
1 Details of Performance Regressions

Benchmark Programs

AutoPerf diagnosed true sharing defects bodytrack and
dedup programs of Parsec suite We used native inputs for
both programs. Bodytrack implements a work stealing
algorithm using TicketDispenser. Every thread up-
dates value in getTicket() and suffers from a true
sharing cache contention defect. The defect degrades
performance by ≈ 10%. We resolved this by statically
dividing the workload equally among the threads. Dedup
has a number of contented locks (ht lock) to guard a
hash table. These locks are accessed by multiple threads
and introduce cache contention in the form of true shar-
ing. We reduced contention in ht lock using a differ-
ent hash function. 1 We tested AutoPerf with 10 non-
anomalous and 6 anomalous runs of each of these pro-
grams. However, HITM is ranked 2 for bodytrack. The
counter for L2 store misses (L2 STM) is reported as the
top ranked one.

AutoPerf diagnosed NUMA performance defects in
two programs from Parsec: blackscholes and stream-
cluster. In streamcluster, a single array, called block,
is read and written by many threads. Because the ar-
ray is allocated on a single node, the program suffers
from significant remote memory access latency [4]. We
created a non-anomalous version of this program by in-
terleaving the memory allocated for this array. A sim-
ilar NUMA performance defect, associated with an ar-
ray, buffer, exists in blackscholes [7]. This defect
causes a 7.5% performance degradation. AutoPerf di-
agnosed both NUMA performance defects with a perfect
F1 score and OFFCORE RESPONSE: REMOTE DRAM
ranked as top counter.

AutoPerf detected false sharing defects in three pro-
grams of Phoenix benchmark suite: histogram, lin-
ear regression, and reverse index. All defects were pre-
viously reported in prior work [5, 6]. AutoPerf detected
these false sharing defects with a perfect F1 score and
HITM ranked as the top counter.

Open Source Applications

AutoPerf diagnosed performance defects in three open
source programs: Boost library, Memcached, and
MySQL.

Boost provides portable C++ libraries. A spinlock (a
type of lock) is implemented as a pool of size 41 in
version-1.38.0. Different threads may access different
spinlocks. Each spinlock is 4 bytes long and, there-
fore, multiple spinlocks can be located in a single cache

1Both of these bugs were discovered in prior work [8, 3].

line. This results in a false sharing cache contention de-
fect. This defect degrades Boost’s performance by up
to 30% [2]. We fixed the issue by adding necessary
padding. We tested 10 non-anomalous and 10 anoma-
lous runs of Boost using AutoPerf. AutoPerf can diag-
nose false sharing in Boost library in 10 anomalous runs,
but falsely reports in 3 non-anomalous runs as defects.
So, F1 score becomes 0.82.

Memcached is a distributed memory object caching
system. AutoPerf detected false sharing defects in
do item alloc function of version 1.4.10. This
function is changed from version 1.4.4 to 1.4.10 by intro-
ducing cache lock shared variable. Multiple threads
accessing this variable can create significant true sharing
contention. We used memslap [1] benchmark for this.
AutoPerf detected cache contention defects in Mem-
cached with no false positive or negative.

In MySQL, AutoPerf detected false sharing involving
the n rows read variable. This variable was changed
to an array from version 5.5 to 5.6. We used sysbench
OLTP benchmarks.

2 Source Code and Data

Source code of AutoPerf is uploaded to github:
https://github.com/mejbah/AutoPerf/
tree/master/autoperf.
Dataset used for our experiments can be ac-
cessed from https://drive.google.
com/drive/folders/17Hz-OmQ0W4uxC_
7E393DJzrRl3EQ4SXJ?usp=sharing
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