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1 Proof of Lemma 1

Let (U,V) be a minimizer to (4). Then by the feasibility it satisfies X = UV>. Therefore

‖X‖1→2 =
∥∥UV>

∥∥
1→2

= max
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2
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i
‖U‖
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‖U‖F
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= ‖U‖F ‖V‖2,∞ = ‖X‖mixed .

Suppose that (U,V) satisfies M = UV> and U>U = Ir. Such (U,V) always exists. For example,
think about the SVD of M. Since (U,V) is feasible to (3), it follows that
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√
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On the other hand,

‖X‖1→2 = max
i

∥∥UV>ei
∥∥

2
= max
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∥∥V>ei∥∥2
=
∥∥V>∥∥
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We have shown
‖X‖mixed ≤

√
r ‖X‖1→2 .

In summary, we have
‖X‖1→2 ≤ ‖X‖mixed ≤

√
r ‖X‖1→2 .

That is, the pair of ‖·‖mixed and ‖·‖1→2 can be also used for a surrogate of the rank of a matrix.

2 Proof of Lemma 2

We derive a tail estimate on supM ‖QMξ‖22 by using the results on suprema of chaos processes [1]
summarized in the following theorem.

Theorem 1 (Theorem 3.1 in [1]) Let ξ ∈ Rn be a Gaussian vector with E[ξ] = 0 and E[ξξ>] = In,
∆ ⊂ Rm×n, and 0 < ζ < 1. There exists a numerical constant C such that

sup
Q∈∆

| ‖Qξ‖22 − E[‖Qξ‖22]|

≤ C
(
E + V

√
log(2ζ−1) + U log(2ζ−1)

)
holds with probability 1− ζ, where

E := γ2(∆, ‖·‖) [γ2(∆, ‖·‖) + dF(∆)] ,

V := dS(∆) [γ2(∆, ‖·‖) + dF(∆)] ,

U := d2
S(∆).
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We apply Theorem 1 to the set ∆ = {QM : M ∈ κ(α,R)}. The radii of ∆ with respect to the
Frobenius norm and to the spectral norm are respectively upper-bounded as follows:

dF(∆) ≤ α
√
d2

and

dS(∆) ≤ α√
L
.

Let BS denote the unit ball with respect to the spectral norm. Then the γ2-functional of ∆ with
respect to the spectral norm is upper-bounded through Dudley’s inequality by

γ2(∆, ‖·‖2) ≤ c
∫ ∞

0

√
logN (∆, ηBS) dη

≤ c√
L

∫ ∞
0

√
logN (κ(α,R), ηB1→2) dη

≤ c′R
√
d log3/2 d√
L

,

where the last inequality follows from Lemma 4.

Then E, U , and V in Theorem 1 are upper-bounded by

E ≤ αR
√

(d1 + d2)d2

L
log3/2 d

+
R2

L
d log3 d

U ≤ α2

L

V ≤ α
√
d2√
L

(
R
√
d

Ld2
log3/2 d+ α

)
.

By plugging in these upper estimates to Theorem 1, we obtain∑
M∈κ(α,R)

∣∣∣∣∣‖QMξ‖2

d2
−
‖M‖2F
d2

∣∣∣∣∣
≤ c

(
αR
√
d log3/2 d√
Ld2

+
R2d log3 d

Ld2

)
+ t

≤ cR
√
d√

Ld2

(
α log3/2 d+

R
√
d log3 d√
Ld2

)
+ t

with probability at least 1− 2 exp(−ĉmin(t2/V 2, t/U)).

We take t = αR
√
d log3/2 d/Ld2 not to increase the upper bound in order. This leads to the Lemma

2.

3 Upper bound on T1 and T2

A tail bound for T1 can be derived by the following lemma [2], which is a direct consequence of the
moment version of Dudley’s inequality (e.g., p. 263 in [3]) and a version of Markov’s inequality (e.g.,
Proposition 7.11 in [3]).

Lemma 1 Let µ ∈ Cn be a standard complex Gaussian vector with Eµµ∗ = In, and let ∆ ⊂ Cn,
0 < ζ < e1/2. Then, there exists constant c such that

sup
f∈∆
|f∗µ| ≤ c

√
log(ζ−1)

∫ ∞
0

√
logN(∆, ‖ · ‖2, t)dt

with probability 1− ζ.
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We apply Lemma 1 to the maximum of linear forms of a Gaussian vector µ = [b>1,1 · · ·b>L,d2 ]> over
the set F = {fM : M ∈ κ(α,R)}, where fM is defined by

fM :=
[
11,L ⊗ (Me1)> . . . 11,L ⊗ (Med2)>

]>
.

Here 11,L is the row vector of length L with all entries set to 1. Then we have

‖fM − fM′‖2 = ‖M−M′‖F
√
L

≤ ‖M−M′‖1→2

√
Ld2.

Hence,

N(F , ηB2) ≤ N
(
κ(α,R),

η√
d2

Bε

)
.

Combining these quantities and the entropy estimate for N(κ(α,R), η√
d2
Bε) with the above lemma,

we get

sup
M∈κ(α,R)

∣∣∣∣∣∣
∑
l,i

〈bl,i,Mei〉

∣∣∣∣∣∣ ≤ c log1/2 d
√
LR
√
d.

Using this, we get
T1 = E |||

∑
l,i

νl,iAl,i|||∗ ≤ cσ
√
d2R
√
d log3/2 d

with probability at least 1− 2 exp(−cd)

Using Lemma 2, we have

T2 ≤ α

√√√√d2

(
cR

α

√
d+d2

Ld2
+ 1

)
log3 d

Note that T1 dominates T2 when Ld2 < d1d2. In this case, we conclude that

|||
∑
l,i νl,iAl,i|||∗
d2

≤ cσ
√
LR

√
d

Ld2
log3 d.

4 Details of the ADMM based algorithm

We now give closed form solutions to each of the update step in Algorithm 1.

4.0.1 Update for T

Tk+1 = arg minTL(X,Wk,Zk)

= arg minT�0λ1〈[ I 0
0 0 ],T〉+ 〈Z,T−W〉+

ρ

2
‖T−W‖2F

= πSd
+

(Wk − ρ−1
(
Zk + λ1[ I 0

0 0 ]
)
)

where π denotes the projection operator and Sd+ s the set of PSD matrices of size d.

4.0.2 Update for W

Wk+1 = arg minWL(Tk+1,W,Zk)

This optimization can be separate into four sub-problems. Let C = Tk+1 + ρ−1Zk. Let M̃ be the
matrix obtained by setting the diagonal elements of any matrix M to 0 and let q = diag(C22) The
four sub-problems are
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1. Wk+1
12 = arg min

‖W12‖1→2≤α
f(W12) + 〈Zk12,T

k+1
12 − W12〉 + ρ

2

∥∥Xk+1
12 −W12

∥∥2

F
where

f(W12) =
∑
l,i |yl,i − 〈Al,i,W12〉|2

2. Wk+1
11 = arg minW11

‖W11 −C11‖2F

3. W̃k+1
22 = arg min

W̃22

∥∥∥W̃22 − C̃22

∥∥∥2

F

4. diag(Wk+1
22 ) = arg min

u∈Rd2

λ2 ‖u‖∞ + ρ
2 ‖u− q‖

2
2

Sub-problem 1 is a least-squares problem which has a closed form solution. Sub-problems 2 and 3
are readily solved by setting Wk+1

11 = C11 and W̃k+1
22 = C̃22. Sub-problem 4 has a closed form

solution as described in [4].

5 Entropy Estimates of Tensor Products

For symmetric convex bodies D and E, the covering number N(D,E) and the packing number
M(D,E) are respectively defined by

N(D,E) := min
{
l
∣∣ ∃y1, . . . , yl ∈ D, D ⊂

⋃
1≤j≤l

(yj + E)
}
,

M(D,E) := max
{
l
∣∣∃y1, . . . , yl ∈ D, yj − yk 6∈ E, ∀j 6= k

}
.

Let X,Y be Banach spaces. For T ∈ L(X,Y ), the dyadic entropy number [5] is defined by

ek(T ) := inf{ε > 0 |M(T (BX), εBY ) ≤ 2k−1}.
where BX and BY denote unit balls. We will use the following shorthand notation for the weighted
summation of the dyadic entropy numbers:

E2,1(T ) :=

∞∑
k=1

k−1/2ek(T ),

which is up to a constant equivalent to the entropy integral
∫∞

0

√
lnN(T (BX), εBY )dε [6], which

plays a key role in analyzing properties on random linear operators on low-rank matrices.

In this section, we derive the E2,1 of the identity operator from the injective tensor product to the
projective tensor product of a set of Banach space pairs. Note that these tensor product spaces are
valid Banach spaces too. The main machinery in deriving these estimates is Maurey’s empirical
method [7], summarized in the following lemma.

Lemma 2 Let T ∈ `d2∞ ⊗ `d1∞. Then

E2,1(T ) ≤ C
√

1 + ln(d1 ∨ d2) (1 + ln(d1 ∧ d2))3/2‖T‖∨.

To apply Lemma 2 to `d2∞ ⊗ `d1p with 2 ≤ p <∞, we need the following result that shows embedding
of finite dimensional `p space to `1 up to a small Banach-Mazur distance.

Lemma 3 ([7, Lemma 5]) Let 1 < p ≤ 2 and ε > 0. There is a constant c(p, ε) > 0 for which the
following property holds: For each d1, there exists k ≥ c(p, ε)d1 so that `d11 contains a subspace
(1 + ε)-isomorphic to `kp , i.e., the Banach-Mazur distance is upper-bounded by (1 + ε).

Then we obtain the following entropy estimate for `d2∞⊗`d1p with 2 ≤ p <∞ by combining Lemmas 2
and 3.

Let 2 ≤ p <∞. Then

E2,1(id : `d2∞ ⊗̂ `d1p → `d2∞ ⊗ `d1p ) ≤ C
√
d1 + d2 (1 + ln(d1d2))3/2.

Note that Lemma 4 in the main paper is a particular case of Lemma 3 above.
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