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Abstract

We present an algorithm based on the Optimism in the Face of Uncertainty (OFU)
principle which is able to learn Reinforcement Learning (RL) modeled by Markov
decision process (MDP) with finite state-action space efficiently. By evaluating
the state-pair difference of the optimal bias function h⇤, the proposed algorithm
achieves a regret bound of Õ(

p
SAHT )1 for MDP with S states and A actions,

in the case that an upper bound H on the span of h⇤, i.e., sp(h⇤) is known. This
result outperforms the best previous regret bounds Õ(S

p
AHT )[Fruit et al., 2019]

by a factor of
p
S. Furthermore, this regret bound matches the lower bound of

⌦(
p
SAHT )[Jaksch et al., 2010] up to a logarithmic factor. As a consequence,

we show that there is a near optimal regret bound of Õ(
p
SADT ) for MDPs with

a finite diameter D compared to the lower bound of ⌦(
p
SADT )[Jaksch et al.,

2010].

1 Introduction

In this work we consider the Reinforcement Learning (RL) problem [Burnetas and Katehakis, 1997,
Sutton and Barto, 2018] of an agent interacting with an environment. The problem is generally
modelled as a discrete Markov Decision Process (MDP)[Puterman, 1994]. The RL agent needs to
learn the underlying dynamics of the environment in order to make sequential decisions. At step t,
the agent observes current state st and chooses an action at based on the policy learned from the past.
Then the agent receives a reward rt from the environment, and the environment transits to state st+1

according to the states transition model. Particularly, both rt and st+1 are independent of previous
trajectories, and are only conditioned on st and at. In the online framework of reinforcement learning,
we aim to maximize cumulative reward. Therefore, there is a trade-off between exploration and
exploitation, i.e., taking actions we have not learned accurately enough and taking actions which
seem to be optimal currently.

The solutions to exploration-exploitation dilemma can mainly be divided into two groups. In the first
group, the approaches utilize the Optimism in the Face of Uncertainty (OFU) principle [Auer et al.,
2002]. Under OFU principle, the agent maintains a confident set of MDPs and the underlying MDP
is contained in this set with high probability. The agent executes the optimal policy of the best MDP
in the confidence set [Bartlett and Tewari, 2009, Jaksch et al., 2010, Maillard et al., 2011, Fruit et al.,
2018a]. In the second group, the approaches utilize posterior sampling [Thompson, 1933]. The agent
maintains a posterior distribution over reward functions and transition models. It samples an MDP
and executes corresponding optimal policy in each epoch. Because of simplicity and scalability, as
well as provably optimal regret bound, posterior sampling has been getting popular in related research
field [Osband et al., 2013, Osband and Van Roy, 2016, Agrawal and Jia, 2017, Abbasi-Yadkori, 2015].

1The symbol Õ means O with log factors ignored.
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1.1 Related Work

In the research field of regret minimization for reinforcement learning, Jaksch et al. [2010] showed a
regret bound of Õ(DS

p
AT ) for MDPs with a finite diameter D, and proved that it is impossible

to reach a regret bound smaller than ⌦(
p
SADT ). Agrawal and Jia [2017] established a better

regret bound of Õ(D
p
SAT ) by posterior sampling method. Bartlett and Tewari [2009] achieved

a regret bound of Õ(HS
p
AT ) where H is an input as an upper bound of sp(h⇤) . Fruit et al.

[2018b] designed a practical algorithm for the constrained optimization problem in REGAL.C [Bartlett
and Tewari, 2009], and obtained a regret bound of Õ(H

p
�SAT ) where �  S is the number

of possible next states. On the other hand, Ouyang et al. [2017] and Theocharous et al. [2017]
designed posterior sampling algorithms with Bayesian regret bound of Õ(HS

p
AT ), with the

assumption that elements of support of the prior distribution have a consistent upper bound H for
their optimal bias spans.Talebi and Maillard [2018] showed a problem-dependent regret bound of
Õ(

qP
s,a V (Ps,a, h⇤)ST ). Recently, Fruit et al. [2019] presented improved analysis of UCRL2B

algorithm and obtained a regret bound of Õ(S
p
DAT ).

There are also considerable work devoted to studying finite-horizon MDP. Osband and Van Roy
[2016] presented PRSL to establish a Bayesian regret bound of Õ(H

p
SAT ) using posterior sampling

method. And later Azar et al. [2017] reached a better regret bound of Õ(
p
SAHT ). Recently, Kakade

et al. [2018] and Zanette and Brunskill [2019] achieved the same regret bound of Õ(
p
SAHT ) by

learning a precise value function to predict the best future reward of current state.

We notice a mistake about concentration of average of independent multinoulli trials in the proof of
[Agrawal and Jia, 2017] (see Appendix.A for further details). This mistake suggests that they may
not reduce a factor of

p
S in their regret bounds.

1.2 Main Contribution

In this paper, we design an OFU based algorithm, and achieve a regret bound of Õ(
p
SAHT ) given

an upper bound H on sp(h⇤). As a corollary, we establish a regret bound of Õ(
p
SADT ) for the

MDPs with finite diameter D. Meanwhile the corresponding lower bounds for the above two upper
bounds are ⌦(

p
SAHT ) and ⌦(

p
SADT ) respectively. In a nutshell, our algorithm improves the

regret bound by a factor of
p
S compared to the best previous known results.

Our Approach: we consider regret minimization for RL by evaluating state-pair difference of the
optimal bias function. Firstly, we observe that we can achieve a near-optimal regret bound with guide
of the optimal bias function. Considering the fact that it is hard to estimate the optimal bias function
directly [Ortner, 2008], we design a confidence set Hk of the optimal bias function. Based on Hk

we obtain a tighter confidence set of MDPs and a better regret bound. It is notable that the order
of samples in the trajectory is crucial when computing Hk in our algorithm, while it is ignored in
previous methods. In this way, we utilize more information about the trajectory when computing the
confidence set, which enables us to achieve a better regret bound.

2 Preliminaries

We consider the MDP learning problem where the MDP M = hS,A, r, P, s1i. S = {1, 2, ..., S} is
the state space, A = {1, 2, ..., A} is the action space, P : S ⇥ A ! �S2 is the transition model,
r : S ⇥A! �[0,1] is the reward function, and s1 is the initial state. The agent executes action a at
state s and receives a reward r(s, a), and then the system transits to the next state s0 according to
P(·|s, a) = Ps,a. In this paper, we assume that E[r(s, a)] is known for each (s, a) pair, and denote
E[r(s, a)] as rs,a. It is not difficult to extend the proof to the original case.

In the following sections, we mainly focus on weak-communicating (see definition [Bartlett and
Tewari, 2009]) MDPs.
Assumption 1. The underlying MDP is weak-communicating .

2In this paper, we use �X to denote all distributions on X . Particularly, we use �m to denote the m-simplex.
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We first summarize several useful known results for MDPs and RL.
Definition 1 (Policy). A policy ⇡ : S ! �A is a mapping from the state space to all distributions on
the action space. In the case the support of ⇡(s) is a single action, we also denote this action as ⇡(s).

Given a policy ⇡, transition model P and reward function r, we use P⇡ to denote the transition
probability matrix and r⇡ to denote the reward vector under ⇡. Specifically, when ⇡ is a deterministic
policy, P⇡ = [P1,⇡(1), ..., Ps,⇡(s)] and r⇡ = [r1,⇡(1), ..., rS,⇡(S)]

T .
Definition 2 (Average reward). Given a policy ⇡, when starting from s1 = s, the average reward is
defined as:

⇢⇡(s) = lim
T!1

1

T
Eat⇠⇡(st),1tT [

TX

t=1

rst,at |s1 = s].

The optimal average reward and the optimal policy are defined as ⇢⇤(s) = max⇡ ⇢⇡(s) and ⇧⇤(s) =
argmax⇡ ⇢⇡(s) respectively. It is well known that, under Assumption 1, ⇢⇤(s) is state independent,
so that we write it as ⇢⇤ in the rest of the paper for simplicity.
Definition 3 (Diameter). Diameter of an MDP M is defined as:

D(M) = max
s,s02S,s 6=s0

min
⇡:S!�A

T⇡
s!s0 ,

where T⇡
s!s0 denotes the expected number of steps to reach s0 from s under policy ⇡.

Under Assumption 1, it is known the optimal bias function h⇤ satisfies that

h⇤ + ⇢⇤1 = max
a2A

(rs,a + PT
s,ah

⇤) (1)

where 1 = [1, 1, ..., 1]T . It is obvious that if h satisfies (1), then so is h⇤+�1 for any � 2 R. Assuming
h is a solution to (1), we set3 � = �mins hs and h⇤ = h+ �1, then the optimal bias function h⇤ is
uniquely defined. Besides, the span operator sp : RS ! R is defined as sp(v) = max

s,s02[S]
|vs � vs0 |.

The reinforcement learning problem. In reinforcement learning, the agent starts at s1 = sstart,
and proceeds to make decisions in rounds t = 1, 2, ..., T . The S, A and {rs,a}s2S,a2A are known
to the agent, while the transition model P is unknown to agent. Therefore, the final performance is
measured by the cumulative regret defined as

R(T, sstart) := T⇢⇤ �
TX

t=1

rst,at .

The upper bound for R(T, sstart) we provide is always consistent with that of sstart. In the following
sections, we use R(T, sstart) to denote R(T ) for simplicity.

3 Algorithm Description

3.1 Framework of UCRL2

We first revisit the classical framework of UCRL2 [Jaksch et al., 2010] briefly. As described in
Algorithm 1 (EBF), there are mainly three components in the UCRL2 framework: doubling episodes,
building the confidence set and solving the optimization problem.

Doubling episodes: The algorithm proceeds through episodes k = 1, 2, .... In the k-th episode, the
agent makes decisions according to ⇡k. The episode ends whenever 9(s, a), such that the visit count
of (s, a) in the k-th episode is larger than or equal to the visit count of (s, a) before the k-th episode.
Let K be the number of episodes. Therefore, we can get that K  SA(log2(

T
SA )+1)  3SA log(T )

when SA � 2 [Jaksch et al., 2010].

Building the confidence set: At the beginning of an episode, the algorithm computes a collection of
plausible MDPs, i.e., the confidence set Mk based on previous trajectory. Mk should be designed
properly such that the underlying MDP M is contained by Mk with high probability, and the elements

3In this paper, we use [v1, v2, ..., vS ]
T to indicate a vector v 2 RS
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in Mk are closed to M . In our algorithm, the confidence set is not a collection of MDPs. Instead, we
design a 4-tuple (⇡, P 0(⇡), h0(⇡), ⇢(⇡)) to describe a plausible MDP and its optimal policy.

Solving the optimization problem: Given a confidence set M, the algorithm selects an element
from M according to some criteria. Generally, to keep the optimality of the chosen MDP, the
algorithm needs to maximize the average reward with respect to certain constraints. Then the
corresponding optimal policy will be executed in current episode.

3.2 Tighter Confidence Set by Evaluating the Optimal Bias Function

REGAL.C [Bartlett and Tewari, 2009] utilizes H to compute Mk, thus avoiding the issues brought by
the diameter D. Similar to REGAL.C, we assume that H , an upper bound of sp(h⇤) is known. We
design a novel method to compute the confidence set, which is able to utilize the knowledge of the
history trajectory more efficiently. We first compute a well-designed confidence set Hk of the optimal
bias function, and obtain a tighter confidence set Mk based on Hk.

On the basis of above discussion, we summarize high-level intuitions as below:

Exploration guided by the optimal bias function: Once the true optimal bias function h⇤ is given,
we could get a better regret bound. In this case we regard the regret minimization problem as S
independent multi-armed bandit problems. UCB algorithm with Bernstein bound [Lattimore and
Hutter, 2012] provides a near optimal regret bound. However, we can not get h⇤ exactly. Instead, a
tight confidence set of h⇤ also helps to guide exploration.

Confidence set of the optimal bias function: We first study what could be learned about h⇤ if we
always choose optimal actions. For two different states s, s0, suppose we start from s at t1, and reach
s0 the first time at t2 (t2 is a stopping time), then we have E[

Pt2�1
t=t1

(rt� ⇢⇤)]4= �⇤s,s0 := h⇤
s �h⇤

s0 by
the definition of optimal bias function. As a result,

Pt2�1
t=t1

(rt � ⇢⇤) could be regarded as an unbiased
estimator for �⇤s,s0 . Based on concentration inequalities for martingales, we have the following formal
definitions and lemma.
Definition 4. Given a trajectory L = {(st, at, st+1, rt)}1tN , for s, s0 2 S and s 6= s0, let
ts1(L) := min{min{t|st = s}, N + 2}. We define {tsk(L)}k�2 and {tek(L)}k�1 recursively by
following rules,

tek(L) := min
�
min{t|st = s0, t > tsk(L)}, N + 2

 
,

tsk(L) := min
�
min{t|st = s, t > tek�1(L)}, N + 2

 
.

The count of arrivals c(s, s0,L) from s to s0 is defined as

c(s, s0,L) := max{k|tek(L)  N + 1}.

Here we define min? = +1 and max? = 0 respectively.
Lemma 1 (Main Lemma). We say an MDP is flat if all its actions are optimal. Suppose M is a
flat MDP (without the constraint rs,a 2 [0, 1]). We run N steps following an algorithm G under M .
Let L = {(st, at, st+1, rt)}1tN be the final trajectory. For any two states s, s0 2 S and s 6= s0,
let c(s, s0,L), {tek(L)}k�1 and {tsk(L)}k�1 be defined as in Definition 4. Then we have, for any
algorithm G, with probability at least 1�N�, for any 1  c  c(s, s0,L) it holds that

���
cX

k=1

⇣
h⇤
s0 � h⇤

s +
X

tsk(L)ttek(L)�1

(rt � ⇢⇤)
⌘���  (

p
2N� + 1)sp(h⇤). (2)

where � = log( 2� )
5

To use Lemma 1 to compute Hk, we have to overcome two problems: (i) M may not be flat; (ii) we
do not have the value of ⇢⇤. Under the assumption the total regret is Õ(HS

p
AT ), we can solve the

problems subtly.

Let regs,a = h⇤
s+⇢⇤�PT

s,ah
⇤�rs,a, which is also called optimal gap [Burnetas and Katehakis, 1997]

and could be regarded as the single step regret of (s, a). Let r0s,a = h⇤
s +⇢⇤�PT

s,ah
⇤ = rs,a+ regs,a

4To explain the high-level idea, we assume this expectaion is well-defined.
5In this paper � always denotes log( 2� ).
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Algorithm 1 EBF: Estimate the Bias Function
Input: H , �, T .
Initialize: t 1,tk  0.
1: for episodes k = 1, 2, ... do

2: tk  current time;
3: Ltk�1  {(si, ai, si+1, ri)}1itk�1;
4: Mk  BuildCS(H, log( 2� ),Ltk�1);
5: Choose (⇡, P 0(⇡), h0(⇡), ⇢(⇡)) 2Mk to maximize ⇢(⇡) over Mk;
6: ⇡k  ⇡;
7: Follow ⇡k until the visit count of some (s, a) pair doubles.
8: end for

and M 0 = hS,A, r0, P, s1i. It is easy to prove that M 0 is flat and has the same optimal bias function
and optimal average reward as M . We attain by Lemma 1 that with high probability, it holds that

���
c(s,s0,L)X

k=1

⇣
h⇤
s0 �h⇤

s +
X

tsk(L)ttek(L)�1

(rst,at � ⇢⇤)
⌘��� 

NX

t=1

regst,at +(
p

2N�+1)sp(h⇤). (3)

Let h0 2 [0, H]S be a vector such that (3) still holds with h⇤ replaced by h0, then we can derive that

Ns,a,s0 |(h⇤
s0 � h⇤

s)� (h0
s0 � h0

s)|  2
NX

t=1

regst,at + 2(
p
2N� + 1)H

where Ns,a,s0 :=
PN

t=1 I[st = s, at = a, st+1 = s0]  c(s, s0,L). Because it is not hard to boundPN
t=1 regst,at ⇡ R(N) up to Õ(HS

p
AN) by REGAL.C [Bartlett and Tewari, 2009], we obtain that

with high probability it holds

N̂s,a,s0 |(h⇤
s0 � h⇤

s)� (h0
s0 � h0

s)| = Õ(HS
p
AN). (4)

As for the problem we have no knowledge about ⇢⇤, we can replace ⇢⇤ with the empirical average
reward ⇢̂. Our claim about (4) still holds as long as N(⇢⇤ � ⇢̂) = Õ(HS

p
AN), which is equivalent

to R(N) = Õ(HS
p
AN).

Although it seems that (4) is not tight enough, it helps to bound the error term due to the difference
between hk and h⇤ up to o(

p
T ) by setting N = T . (refer to Appendix.C.5.)

Based on the discussion above, we define Hk as:

Hk := {h 2 [0, H]S ||L1(h, s, s
0,Ltk�1)|  48S

p
ATsp(h) + (

p
2�T + 1)sp(h), 8s, s0, s 6= s0}

where

L1(h, s, s
0,L) =

c(s,s0,L)X

k=1

⇣
(hs0 � hs) +

X

tsk(L)itek(L)�1

(ri � ⇢̂)
⌘
.

Together with constraints on the transition model (5)-(7) and constraint on optimality (8), we propose
Algorithm 2 to build the confidence set, where

V (x, h) =
X

s

xsh
2
s � (xTh)2.

4 Main Results

In this section, we summarize the results obtained by using Algorithm 1 on weak-communicating
MDPs. In the case there is an available upper bound H for sp(h⇤), we have following theorem.
Theorem 1 (Regret bound (H known)). With probability 1� �, for any weak-communicating MDP
M and any initial state sstart 2 S , when T � p1(S,A,H, log( 1� )) and S,A,H � 20 where p1 is a
polynomial function, the regret of EBF algorithm is bounded by

R(T )  490

r
SAHT log(

40S2A2T log(T )

�
),
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Algorithm 2 BuildCS(H ,�, L)
Input: H , �, L = {(si, ai, si+1, ri)}1iN

1: H {h 2 [0, H]S | |L1(h, s, s0,L)|  48S
p
ATsp(h) + (

p
2�T + 1)sp(h), 8s, s0, s 6= s0};

2: Ns,a  max{
PN

t=1 I[st = s, at = a], 1}, 8(s, a);
3: P̂s,a,s0  

PN
t=1 I[st=s,at=a,st+1=s0]

Ns,a
, 8(s, a, s0);

4: O  {⇡|⇡ is a deterministic policy, and 9P 0(⇡) 2 RS⇥A⇥S , h0(⇡) 2 H and ⇢(⇡) 2
R, such that

|P 0
s,a,s0(⇡)� P̂s,a,s0 |  2

q
P̂s,a,s0�/Ns,a + 3�/Ns,a + 4�

3
4 /N

3
4
s,a, (5)

|P 0
s,a(⇡)� P̂s,a|1 

q
14S�/Ns,a (6)

|(P 0
s,a(⇡)� P̂s,a)

Th0(⇡)|  2
q
V (P̂s,a, h0(⇡))�/Ns,a+12H�/Ns,a+10H�3/4/N3/4

k,s,a, (7)

P 0
s,⇡(s)(⇡)

Th0(⇡) + rs,⇡(s) = max
a2A

P 0
s,a(⇡)

Th0(⇡) + rs,a = h0(⇡) + ⇢(⇡)1 (8)

holds for any s, a, s0};
5: Return:{(⇡, P 0(⇡), h0(⇡), ⇢(⇡))|⇡ 2 O}.

whenever an upper bound of the span of optimal bias function H is known. By setting � = 1
T , we get

that E[R(T )] = Õ(
p
SAHT )

Theorem 1 generalizes the Õ(
p
SAHT ) regret bound from the finite-horizon setting [Azar et al.,

2017] to general weak-communicating MDPs, and improves the best previous known regret bound
Õ(H

p
SAT )[Fruit et al., 2019] by an

p
S factor. More importantly, this upper bound matches the

⌦(
p
SAHT ) lower bound up to a logarithmic factor.

Based on Theorem 1, in the case the diameter D is finite but unknown, we can reach a regret bound
of Õ(

p
SADT ).

Corollary 1. For weak-communicating MDP M with a finite unknown diameter D and any initial
state sstart 2 S , with probability 1� �, when T � p2(S,A,D, log( 1� )) and S,A,D � 20 where p2
is a polynomial function, the regret can be bounded by

R(T )  491

r
SADT (log(

S3A2T log(T )

�
).

By setting � = 1
T , we get that E[R(T )] = Õ(

p
SADT ).

We postpone the proof of Corollary 1 to Appendix.D.

Although EBF is proved to be near optimal, it is hard to implement the algorithm efficiently. The
optimization problem in line 5 Algorithm 1 is well-posed because of the optimality equation (8).
However, the constraint (7) is non-convex in h0(⇡), which makes the optimization problem hard
to solve. Recently, Fruit et al. [2018b] proposed a practical algorithm SCAL, which solves the
optimization problem in REGAL.C efficiently. We try to expand the span truncation operator Tc to our
framework, but fail to make substantial progress. We have to leave this to future work.

5 Analysis of EBF (Proof Sketch of Theorem 1)

Our proof mainly contains two parts. In the first part, we bound the probabilites of the bad events. In
the second part, we manage to bound the regret when the good event occurs.

6



5.1 Probability of Bad Events

We first present the explicit definition of the bad events. Let N (t)
s,a =

Pt
i=1 I[si = s, ai = a]. We

denote Nk,s,a = N (tk�1)
s,a as the visit count of (s, a) before the k-th episode, and vk,s,a as the visit

count of (s, a) in the k-th episode respectively. We also denote P̂ (k) as the empirical transition model
before the k-th episode.
Definition 5 (Bad event). For the k-th episode, define

B1,k :=

⇢
9(s, a), s.t.|(Ps,a � P̂ (k)

s,a )
Th⇤| > 2

s
V (Ps,a, h⇤)�)

max{Nk,s,a, 1}
+ 2

sp(h⇤�)

max{Nk,s,a, 1}

�
,

B2,k =

⇢
9(s, a, s0), s.t.|P̂ (k)

s,a,s0 � Ps,a,s0 | > 2

vuut P̂ (k)
s,a,s0�

max{Nk,s,a, 1}
+

3�

max{Nk,s,a, 1}
+

4�
3
4

max{Nk,s,a, 1}
3
4

�
,

B3,k =
n
|
X

1t<tk

(⇢⇤ � rst,at)| > 26HS
p

AT�,
X

k0<k

X

s,a

vk0,s,aregs,a > 22HS
p
AT�

o

B4,k =
�
{(⇡⇤, P ⇤, h⇤, ⇢⇤)|⇡⇤is a deterministic optimal policy} \Mk = ?

 
.

The bad event in the k-th episode therefore is defined as Bk = B1,k [B2,k [B3,k [B4,k, and the
total bad event B is defined as B := [1kK+1Bk. At the same time, we have the definition of the
good event as G = BC .
Lemma 2 (Bound of P(B)). Suppose we run Algorithm 1 for T steps, then P(B)  (6AT +
12S2A)SA log(T )� when T � A log(T ) and SA � 4.

5.2 Regret when the Good Event Occurs

In this section we assume that the good event G occurs. We use Rk to denote the regret in the
k-th episode. We use P 0

k, Pk, P̂k, rk, ⇢k and hk to denote P 0
⇡k
(⇡k), P⇡k , P̂ (k)

⇡k , r⇡k , ⇢(⇡k) and
h0(⇡k) respectively. We define vk as the vector such that vk,s = vk,s,⇡k(s), 8s, and introduce
�k,s,s0 = hk,s � hk,s0 , 8s, s0.

Noting that for ↵ > 0,
P

k

P
s,a vk,s,a

1

max{Nk,a,s,1}
1
2
+↵

could be roughly bounded by O(T
1
2�↵),

which could be ignored when T is sufficiently large. Therefore, we can omit such terms without
changing the regret bound.

According to BC
4,k and the optimality of ⇢k we have

Rk = vTk (⇢
⇤
1� rk)  vTk (⇢k1� rk) = vTk (P

0
k � I)Thk

= vTk (Pk � I)Thk| {z }
1�k

+ vTk (P̂k � Pk)
Th⇤

| {z }
2�k

+ vTk (P
0
k � P̂k)

Thk| {z }
3�k

+ vTk (P̂k � Pk)
T (hk � h⇤)| {z }

4�k

. (9)

We bound the four terms in the right side of (9) separately.

Term 1�k : The expectation of 1�k never exceeds [�H,H]. However, we can not directly utilize this
to bound 1�k. By observing that 1�k has a martingale difference structure, we have following lemma
based on concentration inequality for martingales.
Lemma 3. When T � S2AH2�, with probability 1� 3�, it holds that

X

k

1�k  KH + (4H + 2
p
12TH)�.

Term 2�k : Recalling the definition of V (x, h) in Section 3, BC
1,k implies that

2�k 
X

s,a

vk,s,a

✓
2

s
V (Ps,a, h⇤)�

max{Nk,s,a, 1}
+2

H�

max{Nk,s,a, 1}

◆
⇡ O

✓X

s,a

vk,s,a

s
V (Ps,a, h⇤)�

max{Nk,s,a, 1}

◆
,

(10)
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where ⇡ means we omit the insignificant terms. We bound RHS of (10) by boundingP
s,a N

(T )
s,a V (Ps,a, h⇤) by O(TH). Formally, we have following lemma.

Lemma 4. When T � S2AH2�, with probability 1� �

X

k,s,a

vk,s,a

s
V (Ps,a, h⇤)�

max{Nk,s,a, 1}
 21

p
SAHT�.

Term 3�k : According to (7) we have

3�k 
X

s,a

vk,s,aL2(max{Nk,s,a, 1}, P̂ (k)
s,a , hk) ⇡ O

✓X

s,a

vk,s,a

s
V (P̂ (k)

s,a , hk)�

max{Nk,s,a, 1}

◆
(11)

where L2(N, p, h) = 2
p
V (p, h)�/N + 12H�/N + 10H�3/4/N3/4. When dealing with the RHS

of (11), because hk varies in different episodes, we have to bound the static part and the dynamic part
separately. Noting that
q
V (P̂ (k)

s,a , hk)�
q
V (Ps,a, h⇤)  (

q
V (P̂ (k)

s,a , hk)�
q

V (P̂ (k)
s,a , h⇤)) + (

q
V (P̂ (k)

s,a , h⇤)�
q

V (Ps,a, h⇤))


q
|V (P̂ (k)

s,a , hk)� V (P̂ (k)
s,a , h⇤)|+

q
|V (P̂ (k)

s,a , h⇤)� V (Ps,a, h⇤)|


s
4H

X

s0

P̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |+

q
4H2|P̂ (k)

s,a � Ps,a|1


X

s0

q
4HP̂ (k)

s,a,s0 |�k,s,s0 � �⇤s,s0 |+

vuut4H2

s
14S�

max{Nk,s,a, 1}

⇡ O
⇣X

s0

q
4HP̂ (k)

s,a,s0 |�k,s,s0 � �⇤s,s0 |
⌘
,

(12)
According to the bound of the second term, it suffices to bound

p
H

X

k,s,a

vk,s,a
X

s0

vuut P̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |
max{Nk,s,a, 1}

(13)

Surprisingly, we find that this term is an upper bound for the fourth term.

Term 4�k : Recalling that �⇤s,s0 = h⇤
s � h⇤

s0 , according to BC
2,k the fourth term can be bounded by:

4�k =
X

s,a

vk,s,a(P̂
(k)
s,a � Ps,a)

T (hk � hk,s1� h⇤ + h⇤
s1) =

X

s,a

vk,s,a
X

s0

(P̂ (k)
s,a,s0 � Ps,a,s)(�

⇤
s,s0 � �k,s,s0)

⇡ O

✓X

s,a

vk,s,a
X

s0

vuut P̂ (k)
s,a,s0�

max{Nk,s,a, 1}
|�k,s,s0 � �⇤s,s0 |

◆

= O

✓p
H
X

s,a

vk,s,a
X

s0

vuut P̂ (k)
s,a,s0�|�k,s,s0 � �⇤s,s0 |
max{Nk,s,a, 1}

◆
.

(14)

To bound (13, according to (4) and the fact vk,s,a  max{Nk,s,a, 1} we have

vk,s,a

r
P̂ (k)

s,a,s0 |�k,s,s0��⇤
s,s0 |

max{Nk,s,a,1} 
q
max{Nk,s,a, 1}P̂ (k)

s,a,s0 |�k,s,s0 � �⇤s,s0 | = Õ(T
1
4 ). To be rigorous,

we have following lemma.
Lemma 5. With probability 1� S2T �, it holds that

X

k

X

s,a

vk,s,a
X

s0

vuut P̂ (k)
s,a,s0 |(�k,s,s0 � �⇤s,s0)|
max{Nk,s,a, 1}

 11KS
5
2A

1
4H

1
2T

1
4 �

1
4 . (15)
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Due to the lack of space, the proofs are delayed to the appendix.

Putting (9)-(12), (14), Lemma 3, Lemma 4 and Lemma 5 together, we conclude that R(T ) =
Õ(
p
SAHT ).

6 Conclusion

In this paper we answer the open problems proposed by Jiang and Agarwal [2018] partly by designing
an OFU based algorithm EBF and proving a regret bound of Õ(

p
HSAT ) whenever H , an upper

bound on sp(h⇤) is known. We evaluate state-pair difference of the optimal bias function during
learning process. Based on this evaluation, we design a delicate confidence set to guide the agent to
explore in the right direction. We also prove a regret bound of Õ(

p
DSAT ) without prior knowledge

about sp(h⇤). Both two regret bounds match the corresponding lower bound up to a logarithmic
factor and outperform the best previous known bound by an

p
S factor.
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