
1 Details of Performance Regressions

Benchmark Programs

AutoPerf diagnosed true sharing defects bodytrack and
dedup programs of Parsec suite We used native inputs for
both programs. Bodytrack implements a work stealing
algorithm using TicketDispenser. Every thread up-
dates value in getTicket() and suffers from a true
sharing cache contention defect. The defect degrades
performance by ≈ 10%. We resolved this by statically
dividing the workload equally among the threads. Dedup
has a number of contented locks (ht lock) to guard a
hash table. These locks are accessed by multiple threads
and introduce cache contention in the form of true shar-
ing. We reduced contention in ht lock using a differ-
ent hash function. 1 We tested AutoPerf with 10 non-
anomalous and 6 anomalous runs of each of these pro-
grams. However, HITM is ranked 2 for bodytrack. The
counter for L2 store misses (L2 STM) is reported as the
top ranked one.

AutoPerf diagnosed NUMA performance defects in
two programs from Parsec: blackscholes and stream-
cluster. In streamcluster, a single array, called block,
is read and written by many threads. Because the ar-
ray is allocated on a single node, the program suffers
from significant remote memory access latency [4]. We
created a non-anomalous version of this program by in-
terleaving the memory allocated for this array. A sim-
ilar NUMA performance defect, associated with an ar-
ray, buffer, exists in blackscholes [7]. This defect
causes a 7.5% performance degradation. AutoPerf di-
agnosed both NUMA performance defects with a perfect
F1 score and OFFCORE RESPONSE: REMOTE DRAM
ranked as top counter.

AutoPerf detected false sharing defects in three pro-
grams of Phoenix benchmark suite: histogram, lin-
ear regression, and reverse index. All defects were pre-
viously reported in prior work [5, 6]. AutoPerf detected
these false sharing defects with a perfect F1 score and
HITM ranked as the top counter.

Open Source Applications

AutoPerf diagnosed performance defects in three open
source programs: Boost library, Memcached, and
MySQL.

Boost provides portable C++ libraries. A spinlock (a
type of lock) is implemented as a pool of size 41 in
version-1.38.0. Different threads may access different
spinlocks. Each spinlock is 4 bytes long and, there-
fore, multiple spinlocks can be located in a single cache

1Both of these bugs were discovered in prior work [8, 3].

line. This results in a false sharing cache contention de-
fect. This defect degrades Boost’s performance by up
to 30% [2]. We fixed the issue by adding necessary
padding. We tested 10 non-anomalous and 10 anoma-
lous runs of Boost using AutoPerf. AutoPerf can diag-
nose false sharing in Boost library in 10 anomalous runs,
but falsely reports in 3 non-anomalous runs as defects.
So, F1 score becomes 0.82.

Memcached is a distributed memory object caching
system. AutoPerf detected false sharing defects in
do item alloc function of version 1.4.10. This
function is changed from version 1.4.4 to 1.4.10 by intro-
ducing cache lock shared variable. Multiple threads
accessing this variable can create significant true sharing
contention. We used memslap [1] benchmark for this.
AutoPerf detected cache contention defects in Mem-
cached with no false positive or negative.

In MySQL, AutoPerf detected false sharing involving
the n rows read variable. This variable was changed
to an array from version 5.5 to 5.6. We used sysbench
OLTP benchmarks.

2 Source Code and Data

Source code of AutoPerf is uploaded to github:
https://github.com/mejbah/AutoPerf/
tree/master/autoperf.
Dataset used for our experiments can be ac-
cessed from https://drive.google.
com/drive/folders/17Hz-OmQ0W4uxC_
7E393DJzrRl3EQ4SXJ?usp=sharing

References

[1] memslap - load testing and benchmarking a
server. http://docs.libmemcached.org/
bin/memslap.html.

[2] False sharing in boost::detail::spinlock pool.
https://stackoverflow.com/
questions/11037655/false-sharing-
in-boostdetailspinlock-pool, 2012.

[3] CURTSINGER, C., AND BERGER, E. D. Coz: Find-
ing code that counts with causal profiling. In Pro-
ceedings of the 25th Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2015), SOSP
’15, ACM, pp. 184–197.

[4] LACHAIZE, R., LEPERS, B., AND QUÉMA, V.
Memprof: A memory profiler for numa multicore
systems. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference (Berkeley,
CA, USA, 2012), USENIX ATC’12, USENIX Asso-
ciation, pp. 5–5.

1



[5] LIU, T., AND BERGER, E. D. Sheriff: Precise de-
tection and automatic mitigation of false sharing. In
Proceedings of the 2011 ACM International Con-
ference on Object Oriented Programming Systems
Languages and Applications (New York, NY, USA,
2011), OOPSLA ’11, ACM, pp. 3–18.

[6] LIU, T., TIAN, C., HU, Z., AND BERGER, E. D.
PREDATOR: Predictive False Sharing Detection. In
Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(New York, NY, USA, 2014), PPoPP ’14, ACM,
pp. 3–14.

[7] LIU, X., AND MELLOR-CRUMMEY, J. A tool to an-
alyze the performance of multithreaded programs on
numa architectures. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New York, NY, USA, 2014),
PPoPP ’14, ACM, pp. 259–272.

[8] LUO, L., SRIRAMAN, A., FUGATE, B., HU, S.,
POKAM, G., NEWBURN, C. J., AND DEVIETTI,
J. LASER: Light, Accurate Sharing dEtection and
Repair. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA)
(March 2016), pp. 261–273.

2


