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| Introduction

Spatial Transformer Networks

A spatial transformer that crops out and scale-normalizes the appropriate region can simplify the subsequent
classification task, and lead to superior classification performance



| Introduction

Heterogeneous Graph

Heterogeneous graph is a graph which contains different types of nodes and edges
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| Introduction

Meta-path

A meta-path is a path consisting of a sequence of relations defined between different object types

Datasets

Examples of meta- polh
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(d) Meta-path based Neighbors

Heterogeneous Graph Attention Network, WWW 2019, Xiao Wang et al.



| Introduction

Transform a Graph into new Graphs using Meta-Paths

O“
O\EI/O —Po R o
 ad °© Q
AR AN
— O—AD—O —’o ‘ .‘o'. "‘.. o ‘-..,__O
i@
N S @
@ : 7arget node Meta path q .':::__:::E‘:D

Previous works about graph neural networks leveraged useful meta-path which selected manually
by domain experts.



| Introduction

Transform a Graph into new Graphs using Meta-Paths

@ : Target node Meta path q '.":_______::O

Previous works about graph neural networks leveraged useful meta-path which selected manually
by domain experts.

Can model learn to transform an original graph into a new graph which involves only useful connections
for task?



| Introduction

Multiplication of Adjacency Matrices for Generating Meta-Paths

Edge Type: A,B

Graph Q—’O_’O O ] :O
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Graph Transformer Layer
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Graph Transformer Layer (GTL) softly selects adjacency matrices (edge types) from the set of
adjacency matrices and generate a new meta-path graph via the matrix multiplication of two
selected adjacency matrices.



Graph Transformer Networks
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Graph Transformer Networks (GTNSs) learn to generate a set of new meta-path adjacency

matrices using GT layers and perform graph convolution as in GCNs on the new graph
structures.



| Experiments

Q1) Are the new graph structures generated by GTN effective for learning node
representation?

Dataset #Nodes #Edges #Edgetype #Features #Training # Validation # Test

DBLP 18405 67946 . 334 800 400 2857
ACM  89%4 25022 . 1902 600 300 2125
IMDB 1264 37288 4 1256 300 300 JARY

| DeepWalk metapath2vec GCN  GAT HAN GTN_; GTN (proposed)

DBLP | 63.18 85.53 8730 9371 9283 9391 94.18
ACM | 6742 87.61 91.60 9233 9096 91.13 92.68
IMDB | 32.08 35.21 56.89 58.14 56.77  52.33 60.92

- Graph Transformer Networks (GTNs) achieves the highest performance on all the
datasets against all network embedding methods and graph neural network methods
- GTNs performs better than HAN which uses the pre-defined meta paths.



| Experiments

Q2) Can GTN adaptively produce a variable length of meta-paths depending on

datasets?

The attention score of adjacency matrix (edge type) from each Graph Transformer Layer
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- By assigning higher attention scores to the identity matrix (), GTN tries to stick to the shorter

meta-paths even in the deeper layer.

- GTN has ability to adaptively learn most effective meta-path length depending on the dataset



| Experiments

Q3) How can we interpret the importance of each meta-path from the adjacency
matrix generated by GTNs?

Comparison with predefined paths and top-ranked meta-paths by GTNs

Predefined Meta-path learnt by GTNs
Meta-path ~ Top 3 (between target nodes) Top 3 (all)

Dataset

DBLP | APCPA,APA  APCPA, APAPA,APA  APCPC, APCPA, PC
ACM | PAP PSP PAP, PSP PAPA, APA, PAPS
IMDB | MAM,MDM  MDM, MAM, MDMDM DM, AM, MDM

The predefined meta-paths by domain knowledge are consistently top-ranked by
GTNs as well.
Our GTNs are capable to learn the importance of meta-paths for tasks



| Future Work

Scalability
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Inductive representation learning on large graphs, NIPS 2017, Hamilton Will et al.



