
Supplementary Material for
“Curvilinear Distance Metric Learning”

Abstract

This supplementary document contains all technical proofs for Theorem 2, Theo-
rem 3, and Theorem 4 in the NeurIPS_2019 paper entitled “Curvilinear Distance
Metric Learning”. It is indeed the appendix section of the paper.

A Proof of Theorem 2 (Fitting Capability)

We introduce the following Lemma 1 for proving our Theorem 2.
Lemma 1. Assume that s1, s2, · · · , sK > 0 and tj = j + κs(j)∆ for j = 1, 2, · · · , H , where
H =

∑K
i=1 si and κs(j) denotes the maximal integer satisfying

∑κs(j)
i=1 si < j. Then for the

Vandermonde matrix

V t1,t2,··· ,tH (∆) =


1 0 · · · 0
1 t1 · · · tH1
...

...
. . .

...
1 tH · · · tHH

 ∈ R(H+1)×(H+1), (A.1)

the limitation of (V t1,t2,··· ,tH (∆))−1 exists as ∆→ +∞.

Proof. As 1 = t1 < t2 < · · · < tH , it holds that

det(V t1,t2,··· ,tH (∆)) =
∏

1≤i<j≤H
(tj − ti) 6= 0, (A.2)

which implies that the matrix V t1,t2,··· ,tH(∆) is invertible. Then we denote the adjoint matrix of
V t1,t2,··· ,tH(∆) as V ?∈R(H+1)×(H+1), and we have

(V t1,t2,··· ,tH (∆))−1 =
V ?

det(V t1,t2,··· ,tH (∆))
, (A.3)

where V ?ij = (−1)i+jV (i, j) and V (i, j)∈R is the cofactor of V t1,t2,··· ,tH (∆) w.r.t. i-th row and
j-column. According to the definition of determinant, det(V t1,t2,··· ,tH (∆)) can be written as

det(V t1,t2,··· ,tH (∆)) =
∑Q

k=0
uk∆

k, (A.4)

where the polynomial order Q ≤ H , and the polynomial coefficients u = (u0, u1, · · · , uQ)>. For
the cofactor V (i, j), we have that

V (i, j) =
∑P (i,j)

k=0
v
(i,j)
k ∆k, (A.5)

and the polynomial order P (i,j) ≤ Q can be directly obtained from the definition of the cofactor, in
which the polynomial coefficients v(i,j) = (v

(i,j)
0 , v

(i,j)
1 , · · · , v(i,j)

P (i,j))
>. Then for Eq. (A.3), we have

lim
∆→+∞

∣∣∣∣ V ?ij
det(V t1,t2,··· ,tH (∆))

∣∣∣∣ = lim
∆→+∞

∣∣∣∑P (i,j)

k=0 v
(i,j)
k ∆k

∣∣∣∣∣∣∑Q
k=0 uk∆

k
∣∣∣ = lim

∆→+∞

∣∣∣∣∣v
(i,j)

P (i,j)∆
P (i,j)

uQ∆Q

∣∣∣∣∣ , (A.6)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



and

lim
∆→+∞

∣∣∣∣∣v
(i,j)

P (i,j)∆
P (i,j)

uQ∆Q

∣∣∣∣∣ =
0, if P (i,j) < Q,∣∣∣∣v(i,j)P (i,j)

uQ

∣∣∣∣ , if P (i,j) = Q.
(A.7)

where i, j ∈ NH+1. Therefore, the limitation of (V t1,t2,··· ,tH (∆))−1 exists as ∆→ +∞.

Theorem 2. For given ∆margin > 0, there exist m, c ∈ N and M̃ ∈ Rm×d×c such that

DistM̃(β, β̂)− DistM̃(α, α̂) > ∆margin, (A.8)

where (α, α̂) ∈ XSimilar and (β, β̂) ∈ XDissimilar.

Proof. We first convert the point pair sets XSimilar and XDissimilar to point sets A1, A2, · · · , AK of K
categories. Specifically, the pair sets can be written as{

XSimilar = ∪Ki=1 (Ai ×Ai) ,
XDissimilar = ∪i 6=j (Ai ×Aj) ,

(A.9)

where “×” denotes the Cartesian Product [2] of two sets. Assume that
A1 = {a(1)

1 ,a
(2)
1 , · · · ,a(|A1|)

1 ∈ Rd},
A2 = {a(1)

2 ,a
(2)
2 , · · · ,a(|A2|)

2 ∈ Rd},
· · · ,
AK = {a(1)

K ,a
(2)
K , · · · ,a(|AK |)

K ∈ Rd}.

(A.10)

where |Ai| denotes the cardinality of the set Ai for i = 1, 2, · · · ,K. Let tj = j + κ(j)∆ and1

(b1, · · · , bH) = (a
(1)
1 ,· · ·,a(|A1|)

1 ,a
(1)
2 ,· · ·,a(|A2|)

2 , · · · ,a(1)
K ,· · ·,a

(|AK |)
K ), (A.11)

where bj ∈ Rd, j ∈NH , ∆> 0, H =
∑K
i=1|Ai|. We further denote that t0 = 0, b0 = 0 ∈ Rd and

construct the following Vandermonde matrix

V t1,t2,··· ,tH (∆)=


1 t0 · · · tH0
1 t1 · · · tH1
...

...
. . .

...
1 tH · · · tHH

=


1 0 · · · 0
1 t1 · · · tH1
...

...
. . .

...
1 tH · · · tHH

∈R(H+1)×(H+1). (A.12)

Then we have
det(V t1,t2,··· ,tH (∆)) =

∏
1≤i<j≤H

(tj − ti) 6= 0. (A.13)

Therefore, the equation group V t1,t2,··· ,tH (∆)µk = (b0k, b1k, · · · , bHk)> has the unique solu-
tion µk = (µk0, µk1, · · · , µkH)>, in which bjk denotes the k-th element of the vector bj and
k = 1, 2, · · · , d. It implies that the polynomial function fµk(t) =

∑H
i=0 µkit

i crosses the points
(t0, b0k), (t1, b1k), · · · , (tH , bHk) successively for k = 1, 2, · · · , d.

Without loss of generality, we assume that there exist real numbers t̃1, t̃2, · · · , t̃S /∈ {t0, t1, · · · , tH}
and function l(j) such that

(fµ1
(t̃j), fµ2

(t̃j), · · · , fµd−1
(t̃j)) = (bl(j)1, bl(j)2, · · · , bl(j)(d−1)), (A.14)

where j ∈ NS . Since the H-order polynomial equation exists H real roots at most, we can easily
obtain S ≤ H(H−1). Then we assume that {t̃1, t̃2, · · · , t̃S} = {t̃+1 , t̃

+
2 , · · · , t̃

+
U}∪{t̃

−
1 , t̃
−
2 , · · · , t̃

−
V }

which satisfies {
fµd(t̃

+
j ) = bl(j)d, for j = 1, 2, · · · , U,

fµd(t̃
−
j ) 6= bl(j)d, for j = 1, 2, · · · , V. (A.15)

1Here κ(j) denotes the maximal integer satisfying
∑κ(j)
i=1 |Aj |<j.
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We construct the following function

f̃µd(t) = fµd(t) +
1∏H

i=0(|ti|+ 1)
∏V
j=1(|t̃

−
j |+ 1)

∏H

i=0
(t− ti)

∏V

j=1
(t− t̃−j ), (A.16)

which satisfies {
f̃µd(t) = fµd(t), t ∈ {t0, t1, · · · , tH} ∪ {t̃−1 , t̃

−
2 , · · · , t̃

−
V },

f̃µd(t) 6= fµd(t), t /∈ {t0, t1, · · · , tH} ∪ {t̃−1 , t̃
−
2 , · · · , t̃

−
V }.

(A.17)

It is easy to verify that for any j ∈ NS , we have

f̃µd(t̃j) 6= bl(j)d. (A.18)

According to Eq. (A.14) and Eq. (A.18), it follows that for t ∈ {t̃1, t̃2, · · · , t̃S}2

(fµ1
(t), fµ2

(t), · · · , fµd(t), f̃µd(t))
> /∈{b0, b1, · · · , bH}. (A.19)

Furthermore, for t ∈ R\{t̃1, t̃2, · · · , t̃S , t0, t1, · · · , tH}, it holds that3

(fµ1
(t), fµ2

(t), · · · , fµd(t), f̃µd(t))
> /∈{b0, b1, · · · , bH}. (A.20)

In summary, for any t ∈ R, we have{
(fµ1

(t), fµ2
(t), · · · , fµd(t), f̃µd(t))

>∈{b0, b1, · · · , bH}, if t ∈ {t0, t1, · · · , tH},
(fµ1

(t), fµ2
(t), · · · , fµd(t), f̃µd(t))

> /∈{b0, b1, · · · , bH}, if t /∈ {t0, t1, · · · , tH}.
(A.21)

Namely we have that (fµ1
(t), fµ2

(t), · · · , fµd(t), f̃µd(t))
> ∈ {b0, b1, · · · , bH} if and only if t ∈

{t0, t1, · · · , tH}. Let

ω(t) = (fµ1
(t), fµ2

(t), · · · , fµd(t), f̃µd(t))
>, (A.22)

then we thus have that ω(t) is invertible at t = t0, t1, · · · , tH , i.e., ti = ω−1(bi) for i = 0, 1, · · · , H .
We denote D+ and D− as 

D+ = max
(α, α̂)∈XSimilar

Lengthω(α, α̂),

D− = min
(β, β̂)∈XDissimilar

Lengthω(β, β̂),
(A.23)

then we have

D+= max
(α,α̂)∈XSimilar

w max(Tω(α),Tω(α̂))

min(Tω(α),Tω(α̂))
‖ω′(t)‖2dt= max

(α,α̂)∈XSimilar

w max(ω−1(α),ω−1(α̂))

min(ω−1(α),ω−1(α̂))
‖ω′(t)‖2dt,

(A.24)
and

D−= min
(β, β̂)∈XDissimilar

w min(Tω(β),Tω(β̂))

min(Tω(β),Tω(β̂))
‖ω′(t)‖2dt= min

(β, β̂)∈XDissimilar

w max(ω−1(β),ω−1(β̂))

min(ω−1(β),ω−1(β̂))
‖ω′(t)‖2dt.

(A.25)
By Lemma 1, it follows that for k ∈ Nd

lim
∆→+∞

µk = (V t1,t2,··· ,tH (∆))−1(b0k, b1k, · · · , bHk)> = µ∗k. (A.26)

2Due to (fµ1
(t̃j), fµ2

(t̃j), · · · , fµd−1
(t̃j))=(bl(j)1, bl(j)2, · · · , bl(j)(d−1)) and f̃µd(t̃j) 6= bl(j)d.

3There is no function l(j) satisfying (fµ1
(t̃j), fµ2

(t̃j),· · ·, fµd−1
(t̃j))=(bl(j)1, bl(j)2,· · ·, bl(j)(d−1)).
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According to Eq. (A.22), it follows that the coefficients of the polynomial function g(t) = ‖ω′(t)‖22
converge as ∆→ +∞. Then we have

lim
∆→+∞

D+

D−

= lim
∆→+∞

max
(α,α̂)∈XSimilar

r max(ω−1(α),ω−1(α̂))

min(ω−1(α),ω−1(α̂))

√
g(t)dt

min
(β, β̂)∈XDissimilar

r max(ω−1(β),ω−1(β̂))

min(ω−1(β),ω−1(β̂))

√
g(t)dt

≤ lim
∆→+∞

max
(α,α̂)∈XSimilar

r max(ω−1(α),ω−1(α̂))

min(ω−1(α),ω−1(α̂))

√
g(t)dt

min
(β, β̂)∈XDissimilar

r max(ω−1(β),ω−1(β̂))

min(ω−1(β),ω−1(β̂))+ 1
2 |ω−1(β)−ω−1(β̂)|

√
g(t)dt

≤ lim
∆→+∞

(
max

(α,α̂)∈XSimilar

|ω−1(α)− ω−1(α̂)|
)√

g(tH)(
min

(β, β̂)∈XDissimilar

1
2 |ω−1(β)− ω−1(β̂)|

)√
g
(
1
2

∣∣t|A1|+1 − t1
∣∣)

≤ lim
∆→+∞

(
max
k∈NK

|Ak| − 1

)
1
2∆

√
g(tH)

g
(
1
2

∣∣t|A1|+1 − t1
∣∣)

≤ lim
∆→+∞

2

(
max
k∈NK

|Ak| − 1

)
∆

√
g((K − 1)∆+H)

g
(
1
2∆+ 1

2 |A1|
)

≤ lim
∆→+∞

2

(
max
k∈NK

|Ak| − 1

)
(2(K − 1))ϕ/2

∆
= 0, (A.27)

where ϕ is the order of the polynomial function g(t) = ‖ω′(t)‖22 and satisfies 0 ≤ ϕ ≤ 2(H +
S) ≤ 2(H +H(H − 1)). Further using the non-negative properties of D+ and D−, it holds that
lim

∆→+∞
D+/D−= 0. Therefore there exists the sufficiently large number ∆ > 0 such that

0 ≤ D+

D−
≤ 1

2
. (A.28)

Let m =

⌈(
∆margin

D+Lengthω(0, 1)

)2⌉
and M̃i::(t) = ω(t) for i = 1, 2, · · · ,m, we obtain4

DistM̃(β, β̂)− DistM̃(α, α̂)

=

√
mLength2ω(0, 1)Length2

ω(β, β̂)−
√
mLength2ω(0, 1)Length2ω(α, α̂)

≥
√
mLengthω(0, 1)(D

− −D+)

≥
√
mLengthω(0, 1)D

+

≥
∆margin

D+Lengthω(0, 1)
Lengthω(0, 1)D

+

= ∆margin, (A.29)

which completes the proof.

B Proof of Theorem 3 (Generalization Bound)

We firstly introduce the following lemmas for proving our Theorem 3 .
4Here the operator dae denotes the smallest integer that is not smaller than a.
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Lemma 2 (McDiarmid’s Inequality [3]). Consider independent random variables v1, v2, · · ·, vn ∈ V
and a function φ : Vn → R. Suppose that for all v1, v2, · · ·, vn and v′i ∈ V (i = 1, 2, · · · , n), the
function satisfies

|φ(v1, · · · , vi−1, vi, vi+1, · · · , vn)− φ(v1, · · · , vi−1, v′i, vi+1, · · · , vn)| ≤ ci, (B.1)

and then it holds that

P{φ(v1, v2, · · · , vn)− Ev1,v2,··· ,vn(φ(v1, v2, · · · , vn)) > µ} ≤ e
− 2µ2∑n

i=1
c2
i . (B.2)

Lemma 3. Let M∗ ∈ Rm×d×c be the solution to the optimization objective

M∗ ∈ argmin
M∈Rm×d×c

1

N

∑N

j=1
L(Dist2M(xj , x̂j); yj) + λ‖M‖2F, (B.3)

then there exists a bounded tensor set F(λ) such that

M∗∈F(λ)=

{
M|Mijk∈

[
−
√
C0

λ
,

√
C0

λ

]
, i∈Nm, j∈Nd, and k∈Nc

}
, (B.4)

where the constant C0 > 0 is not dependent on λ.

Proof. According to the optimality of M∗, it follows that

1

N

∑N

j=1
L(Dist2M∗(xj , x̂j); yj) + λ‖M∗ − 0‖2F

≤ 1

N

∑N

j=1
L(Dist20(xj , x̂j); yj) + λ‖0− 0‖2F

≤ 1

N

∑N

j=1
L(Dist20(xj , x̂j); yj). (B.5)

We denote that Lmin = inf
M∗∈Rm×d×c,j=1,2,··· ,N

L(Dist2M∗(xj , x̂j); yj), and have that

λ‖M∗ − 0‖2F

≤ 1

N

∑N

j=1
L(Dist20(xj , x̂j); yj)−

1

N

∑N

j=1
L(Dist2M∗(xj , x̂j); yj)

≤ 1

N

∑N

j=1
L(Dist20(xj , x̂j); yj)−

1

N

∑N

j=1
Lmin

= C0, (B.6)

where C0 > 0. Finally, we have

(Mijk)
2 ≤ C0

λ
, (B.7)

which completes the proof.

The proof of Theorem 3 is given as follows.

Theorem 3. Assume thatR(M) = ‖M‖2F =
∑
i,j,k(Mijk)

2 and M∗ ∈ Rm×d×c is the solution
to CDML. Then, we have that for any 0 < δ < 1 with probability 1− δ

ε(M∗)− εX (M∗) ≤ X∗
√

2ln(1/δ)/N +BλRN (L), (B.8)

where Bλ → 0 as λ → +∞. Here RN (L) is the Rademacher complexity5 of the loss function L
related to the space Rm×d×c for N training pairs, and X∗ = maxk∈NN

∣∣L(Dist2M∗(xk, x̂k); yk)
∣∣.

5The Rademacher complexity of the hypothesis f over the space F is defined as RN (f) =

EX ,σ[supM∈F
1
N

∑N
j=1σif(M)], where X ={(xj ,x̂j)∼D|j∈NN}, and P{σj=−1}=P{σj=1}=0.5

for j∈NN .
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Proof. Firstly, we denote that

εX ,k(M∗) = εX (M∗)− 1

N
(L(Dist2M(xk, x̂k); yk)− L(Dist2M(x, x̂); y(x, x̂))), (B.9)

where (x, x̂) ∈ {(xj , x̂j)|j ∈ NN} and y(x, x̂) ∈ {0, 1} is the similarity label for (x, x̂). By
Lemma 3, it follows that

(ε(M∗)− εX (M∗))− (ε(M∗)− εX ,k(M∗))

≤ |ε(M∗)− εX ,k(M∗)|

=
1

N

∣∣L(Dist2M∗(xk, x̂k); yk)− L(Dist2M∗(x, x̂); y(x, x̂))
∣∣

≤ 1

N

(∣∣L(Dist2M∗(xk, x̂k); yk)
∣∣+ ∣∣L(Dist2M∗(x, x̂); y(x, x̂))

∣∣)
≤ 2

N
X∗, (B.10)

where X∗ = maxk∈NN
∣∣L(Dist2M∗(xk, x̂k); yk)

∣∣. Then we apply Lemma 2 to the term ε(M∗)−
εX (M∗) and have that with probability 1− δ it holds that

ε(M∗)−εX (M∗) ≤ EX [ε(M∗)−εX (M∗)] +X∗
√
2ln(1/δ)/N. (B.11)

Now we only need to estimate the first term of the right-hand side of the above inequality. Specifically,
there holds

EX [ε(M∗)−εX (M∗)]=EX [EZ(εZ(M∗))−εX (M∗)]≤EX ,Z [εZ(M∗)−εX (M∗)] , (B.12)

where Z = {(z1, ẑ1), (z2, ẑ2), · · · , (zN , ẑN )|(zj , ẑj) ∼ D, j ∈ NN} are independent
identically distributed (i.i.d.) samples which are independent of X = {(x1, x̂1), (x2, x̂2),
· · · , (xN , x̂N )|(xj , x̂j) ∼ D, j ∈ NN}. By Lemma 3, we know that there exists the bounded
tensor set F(λ) such that

M∗∈F(λ)=

{
M|Mijk∈

[
−
√
C0

λ
,

√
C0

λ

]
, i∈Nm, j∈Nd, and k∈Nc

}
, (B.13)

where C0 > 0 is a constant. Let the function

Bλ = 2EX ,Z

[
sup

M∈F(λ)

εZ(M)− εX (M)

]
/EX ,Z

[
sup

M∈Rm×d×c
εZ(M)− εX (M)

]
. (B.14)

By Levi’s Monotone Convergence Theorem [1], we have

lim
λ→+∞

EX ,Z

[
sup

M∈F(λ)

εZ(M)− εX (M)

]

= EX ,Z

[
lim

λ→+∞
sup

M∈F(λ)

εZ(M)− sup
M∈F(λ)

εX (M)

]
= EX ,Z [εZ(0)− εX (0)]
= EZ [εZ(0)]− EX [εX (0)]

= 0. (B.15)
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Therefore, we obtain lim
λ→+∞

Bλ = 0. By standard symmetrization techniques for i.i.d. Rademacher

variables σ = (σ1, σ2, · · · , σN )>, it follows that

EX ,Z [εZ(M∗)− εX (M∗)]

≤ EX ,Z

 sup
M∈F(

√
C0/λ,3

√
C0/λ)

εZ(M)− εX (M)


=
Bλ
2

EX ,Z

[
sup

M∈Rm×d×c
εZ(M)− εX (M)

]

=
Bλ
2N

EX ,Z,σ

[
sup

M∗∈Rm×d×c

∑N

j=1
σi
(
L(Dist2M(xj , x̂j))− L(Dist2M(zj , ẑj))

)]

=
Bλ
N

EX ,σ

[
sup

M∗∈Rm×d×c

∑N

j=1
σiL(Dist2M(xj , x̂j))

]
= BλRN (L), (B.16)

where σi ∈ {−1, 1} for i = 1, 2, · · · , n, and RN (L) is the Rademacher complexity of L. Finally,
combining the above inequality with Eq. (B.11) and Eq. (B.12) completes the proof.

C Proof of Theorem 4 (Topological Property)

We firstly introduce the following Lemma 4 for proving our Theorem 4.

Lemma 4. If the function Lengthθi(x, x̂) satisfies triangle property for i ∈ Nm, then the curvilinear
distance DistΘ(x, x̂) satisfies triangle property, whereΘ=(θ1,θ2, · · · ,θm).

Proof. For i ∈ Nm and α,β,γ ∈ Rd, we assume that

Lengthθi(α,β) ≤ Lengthθi(α,γ) + Lengthθi(γ,β), (C.1)

and obtain that

Length2θi(α,β)≤Length2θi(α,γ)+Length2θi(γ,β)+2Lengthθi(α,γ)Lengthθi(γ,β), (C.2)

Accordingly, we have

Dist2Θ(α,β)

=
∑m

i=1
sθi · Length2θi(α,γ)

≤
∑m

i=1
sθi · Length2θi(α,γ)+sθiLength2θi(γ,β)+2sθiLength2θi(α,γ)Length2θi(γ,β)

= Dist2Θ(α,γ) + Dist2Θ(γ,β) + 2
∑m

i=1

(√
sθi Lengthθi(α,γ)

) (√
sθi Lengthθi(γ,β)

)
≤ Dist2Θ(α,γ) + Dist2Θ(γ,β) + 2

√∑m

i=1
sθiLength2θi(α,γ)

√∑m

i=1
sθiLength2θi(γ,β)

= Dist2Θ(α,γ) + Dist2Θ(γ,β) + 2DistΘ(α,γ)DistΘ(γ,β)

= (DistΘ(α,γ) + DistΘ(γ,β))
2
, (C.3)

where the last “≤” is based on the Cauchy Inequality [2]. Therefore, we obtain DistΘ(α,β) ≤
DistΘ(α,γ) + DistΘ(γ,β), which completes the proof.

Theorem 4. For any learned curvilinear distance DistΘ(x, x̂) and its corresponding parameterΘ,
we denoteΘ′(τ ) = (θ′1(τ1),θ

′
2(τ2), · · · ,θ

′
m(τm)) ∈ Rd×m and have that

1). DistΘ(x, x̂) is a pseudo-metric for anyΘ ∈ Fm;

2). DistΘ(x, x̂) is a metric, ifΘ′(τ ) is full row rank for any τ = (τ1, τ2, · · · , τm)> ∈ Rm.
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Proof.

1). According to the definition of curvilinear distance, it is obvious that DistΘ(x, x̂) satisfies the
non-negativity. The symmetry property can also be validated, because switching x and x̂ will not
change the lower and upper limit of the integral, i.e.,

DistΘ(x, x̂) =

√∑m

i=1
sθi ·

(w max(Tθi (x), Tθi (x̂))

min(Tθi (x), Tθi (x̂))
‖θ′i(t)‖2dt

)2

= DistΘ(x̂, x). (C.4)

By invoking Lemma 4, we only need to demonstrate the triangle property of Lengthθi(x, x̂). Actually,
for any α,β,γ ∈ Rd, there exist the following 3 cases and their corresponding results.

(case-1). Tθi(γ) ≤ min{Tθi(α), Tθi(β)}:

Lengthθi(α, γ) + Lengthθi(γ, β)

=
w max(Tθi (α), Tθi (γ))

min(Tθi (α), Tθi (γ))
‖θ′i(t)‖2 dt+

w max(Tθi (γ), Tθi (β))

min(Tθi (γ), Tθi (β))
‖θ′i(t)‖2 dt

≥
w Tθi (α)

Tθi (γ)
‖θ′i(t)‖2 dt+

w Tθi (β)

Tθi (γ)
‖θ′i(t)‖2 dt

≥
w max(Tθi (α), Tθi (β))

min(Tθi (α), Tθi (β))
‖θ′i(t)‖2 dt

= Lengthθi(α, β). (C.5)

(case-2). min{Tθi(α), Tθi(β)} < Tθi(γ) < max{Tθi(α), Tθi(β)}:

Lengthθi(α, γ) + Lengthθi(γ, β)

=
w max(Tθi (α), Tθi (γ))

min(Tθi (α), Tθi (γ))
‖θ′i(t)‖2 dt+

w max(Tθi (γ), Tθi (β))

min(Tθi (γ), Tθi (β))
‖θ′i(t)‖2 dt

=
w Tθi (γ)

min(Tθi (α), Tθi (β))
‖θ′i(t)‖2 dt+

w max(Tθi (α), Tθi (β))

Tθi (γ)
‖θ′i(t)‖2 dt

= Lengthθi(α, β). (C.6)

(case-3). Tθi(γ) ≥ max{Tθi(α), Tθi(β)}:

Lengthθi(α, γ) + Lengthθi(γ, β)

=
w max(Tθi (α), Tθi (γ))

min(Tθi (α), Tθi (γ))
‖θ′i(t)‖2 dt+

w max(Tθi (γ), Tθi (β))

min(Tθi (γ), Tθi (β))
‖θ′i(t)‖2 dt

≥
w TΘi (γ)

TΘi (α)
‖Θ′i(t)‖2 dt+

w Tθi (γ)

Tθi (β)
‖θ′i(t)‖2 dt

≥
w max(Tθi (α), Tθi (β))

min(Tθi (α), Tθi (β))
‖θ′i(t)‖2 dt

= Lengthθi(α, β). (C.7)

From the results of above 3 cases, we know that the triangle property is satisfied for anyΘ ∈ Fm and
thus the proof is completed.

2). It is obvious that for any x, x̂ ∈ Rd,

x = x̂ =⇒ DistΘ(x, x̂) = 0. (C.8)

We just need to prove that x = x̂ for DistΘ(x, x̂) = 0. Assume that Rank(Θ′(τ )) = d, we obtain
θ′i(

1
2 ) 6= 0. The scale value Lengthθi(0, 1) satisfies

Lengthθi(0, 1) =
w 1

0
‖θ′i(t)‖2 dt ≥

w 1
2+ε

1
2−ε
‖θ′i(t)‖2dt > 0, (C.9)

where 0 < ε < 1
2 is a sufficiently small number such that θ′i(t) 6= 0 for t ∈ ( 12 − ε,

1
2 + ε). We thus

have

DistΘ(x, x̂) = 0 =⇒ Lengthθi(0, 1)Lengthθi(x, x̂) = 0 =⇒ Lengthθi(x, x̂) = 0, (C.10)
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where i ∈ Nm. Therefore, we have Tθi(x)=Tθi(x̂). According to the definition of the calibration
point, it follows that

Tθi(x) ∈ argmin
t∈R

‖θi(t)− x‖22, (C.11)

and
Tθi(x̂) ∈ argmin

t∈R
‖θi(t)− x̂‖22. (C.12)

Namely, it holds that
Tθi(x) ∈ {t| (θi(t)− x)>θ

′
i(t) = 0}, (C.13)

and
Tθi(x̂) ∈ {t| (θi(t)− x̂)>θ

′
i(t) = 0}. (C.14)

Since Tθi(x) = Tθi(x̂) = τi, we have the following equation group{
(θi(τi)− x)>θ′i(τi) = 0,

(θi(τi)− x̂)>θ′i(τi) = 0.
(C.15)

The equation difference of Eq. (C.15) gives that

θ′i(τi)
>(x− x̂) = 0. (C.16)

For i ∈ Nm, we thus have the linear equation group w.r.t. x− x̂(
θ′1(τ1),θ

′
2(τ2), · · · ,θ

′
m(τm)

)>
(x− x̂) = 0. (C.17)

As Rank(Θ′(τ )) = Rank
(
θ′1(τ1),θ

′
2(τ2), · · · ,θ

′
m(τm)

)
= d, we know that the above Eq. (C.17)

has the unique solution x− x̂ = 0. Therefore, x = x̂ holds for DistΘ(x, x̂) = 0, which completes
the proof.
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