 20.1 36.4 9.8 5.7 10.8 6.9 3.9

Concept Attention 19.4 34.8 10.3 5.3 13.5 4.7 4.8
w/ TN 20.0 35.8 10.7 5.4 13.6 4.2 4.6
w/ MIA 20.3 36.1 11.4 5.5 14.1 7.1 5.2
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C.4 Samples of Generated Captions

We show the captions generated by the method w/o MIA and the method w/ MIA to intuitively analyze
the differences of the methods. As shown in Table 4, the w/ IN is good at portraying the number and
size but is less specific in objects. The w/ TN includes more objects but lacks details, such as number.
The proposed MIA can help the baselines to achieves a very good balance.

Table 4: Examples of the captions generated by different methods. For every example, we show the
top-10 relevant textual concepts. Based on the Mutual Iterative Attention (MIA) over the source infor-
mation, from the generated captions, we can find that the w/ TN results in more comprehensiveness
in objects. The w/ IN helps the baselines to generate captions that are more detailed in count and
size, and the w/ MIA is able to generate more complete captions that is detailed both in the objects,
attributes, relations and color.

Image Concepts Captions

Visual Attention (Based on Visual Features)

water boat
luggage sitting
black ocean
large white
suitcases near

Reference: a number of suitcases on the boat in the sea.

Baseline: a suitcase sitting on top of a body of water.

w/ IN : a couple of luggage sitting on top of a boat.

w/ MIA: a couple of black luggage sitting on the edge of the water.

standing zebras
zebra field grass
dry tall close
stand large

Reference: two zebras stand in a field with tall grass.

Baseline: a zebra standing in the middle of a field.

w/ IN : two large zebras standing in a grass field.

w/ MIA: a couple of zebras standing on top of a dry grass field.

Concept Attention (Based on Textual Concepts)

vase flowers
table glass
display sitting
orange filled red
yellow

Reference: orange, red and white flowers in vases on tables.

Baseline: a vase filled with some orange flowers.

w/ TN : a vase filled with yellow flowers on top of a table.

w/ MIA: a small vase filled with red and orange flowers on a table.

bus double
decker red street
down city road
driving stop

Reference: a red double decker bus is driving on a city street.

Baseline: a red bus driving down a street.

w/ TN : a double decker bus driving down a city street.

w/ MIA: a red double decker bus driving down a city street.
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