
A Proofs of Results From Section 3

In this section, we provide proofs of our results from Section 3.

A.1 Theorem 1

Proof of Theorem 1. Let t ∈ C1 as defined in Section 3. For iteration t we use the update direction
pt =

∑m
i=1 pt,i/m, with pt,i = −H†t,igt. Using Assumption 3 we obtain the following upper bound

on ‖pt‖:

‖pt‖ =
1

m

∥∥∥∥∥
m∑
i=1

pt,i

∥∥∥∥∥ ≤ 1

m

m∑
i=1

‖pt,i‖ ≤ γ‖gt‖,

where γ =
∑m

i=1 γi/m. This and (8) imply∥∥∇f(wt + αpt)
∥∥2 ≤ ∥∥gt

∥∥2 + 2α〈pt,Htgt〉+ α2γ2L‖gt‖2, (9)

for all α ∈ [0, 1]. We now fix α > 0 such that α ≤ τ1, where

τ1 = min

{
1,

2(1− ρ)θ

Lγ2

}
.

For such α we have
α2γ2L‖gt‖2 ≤ 2α(1− ρ)θ‖gt‖2,

and as 〈pt,Htgt〉 ≤ −θ‖gt‖2 we obtain

α2γ2L‖gt‖2 ≤ 2α(ρ− 1)〈pt,Htgt〉.

This implies

‖gt‖2 + 2α〈pt,Htgt〉+ α2γ2L‖gt‖2 ≤ ‖gt‖2 + 2αρ〈pt,Htgt〉,

and by (9) we have ∥∥∇f(wt + αpt)
∥∥2 ≤ ‖gt‖2 + 2αρ〈pt,Htgt〉.

Therefore, line search (7) will pass for some αt ≥ τ1 and ‖gt+1‖2 ≤ (1− 2τ1ρθ)‖gt‖2.

A.2 Lemma 1

Proof of Lemma 1. We have

‖gt‖2 − gT
t H−1t,i Htgt = gT

t H−1t,i (Ht,i −Ht)gt ≤ εi‖gt‖‖H−1t,i gt‖ ≤
εi
νi
‖gt‖2, (10)

for all iterations t and all i = 1, 2, . . . ,m. Therefore, if
∑m

i=1(1− εi/νi)/m ≥ θ then (10) implies〈
1

m

m∑
i=1

H−1t,i gt,Htgt

〉
=

1

m

m∑
i=1

gT
t H−1t,i Htg ≥

1

m

m∑
i=1

(
1− εi

νi

)
‖gt‖2 ≥ θ‖gt‖2,

for all t, which implies t ∈ C1 for all t.

A.3 Theorem 2

Lemma 4. Let A1 ∈ Rm×n and A2 ∈ Rn×n for arbitrary positive integers m and n. Suppose that
A2 is non-singular. If we let

A =

[
A1

A2

]
∈ R(m+n)×n,

then ‖A†‖ ≤ ‖A−12 ‖.
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Proof. Recall that

‖A†‖ = max
x 6=0

‖A†x‖
‖x‖

.

For any such x we may write x = y + z with y ∈ R(A) and z ∈ R(A)⊥ = N (AT ) = N (A†).
Therefore, A†x = A†y and ‖x‖2 = ‖y‖2 + ‖z‖2. This implies

‖A†x‖
‖x‖

=
‖A†y‖√
‖y‖2 + ‖z‖2

,

which is maximized when z = 0. Thus,

‖A†‖ = max
y∈R(A)\{0}

‖A†y‖
‖y‖

.

As A2 has full column rank then so does A. Thus, A† is the left inverse of A and Av = 0 only
when v = 0. Therefore,

‖A†‖ = max
v 6=0

‖A†Av‖
‖Av‖

=

(
min
‖v‖=1

‖Av‖
)−1

.

This implies

‖A†‖−1 = min
‖v‖=1

∥∥∥∥∥
[
A1v

A2v

] ∥∥∥∥∥ ≥ min
‖v‖=1

‖A2v‖ = ‖A−12 ‖−1.

The following inequality follows immediately from Lemma 4:

‖H̃†t,i‖ ≤
1

φ
. (11)

With this, we now give a proof of Theorem 2.

Proof of Theorem 2. Let t ∈ C2 as defined in Section 3. For iteration t we use the update direction
pt =

∑m
i=1 pt,i/m, with pt,i = −H̃†t,ig̃t. It follows from (11) that

‖pt‖ ≤
1

m

m∑
i=1

‖pt,i‖ ≤
1

m

m∑
i=1

1

φ
‖g̃t‖ =

1

φ
‖gt‖,

where φ is as in Algorithm 1. From this and an analogous argument to that in the proof of Theorem 1,
for α ∈ (0, τ2], where

τ2 = min

{
1,

2(1− ρ)φ2θ

L

}
,

we have ∥∥∇f(wt + αpt)
∥∥2 ≤ ‖gt‖2 + 2αρ〈pt,Htgt〉.

Therefore, line search (7) will pass for some αt ≥ τ2 and ‖gt+1‖2 ≤ (1− 2τ2ρθ)‖gt‖2.

A.4 Lemma 2

Proof of Lemma 2. Let t ∈ C3, as defined in Section 3, and i = 1, 2, . . . ,m be arbitrary. The
positive definite matrix H̃T

t,iH̃t,i = H2
t,i + φ2I has eigenvalues at most τi + φ2. Hence, the matrix

(H̃T
t,iH̃t,i)

−1 has eigenvalues at least (τi + φ2)−1. Therefore,∥∥(H̃T
t,i)
†Htgt

∥∥2 = gT
t Ht(H̃

T
t,iH̃t,i)

−1Htgt ≥
1

τi + φ2
‖Htgt‖2.

We also have
‖Htgt‖ = ‖HtUwtU

T
wt

gt‖ ≥ γ‖UwtU
T
wt

gt‖ ≥ γ
√
ν‖gt‖,

where the first and second inequality follow from Assumptions 4 and 6, respectively, and Uwt
and

U⊥wt
are as in Assumption 6. In conclusion,∥∥(H̃T

t,i)
†Htgt

∥∥ ≥ γ( ν

τi + φ2

) 1
2

‖gt‖,

and this holds for all t ∈ C3 and all i = 1, 2, . . . ,m.
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A.5 Theorem 3

Proof of Theorem 3. Let t ∈ C3, as defined in Section 3. The set It, as defined in (5), is non-empty.
Each worker i, for i ∈ It, computes

pt,i = −H̃†t,ig̃t − λt,i(H̃T
t,iH̃t,i)

−1Htgt,

λt,i =
−gT

t HtH̃
†
t,ig̃t + θ‖gt‖2

gT
t Ht(H̃T

t,iH̃t,i)−1Htgt

.

The term λt,i is both well-defined and positive by Assumption 5, lines 4 and 5 of Algorithm 1, and
the definition of It. It follows from gT

t Ht(H̃
T
t,iH̃t,i)

−1Htgt =
∥∥(H̃T

t,i)
†Htgt

∥∥2 and inequality (11)
that for all i ∈ It we have

λt,i
∥∥(H̃T

t,iH̃t,i)
†Htgt

∥∥ =
(
−gT

t HtH̃
†
t,ig̃t + θ‖gt‖2

)∥∥(H̃T
t,iH̃t,i)

−1Htgt

∥∥∥∥(H̃T
t,i)
†Htgt

∥∥2
=
−gT

t HtH̃
†
t,ig̃t + θ‖gt‖2∥∥(H̃T

t,i)
†Htgt

∥∥ ·
∥∥H̃†t,i((H̃T

t,i)
†Htgt

)∥∥∥∥(H̃T
t,i)
†Htgt

∥∥
≤ 1

φ

(
−g̃T

t (H̃T
t,i)
†Htgt∥∥(H̃T

t,i)
†Htgt

∥∥ +
θ‖gt‖2∥∥(H̃T
t,i)
†Htgt

∥∥
)
.

Moreover, by Assumption 5, for all i ∈ It we have

λt,i
∥∥(H̃T

t,iH̃t,i)
†Htgt

∥∥ ≤ 1

φ

(∣∣g̃T
t (H̃T

t,i)
†Htgt

∣∣∥∥(H̃T
t,i)
†Htgt

∥∥ +
θ

δi
‖gt‖

)

≤ 1

φ

(
‖g̃t‖ ·

∥∥(H̃T
t,i)
†Htgt

∥∥∥∥(H̃T
t,i)
†Htgt

∥∥ +
θ

δi
‖gt‖

)

=
1

φ

(
1 +

θ

δi

)
‖gt‖.

Therefore, for all i ∈ It we have

‖pt,i‖ ≤ ‖H̃†t,ig̃t‖+ λt,i
∥∥(H̃T

t,iH̃t,i)
†Htgt

∥∥ ≤ 1

φ

(
2 +

θ

δi

)
‖gt‖.

This implies

‖pt‖ ≤
1

m

(∑
i/∈It

‖pt,i‖+
∑
i∈It

‖pt,i‖
)
≤ ct‖gt‖,

where

ct =
1

mφ

(
m+ |It|+ θ

∑
i∈It

1

δi

)
.

From this and an analogous argument to that in the proof of Theorem 1, for α ∈ (0, ωt], where

ωt = min

{
1,

2(1− ρ)θ

Lc2t

}
,

we have ∥∥∇f(wt + αpt)
∥∥2 ≤ ‖gt‖2 + 2αρ〈pt,Htgt〉.

Therefore, line search (7) will pass for some αt ≥ ωt and ‖gt+1‖2 ≤ (1 − 2ωtρθ)‖gt‖2. Upper
bounding ct with

c =
2

φ
+

θ

mφ

m∑
i=1

1

δi
,

which holds for all t, implies that line search (7) will pass for some αt ≥ τ3, with

τ3 = min

{
1,

2(1− ρ)θ

Lc2

}
≤ ωt,

and ‖gt+1‖2 ≤ (1− 2ωtρθ)‖gt‖2 ≤ (1− 2τ3ρθ)‖gt‖2.
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A.6 Lemma 3

Proof of Lemma 3. Suppose |It| < m for some iteration t. For such t there exists an i such that

θ‖gt‖2 ≤ 〈H̃†t,ig̃t,Htgt〉 ≤ ‖gt‖ ·
∥∥(H̃T

t,i)
†Htgt

∥∥ ≤ 1

φ
‖gt‖ · ‖Htgt‖,

which implies θφ ≤ ‖Htgt‖/‖gt‖.

B Additional Experiments

In this section, we evaluate the empirical performance of DINGO, GIANT, DiSCO, InexactDANE,
AIDE, Async-SGD and Sync-SGD on another softmax regression problem, a Gaussian mixture model
problem and an autoencoder problem, which are convex, non-convex and non-convex, respectively.
In our offline small-scale experiments we found that AIDE often failed to outperform InexactDANE
in non-convex problems. Because of this and also the significant amount of difficulty in tuning its
hyper-parameters, we opted not to consider AIDE in non-convex experiments.

We choose to run GIANT and DiSCO on non-convex problems, despite that their sub-problem
solvers, conjugate gradient (CG) [24] and distributed PCG [9], are not meant to be used when the
local Hessian matrices Ht,i and full Hessian Ht, respectively, can be singular or indefinite. Moreover,
we do not make any modifications on these sub-problem solvers, rather we terminate GIANT when
CG fails and terminate DiSCO when distributed PCG fails. These situations are indicated by a
cross “×" in all plots. We make this choice to highlight situations where the iterates of GIANT and
DiSCO enter areas that are non-convex or have a high degree of weak-convexity, and to highlight the
difference, in convexity requirements, between DINGO and these methods.

B.1 Softmax Regression

As in Section 4, we consider the strongly convex problem of softmax cross-entropy minimization
with regularization. Here, we show the performance of the optimization methods applied to this
problem on the EMNIST Digits dataset in Figure 3. This dataset has 240000 training samples,
40000 test samples and each datapoint xi ∈ R784 has a label yi ∈ {1, 2, . . . , 10}. This problem has
dimension d = 784 · (10 − 1) = 7056. EMNIST Digits has a large number of samples n and we
have s = n/m > d in all experiments. As s is relatively large, we see DiSCO perform comparatively
poorly in Figure 3.

In Plot 3(d) we demonstrate the effect of choosing unnecessarily large values of θ for DINGO. In
this experiment, each iteration of DINGO is in Case 1 when θ = 10−4, Case 1 and Case 3 occur
when θ = 1, and each iteration is in Case 3 when θ = 100. We maintain a step size of 1 when θ = 1
and θ = 100 and we obtain similar convergence in the objective value for all three values of θ. In
Experiment 3(d), we obtain the exact same convergence for all values θ ≤ 10−1.

B.2 Gaussian Mixture Model

For this experiment we consider learning the mixture weight and mean vectors of a mixture of two
Gaussians. Namely, we have

`j(w) = − log
(
ζ(w0)Φ(xj ; w1,Σ1) +

(
1− ζ(w0)

)
Φ(xj ; w2,Σ2)

)
(12)

where w = (w0,w1,w2)T and Φ denotes the density of the p-dimensional standard normal distri-
bution. The data points xi ∈ Rp and covariance matrices Σ1,Σ2 ∈ Rp×p are given. The function
ζ : R→ (0, 1) is defined by

ζ(t) =
1 + tanh(t)

2
.

This problem has dimension d = 1 + 2p. This problem is non-convex; however, it may exhibit
features that are close to being invex [16].

The performance profile of each optimization method is presented in Figure 4 for various number
of workers. In each experiment, we run each method a total of 100 times. Each time, we record
the results of the iteration ending at, or immediately after, 20 communication rounds. Every run
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AIDE Asynchronous SGD DINGO, with = 0.0001 DINGO, with = 1 DINGO, with = 100 DiSCO GIANT InexactDANE Synchronous SGD
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(a) 8 Workers
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(b) 16 Workers
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(c) 32 Workers
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(d) 16 Workers

Figure 3: Softmax regression problem on the EMNIST Digits dataset. All algorithms are initialized
at w0 = 0. In Plots 3(a), 3(b) and 3(c): Async-SGD, Sync-SGD, SVRG have a learning rate of 10−2,
10−1 and 10−1, respectively, and AIDE has τ = 1. In Plot 3(d) we compare the performance of
DINGO for three different values of θ, namely 10−4, 1 and 100. In this plot, similar convergence in
the objective value is obtained, while DINGO with θ = 10−4 achieves a significantly faster reduction
in the norm of the gradient.

we generate 20000 data points from the mixture distribution (12), with p = 100 and ground truth
parameters w∗0 = 1, w∗1 ∼ U [−1, 0] and w∗2 ∼ U [0, 1]. Moreover, every run we generate the
covariance matrices Σ1 and Σ2 randomly in such a way that they are not axis-aligned and have a
fixed condition number of 100, for details see [16]. In Figure 4 we also display the estimation error,
see [16], which measures a model’s relative accuracy in recovering the ground truth parameters w∗0 ,
w∗1 and w∗2 .

B.3 Autoencoder

For this experiment we consider a deep autoencoder on the Curves dataset. With this dataset we
have n = 20000 training samples, 10000 test samples and each data point xi is an element of R784.
We use a fully-connected feed-forward autoencoder with bias, palindromic layer widths 784-400-
300-200-100-50-25-12-6-12-...-784 and `2 loss. On the hidden layers and output layer we apply
the element-wise sigmoid and exponential linear unit (ELU) activation functions, respectively. The
vector w exclusively contains the elements, in a one-to-one correspondence, of the sixteen weight
matrices and sixteen bias vectors. This problem has dimension d = 1043408 and is non-convex [1].

We show the performance of the optimization methods applied to this problem in Figure 5. Note that
the twice differentiable assumption, in our theory, is not supported in this problem. Nevertheless,
DINGO empirically works and performs well. It is competitive in minimizing the objective value
in all experiments in Figure 5. The hyper-parameters of DINGO remain constant among these
experiments. Whereas, the hyper-parameters of InexactDANE, Async-SGD and Sync-SGD were
selected carefully for them to achieve high performance, which is a time consuming process that is
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Asynchronous SGD DINGO DiSCO GIANT InexactDANE Synchronous SGD
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(a) 4 Workers
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(b) 8 Workers
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(c) 16 Workers
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(d) 32 Workers

Figure 4: Performance profiles on the Gaussian mixture model problem. All algorithms are initialized
at w0 = 0. In all plots, Async-SGD, Sync-SGD and SVRG have a learning rate of 10−2, 10−1 and
10−1, respectively.

problem specific. Note the significant difference in selected hyper-parameters between Plot 5(a) and
the other plots in Figure 5.

This experiment highlights some important differences between DINGO, GIANT and DiSCO. In
Plot 5(a), all iterations of DINGO were in Case 1. In this situation, the update directions of DINGO
and GIANT appear very similar, in theory, while their behaviour is noticeably different. They both
achieve almost identical performance in the objective value; however, DINGO maintains a constant
step-size of 1 and achieves continual progress in reducing the norm of the gradient.

In Plots 5(b), 5(c) and 5(d) both GIANT and DiSCO are immediately terminated, whereas DINGO
uses iterations from multiple cases to achieve a fast reduction in both the objective value and gradient
norm. Specifically, in Plots 5(b) and 5(c) the first few iterations of DINGO are in Case 1 and all
subsequent iterations are in Case 2 (except for the two iterations in Plot 5(b) corresponding to the
dips in step-size, which are Case 1). Whereas, in Plot 5(d), Case 1 occurs until the dip in step-size,
where during this dip all iterations are in Case 3, and once the step-size returns to a value of 1 all
subsequent iterations are in Case 2. Figure 5 demonstrates the versatility of DINGO and how its
cases allow it to traverse various regions.
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(a) 10 Workers,
with w0 = 0
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(b) 5 Workers,
with random w0
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(c) 10 Workers,
with random w0
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(d) 100 Workers,
with random w0

Figure 5: Autoencoder problem on the Curves dataset. In Plot 5(a): Async-SGD, Sync-SGD and
SVRG have a learning rate of 1, 10 and 1, respectively. In Plots 5(b), 5(c) and 5(d): Async-SGD,
Sync-SGD and SVRG have a learning rate of 10−3, 10−2 and 10−2, respectively. For Plots 5(b), 5(c)
and 5(d) we use the default random initialization of PyTorch. In these three plots, both GIANT and
DiSCO fail, i.e., they terminate before completing their first iteration. Recall that this is marked with
a cross.

18


