
Thank you for your valuable comments and suggestions. Please see the following drawing of the complete model(input1

length 16, k = 4). Weight sharing is shown with colored layers. White layers have unique weights. You are right2

that for a sequence of length 2k, [x1, x2, x3, x4,] adjacent pairs [(x1, x2), (x3, x4), . . .] are given to each Switch3

Unit. There are 2k−1 pairs with shared weights per layer. We designed the sharing to be minimal such that the model4

generalizes to longer inputs. We found that this schema helps to reduce the parameter count without accuracy loss5

also on tasks not requiring generalization, see the Lambada figure. It could be possible to reduce more parameters by6

sharing more weights. We will analyze this in the final paper.7

1st	
Switch
Layer

k-th
Switch
Layer

		(2k-1)th	
	Switch	Layer

Shared
weights

Shared
weights

Shared
weights

Shared
weights

Shuffle
Layer

Switch
Unit

+

x

x +

Scaling
by

learnable
parameter

Pointwise
addition

+

x

+

x

+

x

+

x

+

Residual	skip	connections

+

1st	Beneš	block 2nd	Beneš	block

Inverse
Shuffle
Layer

x x

Input Output

0 0.2M 0.4M 0.6M 0.8M 1M

15

20

25

30

35

40

45

50

55

No shared weights (192 feature maps, 14M learnable params)
Shared weights (192 feature maps, 5M learnable params)
Shared weights (384 feature maps, 20M learnable params)

step

ac
cu

ra
cy

 %

Effect of weight sharing on Lambada

Our architecture compared to Diagonal Neural GPU has competitive generalization on longer test sequences. Both8

models were trained for 40k steps on length up to 64 symbols.

8 16 32 64 128 256 512 1K 2K 4K

50

60

70

80

90

100

Shuffle-Exchange sorting
Shuffle-Exchange multiplication
Shuffle-Exchange addition
Shuffle-Exchange duplication
Shuffle-Exchange reversal

input length

ac
cu

ra
cy

 %

8 16 32 64 128 256 512 1K 2K 4K

30

40

50

60

70

80

90

100

DNGPU sorting
DNGPU multiplication
DNGPU duplication
DNGPU addition
DNGPU reversal

test length

ac
cu

ra
cy

 %

9

The main purpose of the update gate is to stabilize the gradient flow through the layers(similar to LSTM and GRU). It10

does not increase the expressive power of the unit much since its logic can be simulated by the other parts of the unit.11

See the following ablation experiments. They display multiplication accuracy trained and tested on length 128, addition12

and sorting accuracy trained on 64, tested on 512. Three additional ablations are provided:(swap gate) an additional13

swap gate is introduced; (Two FC layers) the entire Switch Unit is replaced with two fully connected layers with ReLU14

and twice the number of feature maps in the middle;(Two FC layers+gate) the part involving reset gates is replaced with15

two FC layers. ReLU on both FC layers does not work well. To maximize the variety of solvable tasks, the hardest ones16

should be given more impact in ablation study. We have used about 15 tasks in total for tuning our model.17

0 0.2M 0.4M 0.6M 0.8M 1M
55

60

65

70

75

80

85

90

Baseline Without Beneš Swap gate
Two FC layers Two FC layers + gate Without swap

multiplication

ac
cu

ra
cy

 %

0 2k 4k 6k 8k 10k

50

60

70

80

90

100

Baseline without Beneš swap gate
Two FC layers Two FC layers + gate without swap

addition

ac
cu

ra
cy

 %

0 2k 4k 6k 8k 10k

50

60

70

80

90

100

Baseline without Beneš swap gate
Two FC layers Two FC layers + gate without swap

sorting

ac
cu

ra
cy

 %

This architecture can learn positional information by itself. Assume that the input has a marked position(end-of-line18

marker, for example) and consider the binary tree of paths from it to nodes at depth log(n). Each leaf of this tree can be19

uniquely labeled according to left-or-right choices on the path connecting it to the root.20

We would like to note that learning fast algorithms is a considerably harder task than learning slow algorithms(you21

may try challenging your students to come up from scratch with a log-depth circuit to add long binary numbers). Fast22

algorithms are often considerably more complex and, remarkably, that our architecture can learn them. Also, it is23

natural that the more complex algorithms learned by our model generalize worse than possibly simpler ones learned by24

the Neural GPU. Therefore we consider our work a significant contribution in the field of algorithm learning, regardless25

that we do not obtain better accuracies.26

We agree that showing the benefits of our architecture on a real-wold task with long sequences is an important future27

work.28

We will include the analysis given here and take care of the other review suggestions in the final paper.29

