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We would like to thank the reviewers for their detailed reviews and their suggestions / questions, which will help to
further improve the clarity of this paper. In the following we will try to address the main questions.

1. Three questions regarding MULT-VAE [33], one of the models we used as baseline (Reviewer 1):

(a) In paper [33], where MULT-VAE was proposed, it was empirically found that MULT-VAE with 3 hidden layers
obtained the best accuracy on these data-sets, outperforming architectures with a larger (as well as a smaller) number of
hidden layers (see Section 4.3 in [33]). Note that this finding is consistent with the literature on collaborative filtering
by deep models (and different from other application areas of deep learning, where deeper is typically better). It hence
is fair to compare to MULT-VAE with 3 hidden layers.

(b) Why the proposed full-rank model outperforms the deep non-linear MULT-VAE by a large margin on the
MSD data is an excellent question. We are not aware of a definite answer in the literature, and hope that this paper may
spark more work in this area. Empirically, the number of long-tail items that get recommended in the top-N items (on
average across all test users in the MSD data) turns out to be considerably lower for MULT-VAE than it is for the full-rank
model. We suspect that the hourglass architecture of MULT-VAE (where the smallest hidden layer has 200 dimensions in
[33]) severely restricts the information that can flow between the 41,140-dimensional input and output layers (regarding
the 41,140 items in MSD data), so that many relevant dependencies between items may get lost (especially involving
long-tail items). Considerably increasing the number of dimensions may improve accuracy—however, the training time

would increase at least linearly, and it is already 4 hours 30 minutes for MULT-VAE on MSD data (see Table 2). As a

~ (dens:
simple sanity check, once the full-rank B( ense) was learned, we applied a low-rank approximation (SVD), and found

that even 3,000 dimensions resulted in about a 10% drop in nDCG@ 100 on MSD data. This motivated us to pursue
sparse full-rank rather than dense low-rank approximations.

(c) Before discussing as to why the proposed training of the MREF is faster than learning MULT-VAE by an order
of magnitude or more, note that MULT-VAE is not unusually time-consuming to train compared to various other
baseline models. For instance, in [33] (which proposed MULT-VAE and used SLIM as a baseline) it was stated that
parallelized grid search for the SLIM model took about two weeks on the Netflix data, and the MSD data-set was "too
large for it to finish in a reasonable amount of time’ [33]. At a high level, MULT-VAE is trained on the user-item
matrix X using stochastic gradient descent, which is time-consuming due to the large number of epochs required
until convergence (about 50 to 200 in [33]). Moreover, each gradient-step to optimize ELBO involves expensive
computations (log, exp, softmax, sampling, etc.). In contrast, the proposed MREF is trained on the item-item data-matrix
(note that #items < #users in our experiments), and it uses a closed-form solution (instead of iterative gradient descent).

2. High-level Summary and Pseudo-code (Reviewer 1): While we described the high-level summary of the sparse
approximation in lines 107-114 and 325-329, we now realize that it may fit better at the beginning of Section 3. We will
also try to re-phrase this description to make it clearer. We omitted the pseudo-code in the paper due to space constraints,
but tried to write Section 4.2 in several individual steps as to resemble pseudo-code, but with the explanations included.
Based on the feedback, we will try to re-write this section more clearly as well.

3. Code (Reviewer 2): We plan to make our Python code available upon publication of this paper.

4. Accounting for the Popularity Bias (Reviewer 2) is indeed very important for obtaining high recommendation
accuracy. The different item-popularities affect the means and the covariances in the Gaussian MRF, and we used the
standard procedure of centering the user-item matrix X (see line 47 in our paper) and rescaling the columns of X prior
to training: see lines 314-321 for the exact approach, where av = 1 results in the empirical correlation matrix (popularity
fully removed) and @ = 0 in the covariance matrix (popularity fully present). This is particularly important when
learning the sparse model: theoretically, its sparsity pattern is determined by the correlation matrix (which quantifies
the strength of statistical dependence between nodes in the Gaussian MRF), while the values of the non-zero entries are
determined by the covariance matrix (with the full popularities present, as the popularities of the items can be expected
to be the same in the test data and the training data, as these were obtained by randomly splitting the data in [33]).
Empirically, we found oo = 3/4 to result in slightly higher prediction accuracy than using the theoretically correct value
a =1 (i.e., correlation matrix) for determining the sparsity pattern, which coincidently is the same value as was used in
word2vec [Mikolov et al., NeurIPS 2013] to remove the word-popularities in text-data.

5. We chose the threshold of at most 1,000 non-zero entries per column in the sparse approximation in Section
3.1 (Reviewer 2) based on the tradeoff between training time and prediction accuracy: a smaller value tends to reduce
the training-time and computational complexity (see lines 138-141 and 190-192), but it might also degrade the prediction
accuracy of the learned sparse model. In Table 2, this threshold actually affects only a few dozen items in the model
with sparsity level 0.5%, while it has no effect at sparsity level 0.1% (where all items have fewer than 1,000 neighbors).
Apart from that, allowing an item (song) to have up to 1,000 similar songs in the MSD data seems a reasonably large
number based on our common sense.



