
Supplementary Material: Same-Cluster Querying for Overlapping
Clusters

A Uniqueness of Factorization

In this section, we prove that under certain conditions, the clustering matrix A can be uniquely
(up to a permutation of columns) recovered from AAT , for both the uniform and i.i.d. ensemble.
Specifically, we have the following two results, proved in the sequel.

Lemma 3. [Uniform Ensemble Uniqueness] Let k ≥ 2∆− 2, ∆ > 2, and n > c ·
(
k
∆

)
log
(
k
∆

)
, for

some c > 0. Consider two n× k binary matrices A and B, drawn from the uniform ensemble, and
assume that AAT = BBT . Then, B is a column-permuted version of A, namely, B = AP, where
P is a permutation matrix, with overwhelming probability.

Lemma 4. [i.i.d. Ensemble Uniqueness] Let A and B be two n× k binary matrices, drawn from the
i.i.d. ensemble with parameter p. Assume that AAT = BBT . If n > c logn+log k

1−p·(1−p)k for some c > 0,
then B is a column-permuted version of A, namely, B = AP, where P is a permutation matrix, with
overwhelming probability.

To actually recover A from AAT we propose Algorithms 4 and 5, for the uniform and i.i.d. ensembles,
respectively. It can be shown that the worst-case computational complexities of these algorithms are
O
(
nk3

(
k
∆

)k)
and O

((
n
k

))
, respectively. This means that the when k is fixed, the computational

complexities are polynomial in n, while if k grows with n, e.g., k = O(log n), then the computational
complexities are quasi-polynomial in n

A.1 Proof of Lemma 3

First, note that if n > c
(
k
∆

)
log
(
k
∆

)
for some constant c > 1, then all vectors in Tk(∆) will be present

in A, with high probability, by a simple coupon collector argument.

Idea of the solution for ∆ > 2: We can think of the mapping from Ai (ith row of A) to Bi (ith row
of B) as a permutation σi of the columns i.e.

Bi = σi(Ai).

Notice that there can be multiple permutations σi that can explain the mapping Ai → Bi. A
permutation σ can be described a series of swaps {(ik, jk)} which implies that at the kth step,
the element in the ithk position is swapped with the element in the ithk position. The composition
of permutation σ1 with σ2 implies implementing the swaps corresponding to σ2 after the swaps
corresponding to σ1. Now, if there exists a permutation σ which is the same for all rows i, then
definitely B can be constructed by a permutation of the columns of A. In fact if σi is the same for at
least k linearly independent rows of A, then σi is same for all rows of A because it uniquely defines
the rotation matrix R. Hence if one can construct a set of at least k ∆-sparse vectors which are

Algorithm 4 Factorization1 Algorithm for recovering A from AAT , when rows of A belong to
Tk(∆)

Require: Similarity matrix AAT .
1: Find a full rank k × k binary submatrix T of AAT .
2: Find the set of matrices Q ∈ {0, 1}k×k such that for any Q ∈ Q, QQT = T, and ‖Qi‖0 =

∆, ∀i.
3: for Q ∈ Q do
4: For the remaining n− k elements, consider the inferred values with the row indices in T. This

creates a system of k linear equations which can be solved for the membership vector of that
element.

5: if All membership vectors belong to Tk(∆) then
6: Exit the outer FOR loop
7: Return the matrix A.

12

Algorithm 5 Factorization2 Algorithm for recovering A of AAT when elements of A are i.i.d
Bernoulli(p) random variables

Require: Similarity matrix AAT .
1: Find a k × k submatrix T of AAT formed by all k-dimensional binary unit vectors.
2: Choose a permutation matrix P which forms the membership vector for the indices of the rows

in T.
3: For each remaining n− k elements, consider the inferred values with the row indices in T. This

creates a system of k linear equations which can be solved for the membership vector of that
element.

4: Return the matrix A.

linearly independent and their gram matrix will have a unique factorization, then we are done (recall
that those vectors will be in A since A contains all vectors from Tk(∆).

Construction: Consider the following matrices C1 ≡ [D I] and C2 ≡ [I D] of dimension
k −∆ + 1× k. Here D is a matrix of dimension k −∆ + 1×∆− 1 and all the entries of D is 1
and I is the identity matrix. The matrix that we will use for our construction is the following:

Q ≡
[
C1

C2

]
.

The number of rows in Q is at least k since we know that k ≥ 2∆ − 2. Notice that the only
possible solution for the gram matrix of C1 (and C2) is of the form [P 11 D11 D12 . . . P 1r] where
[P 11 P 12 P 13 . . . P 1r] forms a permutation matrix and [D11 D12 . . . D1r′] = D (This is true
only for ∆ > 2. In order to see why, consider the rows of C1 and think of a game between these
rows where the first row makes a swap in its columns and then all the rows tries to make swaps so
that the inner products remain preserved. Suppose the first row makes a swap in the columns present
in the span of I in which case the other rows have to make the same swap. Now suppose the first row
makes a swap in the columns present in the span of D which is equivalent to no swap at all. Lastly,
suppose the first row makes a swap in the two columns in which one belongs to I and the other
belongs to D. Again it can be checked that the other rows has to make the same swap to preserve the
inner product. This implies that there exists a set of permutations Σ1 (Σ2) that explains the mapping
of all rows in C1 (C2). If we can only show that there must exist a permutation σ that belongs to
both Σ1 and Σ2, then we are done. Suppose the new solution is

Q̂ ≡
[
Q̂1

Q̂2

]
≡
[
P 11 D11 D12 . . . P 1r

P 21 D21 D22 . . . P 2s

]
.

The set of columns containing D11,D12, . . . ,D1r′ and the columns containing D21,D22, . . . ,D2s′

are disjoint otherwise there must exist two rows in Q whose inner product violates its original value.
1) For k ≥ 2∆, there exists two rows in C1 and C2 whose inner product is 0 which cannot be the
case if the columns are not disjoint. 2) For k = 2∆− 1, there exists a row in C2 whose inner product
is 1 with all the rows in C1. Again this cannot be the case if the columns are not disjoint. 3) For
k = 2∆ − 2, the inner product between any row in C1 and C2 is 2 which is not possible if the
columns are not disjoint). Therefore if we fix Q̂1, then the inner product of the any row of Q̂2 with
all the rows in Q̂1 exactly specifies the position of the 1’s in all the columns except the columns
spanned by D11,D12, . . . ,D1r′ . Hence a permutation in Σ1 exactly specifies all the swaps in Σ2

except those swaps restricted to the columns spanned by D11,D12, . . . ,D1r′ (again can be verified
by a simple case study of the three cases: 1) k = 2∆ − 2, 2) k = 2∆ − 1, and 3) k > 2∆ − 1.
However, if Σ1 contains a particular permutation, then a composition of that permutation with other
permutations that only contains swaps restricted to the columns in D11,D12, . . . ,D1r′ does not
change the mapping from C1 → Q̂1 and therefore Σ1 contains these permutations as well. Hence
there exist a single permutation σ in Σ1 and Σ2 that explains the mapping from Q→ Q̂. Hence the
proof is complete.

A.2 Proof of Lemma 4

Let ei ∈ {0, 1}k be the k-dimensional binary unit vector, namely, ei is all zero except at its ith
position. Suppose that all the {ei}ki=1 vectors are present in the matrix A, and let us denote the

13

sub-matrix formed by these unit vectors by Q. Thus, Q is a k× k matrix with rank k. It is easy to see
that for any k × k binary matrix R such that RRT = QQT , R can be constructed by a permutation
of the columns of Q. Hence if the event “Q is a sub-matrix of A" is true, then for any matrix B such
that BBT = AAT , B can be constructed by a permutation of the columns of A. Let Ei denote the
event that the vector ei is not present in A. Therefore,

P (Q is sub-matrix of A) = 1− P

(
k⋃
i=1

Ei

)
≥ 1− k · P(E1)

= 1− k ·
[
1− p · (1− p)k−1

]n
≥ 1− k · e−c logn−log k

= 1− 1

nc
(5)

where the last inequality follows by substituting the condition on n in the theorem statement.

B The Rank of Random Matrices

In this section, we state two important lemmas concerning the rank of the clustering matrix under
both ensembles. For a set S ⊆ [n], with m = |S|, we let AS be the m× k projection matrix formed
by the rows of A that correspond to the indices in S.

Lemma 5. [Rank of Uniformly Drawn Matrix] Let A be a random matrix drawn uniformly from
Tk(∆). Also, let S be a set of size m > k, drawn uniformly at random from [n]. Then, if m ≥

(k∆)
(k−∆

∆−1)
[1 + c1 log k + c2 log n], for some c1 > 1 and c2 > 0, then

P [rankR(AS) = k] ≥ 1− 1

nc2kc1
. (6)

Lemma 6. [Rank of i.i.d. Matrix] Let A be an i.i.d. matrix with Bernoulli(p) entries. Also, let S be
a set of size m > k, drawn uniformly at random from [n], and define α , max(p, 1− p). Then,

P [rankR(AS) = k] ≥ 1−min
(
1, k · αm−k+1

)
. (7)

The above results imply that by takingm large enough (as a function of k, ∆, and n) we can guarantee
that a sub-matrix formed by a random subset of rows taken from A is of full rank with high probability.
Specifically, for the i.i.d. ensemble, if

|S| > k − 1− log k + c log n

log max(p, 1− p)
, Si.i.d., (8)

for some c > 0, then, P [rankR(AS) = k] ≥ 1− n−c. Similarly, for the uniform ensemble, if

|S| >
(
k
∆

)(
k−∆
∆−1

) [1 + c1 log k + c2 log n] , Suniform, (9)

for some c1 > 0 and c2 > 0, then, (6) holds.

B.1 Proof of Lemma 5

Given k,∆ ∈ N, define the set

Tk(∆) ,
{
c ∈ {0, 1}k : wH(c) = ∆

}
, (10)

namely, the set of all k-length binary sequence with Hamming weight ∆. Let A be an n× k matrix
formed by drawing independently n sequences from Tk(∆) and putting those as rows of A. Let S be
a set of size m > k drawn uniformly at random from [1 : n]. Let AS be an m× k matrix with the

14

rows in A that correspond to the indices in S. We would like to understand how large m should be
such that

P [rankR(AS) < k]

decays to zero as poly(n−1). By symmetry, it is clear that

P [rankR(AS) < k] = P [rankR(B) < k] (11)
≤ P [rankF2

(B) < k] (12)

where B refers to a submatrix of A formed by taking, for example, the first m rows, and the last
inequality follows from the fact that for any filed F, and any binary matrix M it holds rankF(M) ≤
rankR(M).

We next analyze the probability term on the r.h.s. of the above inequality. To this end, we note that
the event rankF2(B) < k is in fact equivalent to the existence of a set R with |R| ≤ k of column
indices such that each row of B has an even number of 1’s inR. Indeed, if this is the case, then some
columns will be linearly dependent and thus the rank must be smaller than k. Accordingly, given a
set of column indicesR, let ER denote the event that each row of B has an even number of 1’s inR.
Then, using the above observation and the union bound,

P [rankF2
(B) < k] = P

 ⋃
|R|≤k

ER

 (13)

≤
k∑

|R|=1

(
k

|R|

)
P(ER). (14)

It is left to understand the behavior of P(ER). The number of rows that have an odd number of
non-zero elements inR is simply

N|R|,∆,k =

∆∑
`: odd

(
|R|
`

)(
k − |R|
∆− `

)
(15)

following a simple counting argument. Accordingly,

Pr(ER) = (1− α)
N|R|,δ,k (16)

where α , m · [
(
k
∆

)
]−1. To get a simple upper bound on the probability of interest, we next lower

bound N|R|,∆,k. It is clear that

N|R|,∆,k ≥
(
|R|
1

)(
k − |R|
∆− 1

)
(17)

≥ |R| ·
(
k −∆

∆− 1

)
. (18)

Then,

P [rankF2
(B) < k] ≤

k∑
`=1

(
k

`

)
(1− α)`·(

k−∆
∆−1)

≤
k∑
`=1

(
ek

`

)`
e` log(1−α)·(k−∆

∆−1)

≤
k∑
`=1

e`[log(ek)−α·(k−∆
∆−1)]. (19)

Now, taking m =
(k∆)

(k−∆
∆−1)

[log(ek) + c1 log k + c2 log n], for some c1 > 1 and c2 > 0, we get that,

P [rankF2
(B) < k] ≤ 1

nc2

k∑
`=1

1

kc1`
≤ 1

kc1−1nc2
. (20)

15

B.2 Proof of Lemma 6

Let A be an n× k i.i.d. matrix with each element distributed as Bernoulli(p), for some 0 < p < 1.
Let S be a set of size m > k drawn uniformly at random from [1 : n]. Let AS be the m× k matrix
formed by the rows of A that correspond to the indices in S . We would like to understand how large
m should be such that

P [rankR(AS) = k]

goes to one as 1− poly(n−1, k−1). By symmetry, it is clear that

P [rankR(AS) = k] = P [rankR(B) = k] (21)

where B refers to any submatrix of A. Without loss of generality, let us take it to be formed by the
first m rows of A. Also, we note that

P [rankR(B) = k] = 1− P [rankR(B) < k] (22)
≥ 1− P [rankF2

(B) < k] (23)
= P [rankF2

(B) = k] (24)

where the inequality follows from the fact that for any filed F, and any binary matrix M it holds
rankF(M) ≤ rankR(M). Therefore, it is suffice to lower bound P [rankF2(B) = k].

Let Fi designate the event that the first i columns of B, denote by B1, . . . ,Bi, are linearly indepen-
dent. Then, it is clear that

P [Fi+1] = P [Fi+1|Fi]P [Fi] + P [Fi+1|Fci]P [Fci]

= P [Fi+1|Fi]P [Fi] (25)

where the second equality is because conditioned on Fci , the event Fi+1 cannot occur. Inductively,
we then may write

P [rankF2
(B) = k] =

k−1∏
i=0

P [Fi+1|Fi] (26)

with Fi = ∅. We next lower bound each term in the product. To this end, recall that the fact that
B1, . . . ,Bi are linearly independent implies that the m× i submatrix formed by these columns can
be transformed into a matrix with the first i columns forming an identity matrix, namely, the i× i
identity matrix appears as a sub-block. Accordingly, this implies that any vector contained in the
span of B1, . . . ,Bi can be represented as follows: its first i entries can have arbitrary values, and
the rest m− i entries must be uniquely determined by the first i entries. With this fact in mind, the
(i+ 1)th column of B is linearly independent of the previous i columns if and only if it is not spanned
by these columns, or equivalently, if its last m− i entries can be arbitrary. The probability of this
being happen is clearly lower bounded by 1− αm−i with α , max(p, 1− p). Combining the last
observations, we obtain

P [rankF2
(B) = k] ≥

k−1∏
i=0

(1− αm−i) (27)

=

m∏
`=m−k+1

(1− α`). (28)

The above result is general, but note that

P [rankF2
(B) = k] ≥ (1− αm−k+1)k (29)

≥ 1−min(1, kαm−k+1), (30)

which concludes the proof.

C Proof of Proposition 1

In this section we analyze Algorithm 1, which extracts the clustering matrix when the clusters are
disjoint. Pick m elements uniformly at random from the set of elements N . We denote this set by

16

R. Perform all pairwise queries among these m elements, resulting in a total of
(
m
2

)
queries. We

want to take m large enough such that we have representatives of all clusters, namely, among these
m elements there will exists at least one element (representative) from each cluster. We next show
that if m ≥ n

nmin
log(knε) than with probability decaying to zero polynomially in n, this is possible.

Let E` denote the event that no item inR appears in the `’th cluster. Then, we note that

P

[
k⋃
`=1

E`

]
≤ k · max

1≤`≤k
P [E`] (31)

≤ k ·
(

1− nmin

n

)m
(32)

≤ k · e−m
nmin
n (33)

≤ 1

nε
. (34)

To wit, after the second stage of Algorithm 1 with high probability we found k representatives T for
the clusters. Finally, for the remaining n−m items, we perform at most k queries to decide which

cluster they are in. Thus, the total number of quires is k(n−m) +
[

n
nmin

]2
log2(knε).

D Proof of Theorem 1

In this section we analyze the performance of Algorithm 2, for the i.i.d. ensemble. The uniform
ensemble is handled in the same way. In the first step of Algorithm 2, we pick S elements uniformly
at random from N such that m = |S| > Si.i.d., where the latter is defined in (8). According to
Lemma 6, this ensures that rank(AS) = k with high probability. We perform all pairwise queries
among these m elements, resulting in a total of

(
m
2

)
queries. Then, in the second stage, we extract

a valid membership of all chosen m element by a simple rank factorization procedure. We denote
by ÂS the resultant rank factorized matrix, and we note that it might be not unique. Nonetheless,
since m > Si.i.d., we can find a subset of elements T ⊆ S whose membership vectors form a basis
of Rk. Denote the k × k membership matrix corresponding to T by ÃT . Then, in the third step
of Algorithm 2, we query each of the remaining elements in [n] \ S with all the elements in T .
Accordingly, for any i ∈ [n] \ S, let ci be the k-length vector containing the k queries of element i
with T . Subsequently, given {ci}i, we find the membership vector mi of the ith element by solving
ÃTmi = ci, which form k linearly independent equations in the k variables. Thus, we can solve
this system of equations uniquely to obtain the membership vector of ith element. Note that despite
the fact that the second step of Algorithm 2 is not unique (and then ÂS might be different from the
true AS), our algorithm will correctly recover the similarity matrix.

Indeed, let B1 and B2 be two solutions obtained by the rank factorization procedure, such that
B1B

T
1 = B2B

T
2 = ASA

T
S . Consider two elements, say, {1, 2} whose membership vectors m1 and

m2 are unknown after the second step of Algorithm 2. Since we query these elements with all the
elements in S, we must have the following set of equations{

B1m1 = c1,

B1m2 = c2,

{
B2m1 = c1,

B2m2 = c2.
(35)

Denote by m̂1 and m̂2 the solutions of m1 and m2, respectively, if B1 is the solution used. Similarly,
let m̄1 and m̄2 be the solutions of m1 and m2, respectively, if B2 is the solution used. Then,

m̂T
1 m̂2 = (B−1

1 c1)TB−1
1 c2

= cT1 (B−1
1)TB−1

1 c2

= cT1 (BT
1)−1B−1

1 c2

= cT1 (B1B
T
1)−1c2

= cT1 (B2B
T
2)−1c2

= m̄T
1 m̄2, (36)

17

Algorithm 6 Noisy Quantized Responses The algorithm for extracting membership of elements
via queries to oracle.

Require: Number of elements: N , number of clusters k, oracle responses Oquantized(i, j) for query
(i, j) ∈ Ω, where i, j ∈ [N].

1: Choose a set S of elements drawn uniformly at random fromN , and perform all pairwise queries
corresponding to these |S| elements.

2: Run Algorithm NoisyInferSupport1 to infer 〈Ai,Aj〉 for each pair of entries (i, j) ∈ S.
3: Extract the membership of all the |S| elements up to a permutation of the clusters.
4: Query each of the remaining n− |S| elements with all elements present in S . Subsequently run

algorithm NoisyInferSupport2 for each query and solve for the membership vector of the
unknown element.

5: Return the similarity matrix AAT .

Algorithm 7 NoisyInferSupport1 The algorithm for inferring 〈Ai,Aj〉 for two fixed entries
(i, j) ∈ S.

Require: Set S where every pairwise value is observed, and indices i, j ∈ S
1: Define ∆+1 numbers E` = (|S|−2)

(
(1−q)2−2(1−2q)(1−q) (k−∆

∆)
(k∆)

+(1−2q)2 (k−2∆+`
∆)

(k∆)

)
for ` = 0, 1, . . . ,∆

2: Calculate Tij =
∑

r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]

3: Return arg min` |Tij − E`|

which means that the inner products will be preserved. Hence we will get the same similarity matrix
irrespective of the intermediate solution produced by the rank factorization which may be incorrect.

Finally, note that the number of queries needed in the above algorithm is
(|S|

2

)
+ k(n− |S|), which

concludes the proof.

E Proof of Theorem 2

In this section we analyze the Algorithm 6 for quantized noisy oracle, under the uniform ensemble.

Recall that we deal with the setting where the oracle responses are Yij = Oquantized(i, j) =
Q(AT

i Aj)⊕Wi,j , and we assume that A was generated according to the uniform ensemble with
k > 3∆. Let S be a set drawn uniformly at random from N , whose size will be determined in the
sequel.

We next analyze the probability of error associated with Algorithm 6, by investigating each of its
steps. Accordingly, in the first step of Algorithm 6, we observe Yij for all pairs (i, j) ∈ S . Then, in
the second step of Algorithm 6, using these

(|S|
2

)
observations we infer 〈Ai,Aj〉, for any (i, j) ∈ S .

This is done using the procedure in Algorithm 7. To wit, at the end of the second step of Algorithm 6,
we should have an exact estimate of ASAT

S with high probability. In the following, we show that
this is indeed correct.

Algorithm 8 NoisyInferSupport2 The algorithm for inferring 〈Ai,Aj〉 for i ∈ S, j 6∈ S.

Require: Set S where every pairwise value is observed, Indices i ∈ S, j 6∈ S.

1: Define ∆ numbers E` = (|S| − 1)
(

(1− q)2 − 2(1− 2q)(1− q) (k−∆
∆)

(k∆)
+ (1− 2q)2 (k−2∆+`

∆)
(k∆)

)
for ` = 0, 1, . . . ,∆

2: Calculate Tij =
∑
r∈S
r 6=i

1[Yir = 1 ∩Yjr = 1]

3: Return arg min` |Tij − E`|

18

For a given pair (i, j) ∈ S, we define a sequence of (∆ + 1) hypotheses {H`}∆`=0, where

H` : AT
i Aj = ` for ` = 0, . . . ,∆. (37)

For a pair (i, j) ∈ S, define

Ti,j ,
∑
r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]. (38)

It is clear that each summand of Ti,j is one if Yir = Yjr = 1, and zero otherwise. We call the
aforementioned event a triangle formed by the triplet (i, j, r). Accordingly, the random variable Ti,j
simply counts/enumerate the number of triangles formed by a given pair (i, j) ∈ S. As can be seen
from Algorithm 7, the count Ti,j is main quantity used to infer the value of AT

i Aj . Accordingly, we
need to understand its probabilistic behaviour. For simplicity of notation, in the following we denote
by P`(·) and E`(·) the probability and the expectation operators conditioned on hypothesisH` being
true. Also, let Qij , Q

(
AT
i Aj

)
. Then, for k > 3∆, it is an easy task to check that for a triplet

(i, j, r) ∈ [n], we have

P`(Qir = 1 ∩Qjr = 1) = 1− P`(Qjr = 0)

− P`(Qir = 0) + P`(Qir = 0 ∩ jr = 0)

= 1− 2

(
k−∆

∆

)(
k
∆

) +

(
k−2∆+`

∆

)(
k
∆

) . (39)

In a similar fashion,

P`(Qir = 0 ∩Qjr = 1) = P`(Qir = 1 ∩Qjr = 0)

= P`(Qir = 0)− P`(Qir = 0 ∩Qjr = 0)

=

(
k−∆

∆

)(
k
∆

) − (k−2∆+`
∆

)(
k
∆

) , (40)

and,

P`(Qir = 0 ∩Qjr = 0) =

(
k−2∆+`

∆

)(
k
∆

) . (41)

Therefore, using the above results, we obtain by the law of total probability,

P`(Yir = 1 ∩Yjr = 1)

= (1− q)2 · P`(Qir = 1 ∩Qjr = 1)

+ q(1− q) · P`(Zir = 1 ∩ Zjr = 1)

+ q(1− q) · P`(Qir = 1 ∩Qjr = 1)

+ q2 · P`(Qir = 0 ∩Qjr = 0)

= (1− q)2 − 2(1− 2q)(1− q)
(
k−∆

∆

)(
k
∆

)
+ (1− 2q)2

(
k−2∆+`

∆

)(
k
∆

) . (42)

Accordingly, we obtain

E`Ti,j = E`
∑
r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]

= (|S| − 2)

(
(1− q)2 − 2(1− 2q)(1− q)

(
k−∆

∆

)(
k
∆

)
+(1− 2q)2

(
k−2∆+`

∆

)(
k
∆

))
. (43)

19

Therefore for any two hypothesesH` andH`′ , we have

|E`Tij − E`′Tij | =
(|S| − 2)(1− 2q)2(

k
∆

) ·

·
∣∣∣∣(k − 2∆ + `

∆

)
−
(
k − 2∆ + `′

∆

)∣∣∣∣ . (44)

Now, given (Ai,Aj) it is clear that the random variables 1[Yir = 1 ∩Yjr = 1], for r ∈ S, r 6= i, j,
are statistically independent and therefore we can apply standard concentration inequalities, such
as, Chernoff’s inequality, to show that the value of the random variable Tij is strongly concentrated
around its mean. We state the following classical result (see, e.g., [10]).
Lemma 7. [Chernoff’s inequality] Let (Xi)

n
i=1 be a sequence of n i.i.d. Bernoulli(p) random

variables. Then, for any µ > p,

P

[
1

n

n∑
i=1

Xi > µ

]
≤ e−n·dKL(µ||p). (45)

Let P (i,j)
error,1 designate the average probability of associated Algorithm 7, for a given pair (i, j) ∈ S.

Then, we have

P
(i,j)
error,1 =

∆∑
`=1

P (H`)P` [error]

=

∆∑
`=1

P (H`)P`
[
min
`′ 6=`

|Tij − E`′Tij | < |Tij − E`Tij |
]
. (46)

Now, note that

P`
[
min
`′ 6=`

|Tij − E`′Tij | < |Tij − E`Tij |
]

≤ P`
[
|Tij − E`Tij | >

min`′ 6=` |E`Tij − E`′Tij |
2

]
(47)

where we have used the triangle inequality, i.e., |a− b| ≥ ||a| − |b||, for any a, b ∈ R. Then, using
Lemma 7, we obtain

P`
[
|Tij − E`Tij | >

min`′ 6=` |E`Tij − E`′Tij |
2

]
≤ 2 · e−(|S|−2)dKL(α||β) (48)

where

β , (1− q)2 − 2(1− 2q)(1− q)
(
k−∆

∆

)(
k
∆

) + (1− 2q)2

(
k−2∆+`

∆

)(
k
∆

) ,

and
α , β

+
(1− 2q)2

2
(
k
∆

) min
`′ 6=`

∣∣∣∣(k − 2∆ + `

∆

)
−
(
k − 2∆ + `′

∆

)∣∣∣∣ .
To simplify the above result, recall Pinsker’s inequality, which states that dKL(p||q) ≥ 2 |p− q|2, for
any 0 ≤ p, q ≤ 1. Therefore,

dKL (α||β) ≥ 2 |α− β|2

=
(1− 2q)4

2
min
`′ 6=`

∣∣∣(k−2∆+`
∆

)
−
(
k−2∆+`′

∆

)∣∣∣2(
k
∆

)2
=

(1− 2q)4

2

∣∣∣(k−2∆+`
∆

)
−
(
k−2∆+`−1

∆

)∣∣∣2(
k
∆

)2 , η(`). (49)

20

Combining the above results with the fact that η(`) is monotonically decreasing in `, we obtain

P
(i,j)
error,1 ≤ 2 ·max

`≥1
e−(|S|−2)·η(`) (50)

= 2 · e−(|S|−2)·η(1). (51)

Therefore, at the end of the second stage of Algorithm 6, we will have an exact estimate of ASAT
S if

(51) is satisfied for all (i, j) ∈ S . By the union bound, we obtain that the overall probability of error
associated with second stage of Algorithm 6 is upper bounded by

Perror,1 ≤ 2 ·
(
|S|
2

)
· e−(|S|−2)·η(1)

≤ 2n2 · e−(|S|−2)·η(1). (52)

Accordingly, taking |S| > 1
η(1) log(2n2+ε) + 2, for any ε > 0, is sufficient to bring the probability

of error to at most n−ε. Note that the above constraint on |S| expands to

|S| >
2
(
k
∆

)2
log(2n2+ε)

(1− 2q)4
[(
k−2∆+1

∆

)
−
(
k−2∆

∆

)]2 + 2. (53)

Next, given the exact estimate of ASAT
S from the second step our algorithm, in the third step we

extract the membership of all chosen |S| elements by a simple rank factorization procedure as in
Algorithm 2. We denote the resultant rank factorized matrix by ÂS . Finally, we analyze the fourth
step of Algorithm 6, in which for each index j 6∈ S , we observe Yij , for all i ∈ S , and from these we
would like to infer the leftover inner-products. This is done with the help of Algorithm 8 which we
analyze in the sequel.

In fact the entire analysis of Algorithm 8 remains almost the same as that for Algorithm 7 (and
therefore it is omitted), except now Tij is a sum of |S| − 1 indicator random variables. Indeed, it can
be shown that the average probability of error P (i,j)

error,2 associated with Algorithm 8 is upper-bounded
as follows

P
(i,j)
error,2 ≤ 2 · e−(|S|−1)·η(1), (54)

and accordingly, the overall probability of error associated with fourth stage of Algorithm 6 is upper
bounded by

Perror,2 ≤ 2 · |S| · (n− |S|) · e−(|S|−1)·η(1)

≤ 2n2 · e−(|S|−1)·η(1). (55)

Accordingly, taking |S| > 1
η(1) log(2n2+ε) + 1, for any ε > 0, is sufficient to bring the probability

of error to at most n−ε. Thus, we may conclude that with high probability we have the exact values
of AT

i Aj , for all i 6∈ S , and j ∈ S . For each i 6∈ S we denote by ci the |S| length vector containing
the inner-products AT

i Aj , for j ∈ S.

Finally, the only thing that is left to do is solve for the membership vector of each of the (n− |S|)
elements. This is done similarly as was done in Algorithm 2 (see the m 1). Specifically, from

Lemma 5, we know that by taking |S| > (k∆)
f(∆,k) [log(ek) + c log k] + c2 log n, for some c1 > 1

and c2 > 0, the rows of AS form a basis of Fk2 with high probability. Note that (53) is a stringent
condition, and thus Lemma 5 holds. Furthermore, were also able to observe that if the rows of AS
formed a basis, then for an index i ∈6∈ S , the set of values of {AT

i Aj}, for all j ∈ S were enough to
determine the vector Ai. Indeed, given the resultant matrix ÂS from the rank factorization step in
the third step of Algorithm 6, the unknown membership vector cj of the j 6∈ S element is found by
solving ÂScj = sj .

Finally, we conclude the proof by noting that the total number of observed entries is

|Ω| =
(
|S|
2

)
+ |S|(n− |S|), (56)

and that (53) is the stringent condition which ensures vanishing error probability.

21

Algorithm 9 Quantized Responses The algorithm for extracting membership of elements via
queries to oracle.

Require: Number of elements: N , number of clusters k, oracle responses Oquantized(i, j) for query
(i, j) ∈ Ω, where i, j ∈ [N].

1: Choose a set S of elements drawn uniformly at random fromN , and perform all pairwise queries
corresponding to these |S| elements.

2: Run Algorithm InferSupportsize to infer ‖Ai‖0, for i ∈ S. Then, run Algorithm
InferIntersection1 to infer 〈Ai,Aj〉 for each pair of entries i, j ∈ S.

3: Extract the membership of all the |S| elements up-to a permutation of clusters.
4: Run Algorithm InferSupportsize2 to infer ‖Ai‖0, for i 6∈ S . Then, for i 6∈ S , run Algorithm

InferIntersection2 to infer 〈Ai,Aj〉 for j 6∈ S , and solve for the membership vector for all
elements.

5: Return the similarity matrix AAT .

Algorithm 10 InferSupportsize1 The algorithm for inferring ‖Ai‖0 for a fixed entry i ∈ S.

Require: Set S where every pairwise value is observed, and index i ∈ S.
1: Define ∆ numbers E` = (|S| − 1)

(
1− q − (1− 2q)(1− p)`

)
for ` = 0, 1, . . . , k

2: Calculate Ti =
∑
r∈S
r 6=i

1[Yir = 1]

3: Return arg min` |Ti − E`|

F Proof of Theorem 3

In this section we analyze the Algorithm 9 for quantized noisy oracle, under the i.i.d. ensemble.

The main difference between Algorithm 6 and Algorithm 9 lies in the fact that for the i.i.d. ensemble
we first need to infer the number of non-zero elements in every row of A (or, `0 norm of every row),
before proceeding with a similar analysis as in the proof of Theorem 2. As in Section E, we analyze
the probability of error associated with Algorithm 9, by investigating each of its steps. Given a set S ,
recall that the second step in this algorithm is to infer the number of non-zero elements Ai, for i ∈ S .
This is done with the aid of Algorithm 10.For every index i ∈ S, let

Ti ,
∑

j∈S:j 6=i

1[Yij = 1]. (57)

Also, let {H`}k`=0 be a sequence of Hypotheses defined as follows:
H` : ‖Ai‖0 = `, ` = 0, . . . , k. (58)

As before, let Qij , Q(AT
i Aj). Then, it is clear that

P` [Qij = 1] = 1− (1− p)`, (59)
and therefore,

E`Ti = (|S| − 1)
[
(1− q)(1− (1− p)`) + q(1− p)`

]
= (|S| − 1)

[
1− q − (1− 2q)(1− p)`

]
. (60)

Accordingly, for any two different hypotheses H` and H`′ , we obtain
|E`Ti − E`′Ti| = (|S| − 1)(1− 2q)

·
∣∣∣(1− p)` − (1− p)`

′
∣∣∣ . (61)

Algorithm 11 InferSupportsize2 The algorithm for inferring ‖Ai‖0 for a fixed entry i /∈ S.

Require: Set S where every pairwise value is observed, and index i /∈ S.
1: Define ∆ numbers E` = |S|

(
1− q − (1− 2q)(1− p)`

)
for ` = 0, 1, . . . , k

2: Calculate Ti =
∑
r∈S 1[Yir = 1]

3: Return arg min` |Ti − E`|

22

Algorithm 12 InferIntersection1 The algorithm for inferring 〈Ai,Aj〉 for two fixed entries
i, j ∈ S.

Require: Set S where every pairwise value is observed, and indices i, j ∈ S.
1: if Yij = 0 then
2: Return 0
3: else
4: Define ∆i,j numbers E` = (|S| − 2)

(
(1− q)2− (1− q)(1− 2q)(1− p)‖Ai‖0 − (1− q)(1−

2q)(1− p)‖Aj‖0 + (1− 2q)2(1− p)‖Ai‖0+‖Aj‖0−`
)

for ` = 1, . . . ,∆i,j

5: Calculate Ti,j =
∑

r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]

6: Return arg min` |Ti,j − E`|

Algorithm 13 InferIntersection2 The algorithm for inferring 〈Ai,Aj〉 for i ∈ S, j 6∈ S.

Require: Set S where every pairwise value is observed, and indices i ∈ S, j 6∈ S.
1: if Yij = 0 then
2: Return 0
3: else
4: Define ∆i,j numbers E` = (|S| − 1)

(
(1− q)2− (1− q)(1− 2q)(1− p)‖Ai‖0 − (1− q)(1−

2q)(1− p)‖Aj‖0 + (1− 2q)2(1− p)‖Ai‖0+‖Aj‖0−`
)

for ` = 1, . . . ,∆i,j

5: Calculate Ti,j =
∑
r∈S
r 6=i

1[Yir = 1 ∩Yjr = 1]

6: Return arg min` |Ti,j − E`|

Now, given Ai it is clear that the random variables 1[Yij = 1], for j ∈ S \ {i}, are statistically
independent and therefore we can apply Lemma 7. Specifically, let P (i)

error,1 designate the average
probability of associated Algorithm 10, for a given index i ∈ S. Then, we have

P
(i)
error,1 =

k∑
`=0

P (H`)P` [error]

=

∆∑
`=1

P (H`)P`
[
min
`′ 6=`

|Ti − E`′Ti| < |Ti − E`Ti|
]
. (62)

As in Appendix E (see eqs. (46)–(48)), we obtain

P`
[
min
`′ 6=`

|Ti − E`′Ti| < |Ti − E`Ti|
]

≤ 2 · e−(|S|−1)η̄(`) (63)

where

η̄(`) ,
(1− 2q)2

2

[
(1− p)`−1 − (1− p)`

]2
. (64)

Combining the above results with the fact that η̄(`) is monotonically decreasing in `, we obtain

P
(i)
error,1 ≤ 2 ·max

`≥1
e−(|S|−1)·η̄(`) (65)

= 2 · e−(|S|−1)·η(k). (66)

Therefore, at the end of the first step in the second stage of Algorithm 9, we will have an exact
estimate of ‖Ai‖0, for i ∈ S , if (66) is satisfied for all i ∈ S . By the union bound, we obtain that the
overall probability of error associated with this stage of Algorithm 9 is upper bounded by

Perror,1 ≤ 2|S| · e−(|S|−2)·η(k)

≤ 2n · e−(|S|−1)·η̄(k). (67)

23

Accordingly, taking |S| > 1
η̄(k) log(2n1+ε) + 1, for any ε > 0, is sufficient to bring the probability

of error to at most n−ε. Note that the above constraint on |S| expands to

|S| > 2 log(2n1+ε)

(1− 2q)2 [(1− p)k−1 − (1− p)k]
2 + 1. (68)

After inferring the `0-norm of each row, in the second step of Algorithm 9, we infer 〈Ai,Aj〉, for any
(i, j) ∈ S. This is done using the procedure in Algorithm 12. The analysis of this procedure is very
similar to the analysis in Appendix E. In the following probabilities and expectations are evaluated
conditioned on AT

i Aj = ` and the values of ‖Ai‖0 and ‖Aj‖0. With some abuse of notation we
denote these probabilities and expectations by P` and E`, respectively. For a triplet (i, j, r) ∈ [n], we
have

P`(Qir = 1 ∩Qjr = 1) = 1− P`(Qjr = 0)

− P`(Qir = 0) + P`(Qir = 0 ∩Qjr = 0)

= 1− (1− p)‖Ai‖0 − (1− p)‖Aj‖0

+ (1− p)‖Ai‖0+‖Aj‖0−`. (69)

In a similar fashion,

P`(Qir = 0 ∩Qjr = 1) = P`(Qir = 1 ∩Qjr = 0)

= P`(Qir = 0)− P`(Qir = 0 ∩Qjr = 0)

= (1− p)‖Ai‖0 − (1− p)‖Aj‖0 + (1− p)‖Ai‖0+‖Aj‖0−`, (70)

and finally,

P`(Qir = 0 ∩Qjr = 0) = (1− p)‖Ai‖0+‖Aj‖0−`. (71)

Therefore, using the above we obtain by the law of total probability,

P`(Yir = 1 ∩Yjr = 1)

= (1− q)2 · P`(Qir = 1 ∩Qjr = 1)

+ 2q(1− q) · P`(Qir = 1 ∩ Zjr = 1)

+ q2 · P`(Qir = 0 ∩Qjr = 0)

= (1− q)2 − (1− 2q)(1− q)(1− p)‖Ai‖0

− (1− 2q)(1− q)(1− p)‖Aj‖0

+ (1− 2q)2(1− p)‖Ai‖0+‖Aj‖0−`

, Tth. (72)

For a pair (i, j) ∈ S, let us define

∆i,j ,

{
min(‖Ai‖0 , ‖Aj‖0), if ‖Ai‖0 + ‖Aj‖0 ≤ k
‖Ai‖0 + ‖Aj‖0 − k, if ‖Ai‖0 + ‖Aj‖0 ≥ k

. (73)

Accordingly, define a sequence of ∆ij hypotheses {H̄`}`:

H̄` : AT
i Aj = ` for ` = 0, 1, . . . ,∆i,j . (74)

Furthermore, define

T̄i,j ,
∑
r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]. (75)

It follows that,

E`T̄i,j = (|S| − 2)Tth, (76)

24

and thus, for any two hypotheses H̄` and H̄`′ , we have

|E`T̄ij − E`′ T̄ij | = (|S| − 2)(1− 2q)2

·
∣∣∣(1− p)‖Ai‖0+‖Aj‖0−` − (1− p)‖Ai‖0+‖Aj‖0−`

′
∣∣∣

≥ (|S| − 2)(1− 2q)2
∣∣(1− p)k−1 − (1− p)k

∣∣ . (77)

Then, using the same machinery as in Appendix E (see eqs. (46)–(52)), it can be shown that the
overall probability of error associated with second stage of Algorithm 9 is upper bounded by

P̄error,1 ≤ 2 ·
(
|S|
2

)
· e−(|S|−2)·η̃(k)

≤ 2n2 · e−(|S|−2)·η̃(k) (78)

where

η̃(k) ,
(1− 2q)4

[
(1− p)k−1 − (1− p)k

]
2

.

Therefore, at the end of the second stage of Algorithm 9, if |S| > 1
η̃(k) log(2n2+ε) + 2, for any ε > 0,

then we will have an exact estimate of ASAT
S with probability of error to at most n−ε. Note that the

above constraint on |S| expands to

|S| > 2 log(2n2+ε)

(1− 2q)4 [(1− p)k−1 − (1− p)k]
2 + 2 (79)

=
2 log(2n2+ε)

p2(1− 2q)4(1− p)2k−2
+ 2. (80)

Next, given the exact estimate of ASAT
S from the second step of our algorithm, in the third step we

extract the membership of all chosen |S| elements by a simple rank factorization procedure as in
Algorithm 2. We denote the resultant rank factorized matrix by ÂS . Finally, we analyze the fourth
step of Algorithm 9, in which for each index j 6∈ S , we observe Yij , for all i ∈ S , and from these we
would like to infer the leftover inner-products. This is done with the help of Algorithms 11 and 13
which we analyze in the sequel.

In fact the entire analysis of Algorithms 11 and 13 remains almost the same. Indeed, in Algorithm 11
we infer ‖Ai‖0, for i 6∈ S. To this end, we define

T̄i ,
∑
j∈S

1[Yij = 1]. (81)

It is evident that T̄ is very similar to (57), and thus, using the same steps as in (57)–(68), it can be
shown that if

|S| > 2 log(2n1+ε)

(1− 2q)2 [(1− p)k−1 − (1− p)k]
2 . (82)

then with overwhelming probability we correctly infer ‖Ai‖0, for i 6∈ S. Then, using the same
arguments in (69)–(80), it can be shown that if

|S| > 2 log(2n2+ε)

p2(1− 2q)4(1− p)2k−2
+ 1, (83)

then Algorithm 13 succeeds, namely, with high probability, at the end of the fourth step of Algorithm 9,
we have the exact values of AT

i Aj , for all i 6∈ S, and j ∈ S. For each i 6∈ S we denote by ci the
|S| length vector containing the inner-products AT

i Aj , for j ∈ S. Note that (80) is the stringent
condition among (68), (82), and (83), and thus if (80) holds the other conditions hold too.

Finally, the only thing that is left to do is solve for the membership vector of each of the (n− |S|)
elements. This is done similarly as was done in Algorithm 2 (see the proof of Theorem 1). Specifically,
from Lemma 6, we know that by taking |S| > k − 1 + 1+ε

− log max(p,1−p) + c2 log n, for some ε > 0

and c2 > 0, the rows of AS form a basis of Fk2 with high probability. Note that (80) is a stringent

25

Algorithm 14 Noisy Responses The algorithm for extracting membership of elements via queries
to oracle.
Require: Number of elements: N , number of clusters k, oracle responses Oquantized(i, j) for query

(i, j) ∈ Ω, where i, j ∈ [N].
1: Choose a set S of elements drawn uniformly at random fromN , and perform all pairwise queries

corresponding to these |S| elements. Compute Tij =
∑

r∈S
r 6=i,j

1[Yir = 1 ∩ Yjr = 1] for all

i, j ∈ S.
2: Query the remaining n− |S| elements with all elements present in S . Subsequently compute for

all i ∈ S, j /∈ S, Tij =
∑
r∈S\{xj}
r 6=i,xj

1[Yir = 1 ∩Yjr = 1] where xj is an arbitrarily selected

element from S such that xj 6= i

3: Group all the
(|S|

2

)
+ |S| · (n−|S|) counts Tij into ∆+1 groups such that the difference between

any two intra-group points is smaller than the difference between any two inter-group points. If
not possible, return NOT POSSIBLE.

4: Order the groups by their value and label them by assigning the hypothesis H` to the `th group
in the order.

5: Assign 〈Ai,Aj〉 to be ` for queries Q = (i, j) such that Tij belonged to the `th group.
6: Extract the membership of all the |S| elements present in S by a rank factorization (may not be

unique). Obtain k linear independent vector from the solution space and represent them as a T .
7: Solve the membership vectors of all elements by solving the k linearly independent equations

obtained by getting the inner product with T .
8: Return the similarity matrix AAT .

condition, and thus Lemma 6 holds. Furthermore, were also able to observe that if the rows of AS
formed a basis, then for an index i ∈6∈ S , the set of values of {AT

i Aj}, for all j ∈ S were enough to
determine the vector Ai. Indeed, given the resultant matrix ÂS from the rank factorization step in
the third step of Algorithm 9, the unknown membership vector cj of the j 6∈ S element is found by
solving ÂScj = sj .

Finally, we conclude the proof by noting that the total number of observed entries is

|Ω| =
(
|S|
2

)
+ |S| · (n− |S|), (84)

while (80) ensures a vanishing error probability.

G Proof of Theorem 4

In this section, we analyze Algorithm 14. At the end of the second stage of Algorithm 14, we have
access to all counts Tij , for all pairs (i, j) ∈ S, and i ∈ S, j /∈ S. Suppose that these counts satisfy

max
Ti1j1∈H`
Ti2j2∈H`

|Ti1j1 − Ti2j2 | ≤ δ (85)

min
Ti1j1∈H`
Ti2j2∈H`′
6̀=`′

|Ti1j1 − Ti2j2 | > 2δ (86)

where Tij ∈ H` implies that AT
i Aj = `. Now, according to the third stage of Algorithm 14, we

group the counts {Tij} with the objective of forming (∆ + 1) clusters such that the count difference
between any two intra-cluster points is less than the count difference between any two inter-cluster
points. We next prove that counts belonging to two distinct hypotheses H` and H`′ must also belong
to different clusters. We prove this property by contradiction.

Indeed, the above claim can be wrong only if one of the following two situations happen: First,
there are two clusters A and B both of which contain counts belonging to H` and H`′ . Denote
the relevant counts in A by a` and a`′ , and the counts in B by b` and b`′ , where a`, b` ∈ H` and
a`′ , b`′ ∈ H`′ . Then, according to (85)–(86), we must have |a` − a`′ | > |a`′ − b`′ |, but this clearly
contradicts the way the clusters were formed in the third step of Algorithm 14. The second situation

26

is when all counts belonging to H` and H`′ are in the same cluster. However, since our objective
is to find (∆ + 1) clusters, the counts in a particular hypotheses has to split into multiple clusters
for this to happen. This implies, for example, that there exists three clusters A, B, and C, and three
hypotheses H`, H`′ , and Hˆ̀, such that that A and B contain counts belonging to H` only and C
contains counts from H`′ and Hˆ̀. But then there exist counts in C whose difference is at least 2δ,
whereas the maximum difference between counts in A and B is δ (since both contain counts from the
same hypothesis), which again clearly contradicts the solution of the proposed algorithm. Therefore,
we may conclude that, by construction, counts belonging to different hypotheses must belong to
different clusters. Since we look for (∆ + 1) clusters, we exactly recover the clusters where each
cluster corresponds to the counts of a particular hypothesis only. Moreover, we can correctly label the
clusters as well because of the monotonicity of ` in the value of the counts belonging to hypothesis
H` provided we have a valid solution by the algorithm.

In the following, we derive the sufficient conditions under which (85)-(86) are satisfied. First, note
that in Algorithm 14 when computing the triangle counts for pairs (i, j), such that i ∈ S and j 6∈ S,
we omit one arbitrarily picked element (denoted by xj where xj 6= i) from S . We do that because we
want the expected value of the triangle count under the different hypotheses to be the same as in the
case when (i, j) ∈ S . Accordingly, recall (44). In order to satisfy (85)-(86), it is clear that Tij should
deviate from its mean by at most min`,`′:` 6=`′

|E`Tij−E`′Tij |
6 , which implies that

δ =
(|S| − 2)(1− 2q)2

3
(
k
∆

) (87)

·
∣∣∣∣(k − 2∆ + 1

∆

)
−
(
k − 2∆

∆

)∣∣∣∣ .
Then, using the same machinery as in Appendix A (see, eq. (46)–(52)), it can be shown that at the
end of the third step of Algorithm 14, the overall probability of error is upper bounded by

Perror ≤ 2n2 · e−(|S|−2)·η̄ (88)

where

η̄ ,
(1− 2q)4

18

∣∣∣(k−2∆+1
∆

)
−
(
k−2∆

∆

)∣∣∣2(
k
∆

)2 . (89)

Accordingly, taking

|S| >
18
(
k
∆

)2
log(2n2+ε)

(1− 2q)4
[(
k−2∆+1

∆

)
−
(
k−2∆

∆

)]2 + 2, (90)

for any ε > 0, is sufficient to bring the probability of error to at most n−ε.

It is evident that for the algorithm to return a valid solution, there must exist counts for all the (∆ + 1)
hypotheses. We will show that this event happens with high probability under some conditions. For
two indices i, j ∈ [N], we have

P(AT
i Aj = `) =

(
∆
`

)(
k−∆
∆−`

)(
k
∆

) . (91)

Then, it is clear that (91) is minimized when ` = ∆, in which case we have P(AT
i Aj = ∆) = 1

(k∆)
.

If we only focus on an index i ∈ S (we are selecting an index in S because indices in S are queried
with every other index in [N]), then let Ui,` be the random variable which describes the number
of indices (excluding i itself) such that AT

i Aj = `. It is clear that Ui,` can be written as a sum of
(n− 1) i.i.d. binary random variables, and

E(Ui,`) =
(n− 1)

(
∆
`

)(
k−∆
∆−`

)(
k
∆

) . (92)

Applying Chernoff’s inequality once again, and taking a union bound over all (∆ + 1) hypotheses,
we may conclude that if n > 10

(
k
∆

)
log n, then Ui,` > 0, for all `, with high probability.

27

Algorithm 15 NoisyInferSupport1 The algorithm for inferring 〈Ai,Aj〉 for two fixed entries
i, j ∈ S.

Require: Set S where every pairwise value is observed, and indices i, j ∈ S

1: Define ∆+1 numbersE` = (|S|−2)

[
1−2E`

[
Q

(
AT
j Ar

σ

)]
−E`

[
Q

(
AT
j Ar

σ

)
Q
(

AT
i Ar

σ

)]]
for ` = 0, 1, . . . ,∆

2: Calculate Tij =
∑

r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1]

3: Return arg min` |Tij − E`|

Algorithm 16 NoisyInferSupport2 The algorithm for inferring 〈Ai,Aj〉 for i ∈ S, j 6∈ S.

Require: Set S where every pairwise value is observed, and indices i ∈ S, j 6∈ S.

1: Define ∆ numbers E` = (|S| − 1)

[
1− 2E`

[
Q

(
AT
j Ar

σ

)]
− E`

[
Q

(
AT
j Ar

σ

)
Q
(

AT
i Ar

σ

)]]
for ` = 0, 1, . . . ,∆

2: Calculate Tij =
∑
r∈S
r 6=i

1[Yir = 1 ∩Yjr = 1]

3: Return arg min` |Tij − E`|

H Dithered Responses

In this section, we present our main result concerning dithered responses, i.e., Odithered(i, j) =
Q
(
AT
i Aj + Zi,j

)
, where Zij ∼ Normal(0, σ2), independently over pairs (i, j). Here, we con-

sider the uniform ensemble only, but using the same techniques developed in this paper, the
i.i.d. ensemble can be handled too. Let Q(·) denote the Q-function, namely, for any x ∈ R,
Q(x) ,

∫∞
x

1√
2π
e−t

2/2dt. Finally, for ` = 0, 1, define

G`(k,∆) , E
[
Q

(
AT

1 A3

σ

)
Q

(
AT

2 A3

σ

)∣∣∣∣AT
1 A2 = `

]
(93)

where {Ai}3i=1 are three statistically independent random vectors drawn from Tk(∆). With these
definitions, we are ready to state our main result.

Theorem 6. Assume that A was generated according to the uniform ensemble. Then, there exists a
polynomial-time algorithm, given in Algorithm 6, which with overwhelming probability, recovers the
similarity matrix AAT , using |Ω| ≥

(|S|
2

)
+ |S| · (n− |S|) queries, where for any ε > 0,

|S| > 2 log(2n2+ε)

|G1(k,∆)−G0(k,∆)|2
. (94)

Proof of Theorem 6. The algorithm for this setting is the same as Algorithm 6, but with Algorithms 7
and 8 replaced with Algorithms 15 and 16. Accordingly, the main difference in the analysis compared
to Appendix A is the computation of the statistics of the enumerators, and thus we omit some technical
details. Specifically, recall that we assume that A was generated according to the uniform ensemble.
Now, as before, we notice that for three distinct indices (i, j, r) ∈ [n], we have

P`(Yir = 1 ∩Yjr = 1) = 1− 2 · P`(Yir = 0)

+ P`(Yir = 0 ∩Yjr = 0). (95)

Then, it is clear that

P`(Yjr = 0) = E`

[
Q

(
AT
j Ar

σ

)]
, (96)

28

and

P`(Yir = 0 ∩Yjr = 0)

= E`

[
Q

(
AT
j Ar

σ

)
Q

(
AT
i Ar

σ

)]
. (97)

It is also clear that (96) is independent of ` and (i, j, r), while (97) depends on ` only. Therefore,

P`(Yir = 1 ∩Yjr = 1) = 1

− E`

[
2Q

(
AT
j Ar

σ

)
−Q

(
AT
j Ar

σ

)
Q

(
AT
i Ar

σ

)]
. (98)

Next, as before, for a pair of indices (i, j) ∈ S, define

Ti,j ,
∑
r∈S
r 6=i,j

1[Yir = 1 ∩Yjr = 1], (99)

and thus,

E`Ti,j = (|S| − 2)

[
1− 2E`

[
Q

(
AT
j Ar

σ

)]

−E`

[
Q

(
AT
j Ar

σ

)
Q

(
AT
i Ar

σ

)]]
. (100)

Accordingly for any two hypothesesH` andH`′ , we have

|E`Tij − E`′Tij |

= (|S| − 2)

∣∣∣∣∣E`
[
Q

(
AT
j Ar

σ

)
Q

(
AT
i Ar

σ

)]

−E`′
[
Q

(
AT
j Ar

σ

)
Q

(
AT
i Ar

σ

)]∣∣∣∣∣ (101)

, (|S| − 2) · Γ`,`′ . (102)

Then, using the same machinery as in Appendix E (see eqs. (46)–(52)), it can be shown that the
overall probability of error associated with second stage of Algorithm 9 for the dithered oracle is
upper bounded by

Perror,1 ≤ 2n2 · e−(|S|−2)·
Γ2

1,0
2 . (103)

Therefore, at the end of the second stage of Algorithm 6, if |S| > 2
Γ2

1,0
log(2n2+ε) + 2, for any

ε > 0, then we will have an exact estimate of ASAT
S with probability of error to at most n−ε. The

other parts of the algorithm are handled in the same way (see eqs. (53)–(56), and thus omitted. We
emphasize that as before, the over all query complexity

(|S|
2

)
+ |S| · (n− |S|) is dominated by the

above condition on S.

I Information-Theoretic Lower Bounds

In this section, we provide information-theoretic lower-bounds on the query complexity for exact
recovery of the clustering matrix A, associated with the scenarios considered in this paper. We denote
byH2(x) the binary entropy of x ∈ (0, 1), namely,H2(x) , −x log2 x− (1− x) log2(1− x), and
denote by ? the binary convolution, i.e., p ? q , (1− p)q + p(1− q). We have the following results
proved in the sequel.
Theorem 7. [i.i.d. Ensemble] Assume that A was generated accordingly to the i.i.d. ensemble with
parameter p. Then, for any adaptive algorithm, in order to achieve Perror ≤ δ, the necessary query
complexity is

29

• For Odirect:

|Ω| ≥ nk

log k
· [H2(p)− δ]. (104)

• For Oquantized:

|Ω| ≥ nk · H2(p)− δ
H2 (q ? [1− (1− p2)k])−H2(q)

. (105)

• For Odithered:

|Ω| ≥ nk · [H2(p)− δ]

H2

[
EQ

(
AT

1 A2

σ

)]
− EH2

[
Q
(

AT
1 A2

σ

)] . (106)

Theorem 8. [Uniform Ensemble] Assume that A was generated accordingly to the uniform ensemble
with parameter ∆. Then, for any adaptive algorithm, in order to achieve Perror ≤ δ, the necessary
query complexity is

• For Odirect:

|Ω| ≥ nk ·
1
k log

(
k
∆

)
− δ

log ∆
. (107)

• For Oquantized:

|Ω| ≥ nk ·
1
k log

(
k
∆

)
− δ

H2

(
q ?

(k−∆
∆)

(k∆)

)
−H2(q)

. (108)

• For Odithered:

|Ω| ≥
nk · [1

k log
(
k
∆

)
− δ]

H2

[
EQ

(
AT

1 A2

σ

)]
− EH2

[
Q
(

AT
1 A2

σ

)] . (109)

I.1 Proof of Theorem 7

I.1.1 Proof of Eq. 104

We consider the case where A was generated according to the i.i.d. ensemble. We observe |Ω|
elements, drawn uniformly at random from the matrix Y, where Yij = Odirect(i, j) = AT

i Aj .
Let Perror denotes the average probability of error associated with any estimator of A given the
observations YΩ, namely, Perror , P{Â(YΩ) 6= A}. We note that

H(A) = H(A|Ω) (110)
= I(A;YΩ|Ω) +H(A|YΩ,Ω) (111)
Fano
≤ I(A;YΩ|Ω) + nk · λerror (112)

= H(YΩ|Ω)−H(YΩ|A,Ω) + nk · Perror (113)
H(YΩ|A,Ω)=0

= H(YΩ|Ω) + nk · Perror (114)

where the inequality follows from Fano’s inequality [10] which implies that

H(A|YΩ) ≤ Perror · log |A| ≤ nk · Perror (115)

where A is the set of all possible n × k binary matrices, and thus |A| = 2nk. Since A is an i.i.d.
matrix with Bernoulli(p) elements, we have H(A) = nk · H2(p). Therefore, we obtain that

nk · H2(p) ≤ H(YΩ|Ω) + nk · Perror. (116)

It is only left to upper bound the entropy H(YΩ|Ω) + nk · Perror. It is clear that

H(YΩ|Ω) ≤ |Ω| ·max
i 6=j

H(AT
i Aj) (117)

≤ |Ω| · log k (118)

30

where the second inequality follows from the realization that AT
i Aj has a maximum value of k.

Therefore, using (116), we obtain

nk · H2(p) ≤ |Ω| · log k + nk · Perror. (119)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥ nk

log k
[H2(p)− δ], (120)

as claimed.

I.1.2 Proof of Eq. 105

In this subsection we deal with the noisy quantized oracle, i.e., Yij = Oquantized(A
T
i Aj) ⊕Wij .

Similarly to (114), we have

H(A) ≤ H(YΩ|Ω)−H(YΩ|A,Ω) + nk · Perror (121)
= H(YΩ|Ω)− |Ω| · H2(q) + nk · Perror (122)

where we have used the fact that H(ZΩ|A,Ω) = |Ω| · H2(q). We next evaluate H(YΩ|Ω). Given
Ω, the (i, j) element of Y is a Bernoulli random variable with success probability given by q ? βij ,
where βij , P{AT

i Aj > 0}, and ? denotes the binary convolution. Now, note that for i = j,

βii = P{‖ai‖2 > 0} = 1− P{‖ai‖2 = 0}
= 1− (1− p)k, (123)

and i 6= j,

βij = 1− P{aTi aj = 0}
= 1− (1− p2)k. (124)

Therefore,

H(YΩ|Ω) ≤ |Ω| ·max
i,j
H2(q ? βij)

≤ |Ω| · H2

(
q ?
[
1− (1− p2)k

])
. (125)

Combining (122), (125), and the fact that H(A) = nk · H2(p), we obtain

nk · H2(p) ≤ |Ω| · H2

(
q ?
[
1− (1− p2)k

])
− |Ω| · H2(q) + nk · Perror. (126)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥ nk · H2(p)− δ
H2 (q ? [1− (1− p2)k])−H2(q)

, (127)

as claimed.

I.1.3 Proof of Eq. 106

We now consider the dithered oracle, where Yij = Q(AT
i Aj + Zij), with Zij ∼ Normal(0, σ2).

Here, the analysis is very similar to the previous subsection. In particular, similarly to (122), we have

H(A) ≤ H(YΩ|Ω)−H(YΩ|A,Ω) + nk · Perror (128)

= H(YΩ|Ω)− |Ω| · EH2

[
Q

(
AT

1 A2

σ

)]
+ nk · Perror. (129)

It is clear that given Ω, the (i, j) element of Y is a Bernoulli random variable with success probability
EQ

(
AT

1 A2

σ

)
. Therefore, we obtain

H(YΩ|Ω) ≤ |Ω| · H2

[
EQ

(
AT

1 A2

σ

)]
. (130)

31

Combining the above results and the fact that H(A) = nkH2(p), we may conclude that

nkH2(p) ≤ |Ω| · H2

[
EQ

(
AT

1 A2

σ

)]
− |Ω| · EH2

[
Q

(
AT

1 A2

σ

)]
+ nk · Perror. (131)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥ nk · [H2(p)− δ]

H2

[
EQ

(
AT

1 A2

σ

)]
− EH2

[
Q
(

AT
1 A2

σ

)] , (132)

as claimed.

I.2 Proof of Theorem 8

I.2.1 Proof of Eq. 107

We consider the case A where was generated according to the uniform ensemble, and the oracle
response is Yij = AT

i Aj . Similarly as in (114), we have

H(A) ≤ H(YΩ|Ω) + nk · Perror. (133)

For the uniform ensemble, note that H(A) = n · log
(
k
∆

)
. Next, as in the previous subsection, note

that

H(YΩ|Ω) ≤ |Ω| ·max
i 6=j

H(AT
i Aj) (134)

≤ |Ω| · log ∆ (135)

where the second inequality follows from the realization that AT
i Aj has a maximum value of ∆.

Combining the above, we obtain

n · log

(
k

∆

)
≤ |Ω| · log ∆ + nk · Perror. (136)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥ nk ·
1
k log

(
k
∆

)
− δ

log ∆
, (137)

as claimed.

I.2.2 Proof of Eq. 108

We now deal with the noisy quantized oracle, i.e., Yij = Oquantized(A
T
i Aj) ⊕Wij . Similarly to

(122), we have

H(A) ≤ H(YΩ|Ω)− |Ω| · H2(q) + nk · Perror. (138)

It is clear that given Ω, the (i, j) element of Y is a Bernoulli random variable with success probability
βij ? q, where βij , P{aTi aj > 0}. Note that for i = j,

βii = P{‖ai‖2 > 0} = 1, (139)

while i 6= j,

βij = 1− P{aTi aj = 0} = 1−
(
k−∆

∆

)(
k
∆

) . (140)

Therefore, using the above we obtain

H(YΩ|Ω) ≤ |Ω| · H2

(
q ?

(
k−∆

∆

)(
k
∆

)) . (141)

32

Combining the above results and the fact that H(A) = n · log
(
k
∆

)
, we may conclude that

n · log

(
k

∆

)
≤ |Ω| · H2

(
q ?

(
k−∆

∆

)(
k
∆

))− |Ω| · H2(q)

+ nk · Perror. (142)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥ nk ·
1
k log

(
k
∆

)
− δ

H2

(
q ?

(k−∆
∆)

(k∆)

)
−H2(q)

, (143)

as claimed.

I.2.3 Proof of Eq. 109

We now consider the dithered oracle, where Yij = Q(AT
i Aj + Zij), with Zij ∼ Normal(0, σ2).

Here, the analysis is very similar to the Subsection I.1.3. In particular, similarly to (129), we have

H(A) ≤ H(YΩ|Ω)− |Ω| · EH2

[
Q

(
AT

1 A2

σ

)]
+ nk · Perror. (144)

Also, similarly to (130), we have

H(YΩ|Ω) ≤ |Ω| · H2

[
EQ

(
AT

1 A2

σ

)]
. (145)

Combining the above results and the fact that H(A) = n log
(
k
∆

)
, we conclude that

n log

(
k

∆

)
≤ |Ω| · H2

[
EQ

(
AT

1 A2

σ

)]
− |Ω| · EH2

[
Q

(
AT

1 A2

σ

)]
+ nk · Perror. (146)

Accordingly, to achieve Perror ≤ δ, it is necessary that

|Ω| ≥
nk · [1

k log
(
k
∆

)
− δ]

H2

[
EQ

(
AT

1 A2

σ

)]
− EH2

[
Q
(

AT
1 A2

σ

)] , (147)

as claimed.

J Worst Case Model: At Most 2 Clusters

In this section we prove the following special result for ∆ = 2.
Theorem 9. Let Ni be the set of elements which belong to the i’th cluster, and assume that ∆ = 2.
If, for every triplets of distinct clusters p, q, r ∈ [k], we have |Np \ {Nq ∪ Nr}| > α · n, for some
α > 0, then by using Algorithm 17,

(
T
2

)
+ T (n − T) queries are sufficient to recover the clusters,

where α · T = 3 log k + log n.

For ease of notation, we will say that an element tests positive with another element if the response to
their query is 1 (i.e., they have one cluster in common). Otherwise, we will say they test negative.
We will also say that a cluster is maximal if there does not exist any element that does not belong to
the cluster but tests positive with every element in the cluster. The proof of Theorem 9 hangs on the
following theorem.
Theorem 10. Let C be a given clustering and let Ni be the set of elements which belong to the i’th
cluster. If for every triplets of distinct clusters p, q, r ∈ [k], we have Np \ {Nq ∪Nr} 6= φ, then the
ground truth clustering C is the only valid clustering that is consistent with the entire query matrix.

33

Algorithm 17 Worst-Case Quantized Responses for ∆ = 2 The algorithm for extracting
membership of elements via queries to oracle for adversarial data.

Require: Number of elements: N , number of clusters k, oracle responses Oquantized(i, j) for query
(i, j) ∈ Ω, where i, j ∈ [N].

1: Choose a set S of elements drawn uniformly at random from [N], and perform all pairwise
queries corresponding to these |S| elements.

2: Construct a graph G = (V, E) where the vertices are the |S| sampled elements. There exist an
edge between elements (i, j) only if they are determined to be similar by the oracle.

3: Construct the maximal cliques of the graph G such that all edges in E are covered and no three
cliques intersect. Each maximal clique forms a cluster.

4: Query each of the remaining n− |S| elements with all elements present in S . For each cluster, if
an element is similar with all the elements in that particular cluster, then assign the element to
that cluster.

5: Return all the clusters.

To prove this result we need the following lemma.
Lemma 8. For a given clustering C, if for every triplets of distinct clusters p, q, r ∈ [k], we have
Np \ {Nq ∪Nr} 6= φ, then the clusters Ni are maximal.

Proof. Proof of Lemma 8 We will prove this by contradiction. Suppose there exists a cluster Ni
which is not maximal and there exist an element x 6∈ Ni such that x tests positive with every element
in Ni. This is only possible if {x} ∪ Ni ⊂ Nj for some j or if {x} ∪ Ni ⊂ Nj ∪Nk (A partition of
Ni into two sets U and V such that {x} ∪ U ⊂ Nj and {x} ∪ V ⊂ Nk). Both these situations are not
allowed according to our guarantees (Ni \ {Nj ∪Nk} 6= φ), which completes the proof.

We now prove Theorem 10.

Proof of Theorem 10. We will prove this result by induction on the number of clusters. Consider the
base case of k = 3 where there are only three clusters say N1,N2,N3. Now the sets N1 \ {N2 ∪
N3},N2 \ {N1 ∪ N3},N3 \ {N1 ∪ N2} are non-empty and disjoint. In any different clustering
C̃, these three aforementioned sets have to belong to different clusters. Without loss of generality,
assume that N1 \ {N2 ∪ N3} ⊂ Ñ1 and N2 \ {N1 ∪ N3} ⊂ Ñ2. In that case, it is easy to see that
any element in N1 ∩N2 must belong to both Ñ1 and Ñ2 since it must test positive with elements in
both N1 \ {N2 ∪N3} and N2 \ {N1 ∪N3}. With this argument we get that the clustering C̃ is the
same as the clustering C.

Now, assume that this lemma is true when there are k clusters. Under this assumption, we will prove
the statement of the lemma for k + 1 clusters by contradiction. Assume that there exists a different
clustering C̃ such that there does not exist any i, j ∈ [k] for which Ni = Ñj . If N1 is a disjoint
cluster that is N1 ∩ Nj = φ for all clusters Nj , then all elements in N1 must belong to a disjoint
cluster in C̃ and we must have C̃ to be the same as C by using the induction assumption. So now,
we assume that no cluster Ni is disjoint. Assume that there exists some i, j such that Ni ⊂ Ñj .
Since C̃ is a valid clustering, hence all elements in Ñj \ Ni must test positive with all element in
Ni. This can happen only if 1) there exists some other cluster Np such that Ni ∪ {Ñj \ Ni} ⊂ Np
but this is not allowed since Ni 6⊂ Np. 2) If there exists two other clusters Np and Nq such that
Ni ∪ {Ñj \Ni} ⊂ Np ∪Nq but again this is not allowed sinceNi 6⊂ Np ∪Nq (same argument as in
proof of Lemma 8). So the previous assumption cannot happen and therefore there cannot exist some
i, j such that Ni ⊂ Ñj and by a similar argument there cannot exist i, j such that Ñi ⊂ Nj . Now,
without loss of generality, assume that N1 ∩ N2 6= φ. Hence there must exist some Ñj such that
Ñj ∩ N1 ∩ N2 6= φ. Let us denote one such element x that belongs to Ñj ∩ N1 ∩ N2. Now there
cannot exist an element y ∈ Ñj \ {N1 ∪N2} because y will test positive with x but x cannot belong
to three clusters. Hence it must happen that C̃j ⊂ N1 ∪N2. Now, consider two elements z1, z2 such
that z1 ∈ N1 \ N2 and z2 ∈ N2 \ N1 such that z1 and z2 test negative. Such a pair of elements
must exist otherwise the clusters N1,N2 will not be maximal according to Lemma 8. Now both the
elements z1, z2 cannot belong to Ñj since they test negative. On the other hand, both of them cannot

34

be outside Ñj since if x has to test positive with both z1, z2 then x must belong to three clusters in C̃
which is not allowed again. Hence, without loss of generality, assume that z1 is contained in C̃j . If
z1 only belongs to N1, then obviously no element from N2 \ N1 can belong to Ñj (because z1 will
not test positive with that element) and therefore Ñj ⊂ N1 which is not allowed. Therefore, assume
that z1 also belongs to another cluster N3 and under this assumption, further assume that an element
z3 ∈ N2 ∩N3 is contained in Ñj so that Ñj 6⊂ N1. However, according to the guarantee that we are
provided, there must exist an element z4 ∈ N1 \ {N2 ∪N3} and an element z5 ∈ N2 \ {N1 ∪N3}.
Now, neither of them can be included in Ñj since (z4, z3) and (z5, z1) must test negative. If (z4, z5)

test negative, then this creates a contradiction since one of them have to be included in Ñj . Now if
(z4, z5) test positive, then one of z4 and z5 must belong to three clusters in C̃ to satisfy the following
constraints: (z4, x), (z4, z1), (z5, z3), (z5, x), (z4, z5) test positive and (z4, z3), (z5, z1) test negative
(z1 ∈ N1 ∪N3 and z5 ∈ N2 \ {N1 ∪N3} and similar for (z4, z3)) which is not allowed. Hence our
initial assumption is incorrect and there cannot be a different clustering C̃.

We are now ready to prove Theorem 9. The proof follows from the following three arguments.

1. Suppose we randomly sample a subset of elements S and let Ñi = Ni ∩ S be the set of
elements in S which belong to the i’th cluster. A bad event is if there exist three distinct
clusters p, q, r ∈ [k] such that Ñp ⊂ Ñq ∪ Ñr. For a particular triplet of clusters, the
probability of this event to happen is clearly upper bounded by (1−α)|S| ≤ e−α|S|. Taking
a union bound over all triplets of clusters, the bad event will happen with probability at most
k3e−α|S|. Therefore, taking α · |S| = 3 log k + log n will make this probability at most
1/n.

2. Now, from Theorem 10, it is easy to see that once we are given all the queries involving
elements in S , we are able to obtain the ground truth clustering and therefore all the clusters
Ñi produced by an algorithm that returns a valid clustering.

3. Finally, each element not in S , will be queried with all elements in S . If an element belongs
to the i’th cluster, then obviously it will test positive with all elements in Ñi. If an element
does not belong to the i’th cluster (say it belongs to the j’th cluster and k’th cluster) then it
will not test positive with all elements in Ñi (because of our guarantee). So we will recover
the correct cluster every element belongs to.

It remains to show that Steps 2 and 3 in Algorithm 17 return a valid clustering if all the queries
constrained to elements in S are provided. We know that all elements that belong to a particular cluster
form a clique in the graph. We also know that all the edges can be covered by k maximal cliques (the
cliques can be overlapping) such that no three cliques intersect. Hence Step 3 of Algorithm 17 will
return a valid clustering, which completes the the proof.

Finally, we notice that we can in fact show a necessary condition for the case of ∆ = 2, which almost
coincide with Lemma 8, hinting that the above conditions might be also necessary.
Lemma 9. Let C be a given clustering and let Ni be the set of elements which belong to the ith
cluster. If for some pair of distinct clusters p, q ∈ [k], Np ⊂ Nq , then it is not possible to recover the
ground truth clustering.

Proof of Lemma 9. Consider a pair of clusters Np,Nq such that Np ⊂ Nq . It is easy to see that it is
impossible to determine which elements actually belong to the cluster Nq even if all possible query
responses are provided.

K Proof of Theorem 5

We start this section by stating a conjecture which is the natural extension of Theorem 10 to any
∆ > 0.
Conjecture 10. Let C be a given clustering and let Ni be the set of elements which belong to the
i’th cluster. If for every ordered subset of ∆ + 1 distinct clusters p1, p2, . . . , p∆+1 ∈ [k], we have
Np1
\ {∪pj 6=p1

Npj} 6= φ, then the ground truth clustering C is the only valid clustering that is
consistent with the entire query matrix.

35

Unfortunately, we could not prove the above result, but rather the following weaker result.

Theorem 11. Let C be a given clustering and let Ni be the set of elements which belong to the i’th
cluster. IfNi \ {

⋃
j 6=iNj} for all clusters i ∈ [k], then the ground truth clustering C is the only valid

clustering that is consistent with the entire query matrix.

Proof of Theorem 11. Notice that the setsNi\{
⋃
j 6=iNj}, for all i ∈ [k], are non-empty and disjoint.

In any different clustering C̃, the elements belonging to these aforementioned sets have to belong
to different clusters. Without loss of generality, assume that Ni \ {

⋃
j 6=iNj 6= Ni} ⊂ Ñi. In that

case, for any subset S ⊆ [k], it is easy to see that any element in
⋂
s∈S Ns must belong to

⋂
s∈S Ñs

since it must test positive with elements in Ni \ {
⋃
j 6=iNj 6= Ni} for all i ∈ S and tests negative

with elements in Ni \ {
⋃
j 6=iNj 6= Ni} for all i /∈ S. With this argument we get that the clustering

C̃ is the same as the clustering C.

We are now in a position to prove Theorem 5. The proof hangs on the following three arguments.

1. Suppose we randomly sample a subset of elements S and let Ñi = Ni ∩ S be the set of
elements in S which belong to the ith cluster. A bad event is if there exists a cluster i ∈ [k]

such that Ñi \ {
⋃
j:j 6=i Ñj} = φ. For a particular cluster, the probability of this event is

upper bounded by (1−α)|S| ≤ e−α|S|. Taking a union bound over all clusters, the bad event
will happen with probability at most ke−α|S|. Therefore, taking α · |S| = log k + log n,
will make this probability at most 1/n.

2. Now, from Theorem 11, it is easy to see that once we are given all the queries involving
elements in S , we are able to obtain the ground truth clustering and therefore all the clusters
Ñi by an algorithm that returns a valid clustering. If the clusters are maximal, then Step
3 in Algorithm 3 (a slightly modified version of Algorithm 17) returns a valid and unique
clustering.

3. Finally, each element not in S will be queried with all elements in S . If an element belongs
to the i’th cluster, then obviously it will test positive with all elements in Ñi. If an element
does not belong to the i’th cluster then it will not test positive with all elements in Ñi
(because of our guarantee). So we will recover the correct cluster every element belongs to.

L Experiments on Simulated Data

We conduct in-depth simulations of the proposed techniques over synthetic data. We focus on the
uniform ensemble and the quantized noisy oracle Oquantized. Recall that in our proposed algorithms
(see, e.g., Algorithm 6), we make |Ω| =

(|S|
2

)
+ |S|(n− |S|) queries, and for every query (i, j) ∈ Ω,

we infer using the count Tij the unquantized value AT
i Aj . Accordingly, for evaluation, we investigate

the amount of incorrect inferences made by our algorithm. It is only possible to recover the original
matrix A only if all the inferences are correct (using Algorithm 4). Fig. 2a presents the log-query
complexity (loge |Ω|) as a function of the number of items n, for ∆ = 2, k = 8, and q = 0.
We compare the simulated performance of Algorithm 6 with the theoretical lower and and upper
bounds in Theorems 2 and 8, respectively. It can be seen that our theoretical upper bound follows
closely the numerically evaluated performance of Algorithm 6.Fig. 2b shows log |Ω| as a function
of the number of clusters k, for ∆ = 2, n = 4000, and q = 0, and the same conclusions as above
remain true. Then, in Figs. 2c–2e we consider the noisy scenario with q controlling the “amount"
of noise. We first assume that the value of q is known. Specifically, in Fig. 2c we present log |Ω| as
a function of the noise parameter q, for n = 2000, k = 7, and ∆ = 2. Again, it can be seen that
our theoretical upper bound match the simulated performance of Algorithm 6. We notice that the
effect of the noise on the query complexity is not drastic, which imply that the proposed algorithm is
robust. To illustrate the underlying mechanism of Algorithm 6, in Fig. 2d we present the amount of
correct and wrong inferences occurred at the end of the second step of Algorithm 6, for n = 1000,
k = 8, ∆ = 2. In this figure, we took |S| = 400, which is the sufficient size for recovery in the
noiseless case (but not for the noisy regime). It can be seen that the number of wrong inferences
grows moderately up to q ≈ 0.1, and then the effect of choosing an insufficient |S| becomes more

36

(a) Query complexity log |Ω| of Al-
gorithm 6 (blue) as a function of n,
for ∆ = 2, k = 8, and q = 0. The
green and red curves represent the
lower and upper bound in Thms. 2
and 8.

(b) Query complexity log |Ω| of
Algorithm 6 (blue) as a function
of k, for ∆ = 2, n = 4000,
and q = 0. The green and red
curves represent the lower and up-
per bound in Thms. 2 and 8.

(c) Query complexity log |Ω| of Al-
gorithm 6 (blue) as a function of q,
for ∆ = 2, k = 7, and n = 2000.
The green and red curves represent
the lower and upper bound in Thms. 2
and 8.

(d) Number of correct/wrong infer-
ences as a function of q, for n =
1000, k = 8, ∆ = 2, and |S| = 400.

(e) Histogram of the counts statis-
tic {Tij} used for inferring in Algo-
rithm 14, for n = 2000, k = 2, and
∆ = 2.

Figure 2: Results of our techniques on simulated datasets.

severe. This suggests the potential application of our algorithms also when partial, rather than exact,
recovery is the performance criterion. Finally, we illustrate how Algorithm 14 works in the absence
of noise. Specifically, in Fig. 2e, we provide a histogram of the counts Tij defined in Algorithm 14,
for ∆ = 2, k = 7, n = 2000 and q = 0. It is evident that the data can be separated into three groups
(recall the third step of Algorithm 14) and therefore it is possible to infer correctly AT

i Aj for all
pairwise queries.

37

	Uniqueness of Factorization
	Proof of Lemma 3
	Proof of Lemma 4

	The Rank of Random Matrices
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Dithered Responses
	Information-Theoretic Lower Bounds
	Proof of Theorem 7
	Proof of Eq. 104
	Proof of Eq. 105
	Proof of Eq. 106

	Proof of Theorem 8
	Proof of Eq. 107
	Proof of Eq. 108
	Proof of Eq. 109

	Worst Case Model: At Most 2 Clusters
	Proof of Theorem 5
	Experiments on Simulated Data

