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Abstract

Visual commonsense reasoning (VCR) has been introduced to boost research of
cognition-level visual understanding, i.e., a thorough understanding of correlated
details of the scene plus an inference with related commonsense knowledge. Recent
studies on neuroscience have suggested that brain function or cognition can be
described as a global and dynamic integration of local neuronal connectivity, which
is context-sensitive to specific cognition tasks. Inspired by this idea, towards VCR,
we propose a connective cognition network (CCN) to dynamically reorganize the
visual neuron connectivity that is contextualized by the meaning of questions and
answers. Concretely, we first develop visual neuron connectivity to fully model
correlations of visual content. Then, a contextualization process is introduced to
fuse the sentence representation with that of visual neurons. Finally, based on the
output of contextualized connectivity, we propose directional connectivity to infer
answers or rationales. Experimental results on the VCR dataset demonstrate the
effectiveness of our method. Particularly, in Q→ AR mode, our method is around
4% higher than the state-of-the-art method.

1 Introduction

Recent advances in visual understanding mainly make progress on the recognition-level perception
of visual content, e.g., object detection [13, 23] and segmentation [9, 5], or even on the recognition-
level grounding of visual concepts with image regions, e.g., image captioning [40, 24] and visual
question answering [1, 6]. Towards complete visual understanding, a model must move forward
from perception to reasoning, which includes cognitive inferences with correlated details of the scene
and related commonsense knowledge. As a key step towards complete visual understanding, the
task of Visual Commonsense Reasoning (VCR) [42] is proposed along with a well-devised new
dataset. In VCR, given an image, a machine is required to not only answer a question about the
thorough understanding of the correlated details of the visual content, but also provide a rationale, e.g.,
contextualized with related visual details and background knowledge, to justify why the answer is true.
As a first attempt to narrow the gap between recognition- and cognition-level visual understanding,
Recognition-to-Cognition Networks (R2C) [42] conducts visual commonsense reasoning step by step,
i.e., grounding the meaning of natural language with respect to the referred objects, contextualizing
the meaning of an answer with respect to the question and related global objects, and finally reasoning
over the shared representation to obtain a decision of an answer. Due to the large discrepancy between
the reasoning scheme of VCR and cognition function of human brain, R2C’s performance is not in
competition with humans score, e.g., 65% vs. 91% in Q→ A mode.
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Figure 1: Overview of our CCN method. The yellow, blue, and green circles indicate visual
elements, question and answer representation, respectively. Our method mainly includes visual
neuron connectivity, contextualized connectivity, and directional connectivity. For semantic context,
two LSTM units are used to extract sentence representations.

Recent studies [31, 8] on brain networks have suggested that brain function or cognition can be
described as the global and dynamic integration of local (segregated) neuronal connectivity. And
such a global and dynamic integration is context-sensitive with respect to a specific cognition task.
Inspired by this idea, in this paper, we propose a Connective Cognition Network (CCN) for visual
commonsense reasoning. As is shown in Fig. 1, the main process of CCN is to dynamically
reorganize (integrate) the visual neuron connectivity that is contextualized by the meaning of answers
and questions in the current reasoning task.

Concretely, taking visual words as visual neurons and object features as segregated visual modules, we
first devise an approach of Conditional GraphVLAD to represent image’s visual neuron connectivity,
which includes connections among visual neurons and visual modules. The visual neuron connectivity
serves as the base function for the dynamic integration in the process of reasoning. Meanwhile, as
a context-sensitive integration, the meaning is specified by the semantic context of questions and
answers. After obtaining the sequential information of sentences via an LSTM network [16], we fuse
the sentence representation with that of the visual neurons, which stands for a contextualization.

Then we employ graph convolution neural network (GCN) to fully integrate both the local and global
connectivity. For example, in Fig. 1, connections between “He” and “Person4”, “Person4” and
“Person3”, as well as “Person3” and “table” could all be incorporated in the contextualized connectiv-
ity, where the last connection between “Person3” and “table” belongs to the global integration not
mentioned here. Though the contextualized connectivity is ready for reasoning, it lacks direction
information, which is an important clue for cognitive reasoning [32]. Taking the answer sentence
in Fig. 1 as an example, there exists directional connection from “Person4” to “Person3” via the
predicate “tell”, as well as from “Person1” to “sandwich” via the predicate “order”. Though easy
to be defined in first-order logic (FOL) [36], it is nontrivial to be incorporated into a data-driven
learning process. In this paper, we make an attempt to devise a direction learner on the GCN, so as to
further improve the reasoning performance. Particularly, a network is first used to learn the semantic
direction of input features. Then, we add the direction to the computation of the adjacency matrix of
GCN to obtain a directional adjacency matrix, which serves as directional connectivity for reasoning.

Thus, we develop a novel connective cognition network for directional visual commonsense reasoning.
The main contributions lie in that, this is the first attempt to use an end-to-end training neural network
for the cognitive reasoning process, i.e., global and dynamic integration of local (segregated) visual
neuron connectivity, which is context-sensitive with respect to a specific VQA task. Moreover,
we also try to incorporate directional reasoning into a data-driven learning process. Experimental
results on the VCR dataset [42] demonstrate the effectiveness of the proposed method. On the three
reasoning modes of VCR task, i.e., Q → A, QA → R, and Q → AR, the CCN with directional
reasoning significantly outperforms R2C by 3.4%, 3.2%, and 4.4%, respectively.

2 Related Work

Visual Question Answering: Recently, many effective methods are proposed in the VQA task,
which includes those based on attention [21, 26], multi-modal fusion [33, 12], and visual reasoning
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Figure 2: The framework of the CCN method. It mainly includes visual neuron connectivity,
contextualized connectivity, and directional connectivity for reasoning. Here, ‘{U,O}’ indicates
the set including the output U of GraphVLAD and object features O. ‘fθ’ indicates the prediction
function for responses (answers or rationales). ‘F’ indicates fusion operation.

[35, 29]. Most methods focus on the recognition of visual content and spatial positions, but they lack
the ability of commonsense reasoning. To advance the research of reasoning, a new task of VCR [42]
is proposed. Given a query-image pair, this task needs models to choose correct answer and rationale
justifying why the answer is true. The challenges mainly include a thorough understanding of vision
and language as well as a method to infer responses (answers or rationales). In this paper, we propose
a CCN model for VCR, which has been proved to be effective in the experiment.

NetVLAD: The work [4] proposes NetVLAD which is used to extract local features. Particularly, it
includes an aggregation layer for clustering the local features into a VLAD [19] global descriptor.
Recently, NetVLAD has been demonstrated to be effective in many tasks [2, 37]. Particularly, the
work [2] proposes a PointNetVLAD to extract the global descriptor from a given 3D point cloud.
Besides, the state-of-the-art models [7, 27] of video classification most use NetVLAD pooling to
aggregate information from all the frames of a video. However, the original NetVLAD learns multiple
centers from the overall dataset to represent each input data, which ignores the characteristic of the
input data and reduces the accuracy of the representation. To alleviate this problem, in this paper, we
propose a conditional GraphVLAD to integrate the characteristic of the input data.

Graph Convolutional Network: GCN [22, 39, 28, 43] aims to generalize the Convolutional Neural
Network (CNN) to graph-structured data. By encoding both the structure of the graph surrounding a
node and the feature of the node, GCN could learn representation for every node effectively. As GCN
has the benefit of capturing relations between nodes, many works have employed GCN for reasoning
[17, 29]. Particularly, the work [29] uses GCN to infer answers. However, it only constructs an
undirected graph for reasoning [29], which ignores the directional information between nodes. The
directional information is often considered an important factor for inference [32]. Here, we propose a
directional connectivity to infer answers, which has been proved to be effective.

3 Connective Cognition Network

Fig. 2 shows the framework of CCN model. It mainly includes visual neuron connectivity, contextu-
alized connectivity, and directional connectivity for reasoning.

3.1 Visual Neuron Connectivity

The goal of visual neuron connectivity (Fig. 3(a)) is to obtain a global representation of an image,
which is helpful for a thorough understanding of visual content. It mainly includes visual element
connectivity and the computation of both conditional centers and GraphVLAD.

Visual Element Connectivity. We first use a pre-trained network, e.g., ResNet [15], to obtain the
feature map X ∈ Rw×h×m of an image, where w, h, and m separately indicate the width, height,
and number of channels. Here, we take each element of the feature map as a visual element. We take
the output Y ∈ Rn of LSTM [16] at the last time step as the representation of query (question or
question with a correct answer).
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Figure 3: (a) shows the process of visual neuron connectivity. ‘AT’ indicates affine transformation. (b)
shows the initial state of NetVLAD. (c) shows the conditional centers after an affine transformation.
Here, we use the fusion of image and question to compute the parameter γ and β. (d) and (e) show
the result of NetVLAD and GraphVLAD, respectively.

In general, there exists certain relation between objects of an image [10]. As is shown in the left part
of Fig. 1, relations (solid and dotted lines) exist not only between elements (yellow circles) in the
same object region, but also between various objects (Person1, Person3, Person4, and background).
Obviously, capturing these relations is helpful for a thorough understanding of the entire scene. In this
paper, we employ GCN to capture these relations. Specifically, we seek to construct an undirected
graph Gg = {V, ξ,A}, where ξ is the set of graph edges to learn and A ∈ RN×N (N = wh) is the
corresponding adjacency matrix. Each node ν ∈ V corresponds to one element of the feature map.
And the size of V is set to N . We first reshape X to X̃ ∈ RN×m. Then, we define an adjacency
matrix for an undirected graph as A = softmaxr(X̃X̃

T )+Id, where Id indicates the identity matrix
and softmaxr indicates we make softmax operation across the row direction.

M = AX̃, M̃ = tanh(wcf ∗M + bcf )� σ(wcg ∗M + bcg), (1)

where wcf ∈ R1×m×n, wcg ∈ R1×m×n, bcf ∈ Rn, and bcg ∈ Rn indicate the trainable parameters. ‘*’
indicates the convolutional operation. ‘�’ indicates element-wise product. Each row of the matrix M
represents a feature vector of a node, which is a weighted sum of the neighboring node features of
the current node. M̃ ∈ RN×n indicates the output of GCN.

The Computation of Conditional Centers. Since M̃ only captures relations between visual ele-
ments and does not have the capability to fully understand the image, we consider using NetVLAD
[19, 4] to further enhance the representation of an image. By learning multiple centers, i.e., visual
words, NetVLAD could use these centers to describe a scene [4]. However, these centers are learned
based on the overall dataset and reflect the attributes of the dataset. In other words, these centers are
independent of the current input data, which ignore the characteristic of the input data and reduce
the accuracy of the representation. Here, we consider making an affine transformation for the initial
centers and using these transformed centers to represent an image.

Concretely, we first define the initial centers C = {ci ∈ Rn, i = 1, ...,K}. Next, based on the current
input query-image pairs, we make the affine transformation [34] for the initial centers.

γ = f(〈M̃, Ỹ 〉), β = h(〈M̃, Ỹ 〉), zi = γci + β, (2)

where 〈a, b〉 represents the concatenation of a and b. By stacking Y , we obtain Ỹ ∈ RN×n. We
separately use a two-layer convolutional network to define f and h. zi ∈ Rn indicates the i-th
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generated conditional center. Here, we take the concatenated result of the representations of both
input images and their corresponding queries as the input of f and h to compute parameter γ and
β. Since parameter γ and β are learned based on the input query-image pairs, these two parameters
reflect the character of the current input data. Equipped with the affine transformation, the initial
centers are made to move towards the input features, which improves the accuracy of the residual
operation (Fig. 3(d)) of NetVLAD. As is shown in Fig. 3(b) and (c), after the affine transformation,
the centers move towards the features (color circles). Finally, we use Z = {z1, · · · , zK} to indicate
the new conditional centers.

The Computation of GraphVLAD. Next, we use Z and M̃ to perform NetVLAD operation,

Dj =

N∑
i=1

ew
T
j M̃i+bj∑

j′ e
wT

j
′ M̃i+bj′

(M̃i − zj), (3)

where {wj} and {bj} are sets of trainable parameters for each center zj and j = 1, ...,K. Finally,
we use D ∈ RK×n to indicate the output of NetVLAD.

Besides, as is shown in Fig. 3(d), NetVLAD only captures relations between elements and centers.
As NetVLAD is computed based on visual elements where relations are existed, we consider there
should exist certain relations between outputs. Here, we employ GCN to capture these relations.
Concretely, we first concatenate the NetVLAD output and conditional centers, i.e., Z̃ = 〈z1, · · · , zK〉,
Z̃ ∈ RK×n, and H = 〈D, Z̃〉. Then, we define an adjacency matrix for an undirected graph as
B = softmaxr(HH

T ) + Id. The following processes are the same as Eq. (1). Finally, we use
U ∈ RK×n to indicate the output of GraphVLAD. By this operation, we obtain the global information
of an image, which is as complementation of local object featuresO ∈ RL×n (L indicates the number
of objects) extracted by a pre-trained network and GCN network. Finally, the set S = {U,O} is
taken as the global representation of an image.

3.2 Contextualized Connectivity

The goal of contextualized connectivity is to not only capture the relevance between linguistic features
and the global representation S, but also extract deep semantic existing in sentences according
to visual information. Concretely, LSTM is employed to obtain representation Q̃ ∈ RP×n and
Ã ∈ RJ×n of query and response, respectively, where P and J separately indicate the length of
query and response. Next, we introduce the processing of the query. An attention operation is first
used to obtain the relevance between the query and global representation.

Fqu = softmaxr(Q̃U
T ), Fqo = softmaxr(Q̃O

T ), QU = FquU, QO = FqoO. (4)

Then, we take the concatenation of QU , QO, and Q̃ as QF ∈ RP×3n. U and O are the output of
the GraphVLAD. Here, we only obtain sequential features, rather than the structural information
[41] which is helpful for a better understanding of the sentence semantic. Meanwhile, LSTM has
the limitation of long-term information dilution [38], which weakens the capacity of the sentence
representation. In this paper, we consider using GCN to extract structural information. Concretely, we
define an adjacency matrix for an undirected graph as Q = softmaxr(QFQ

T
F ) + Id. The following

processes are the same as Eq. (1). Finally, we use Qg ∈ RP×n to indicate the output of this network.
The processing of responses is the same as that of queries. And the representation of response
generated by a GCN network is defined as Ag ∈ RJ×n.

3.3 Directional Connectivity for Reasoning

Directional information is an important clue for cognitive reasoning. And using directional infor-
mation could improve the accuracy of reasoning [32]. Here, we propose a semantic direction based
GCN for reasoning. Concretely, we first use Ã to obtain the attention representation Qa ∈ RJ×n of
Qg. The processes are the same as Eq. (4). Then, Qa and Ag are concatenated as Eqa ∈ RJ×2n.
Next, based on Eqa, we first try to learn the direction information.
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Dqa = φ(Eqa), Gt = DqaD
T
qa, Dt = sign(Gt), Ve = softmaxr(abs(Gt)), (5)

where abs indicates the operation of absolute value. Here, φ is defined as a directional function,
which is a one-layer convolutional network without activation. Besides, to learn the direction, we do
not use ReLU activation at the last layer of the network φ. By using the sign function, we obtain the
direction Dt, where -1 and 1 separately indicate the negative and positive correlation. Next, based on
the output Dt of the sign function, we compute the adjacency matrix.

H = Dt � Ve + Id, Mt = HEqa, Rt = tanh(wrf ∗Mt + brf )� σ(wrg ∗Mt + brg), (6)

where H indicates the adjacency matrix. wrf ∈ R1×2n×n, wrg ∈ R1×2n×n, brf ∈ Rn, and brg ∈ Rn

indicate the trainable parameters. Finally, we take Rt ∈ RJ×n as the GCN output. By this operation,
we could make our model not only learn the direction information between nodes, but also leverage
the information in the computation of GCN, which results in accurate inference. In the experiment,
compared with undirected GCN, our method could improve performance significantly.

3.4 Prediction Layer and Loss Function

After obtaining the output of the reasoning module, we concatenate Rt and Ã across the channel
dimension, i.e., Fc = 〈Rt, Ã〉 and Fc ∈ RJ×2n. Next, we compute a global vector representation
F̃ ∈ R2n via a max-pooling operation across the node dimension of Fc. This operation is helpful for
getting a permutation invariant output and focusing on the impact of the graph structure [30]. Finally,
we compute classification logits through a two-layer MLP with ReLU activation.

For VCR task, given a query-image pair, this task gives four response choices. In this paper, we train
our model using a multi-class cross-entropy loss between the set of responses and the labels, i.e.,
l(y, ŷ) = −

∑4
i=1 yilog(ŷi), where y denotes the ground truth and ŷ is the predicted result.

4 Experiments

In this section, we evaluate our method on the VCR dataset. And this dataset contains 290k pairs of
questions, answers, and rationales, over 110k unique movie scenes. Moreover, this task considers
three modes, i.e., Q→ A (given a question, select the correct answer), QA→ R (given a question
and the correct answer, select the correct rationale), and Q→ AR (given a question, select the correct
answer, then the correct rationale). ForQ→ ARmode, if it gets either the wrong answer or the wrong
rationale, no points will be received. The code is available at https://github.com/AmingWu/CCN.

Implementation details. We use ResNet50 [15] to extract image and object features. BERT [11]
is used as the word embedding. The feature map is X ∈ R12×24×512. The size of the hidden state
of LSTM is set to 512. For Eq. (1), we use a one-layer GCN. And 32 centers are used to compute
GraphVLAD. For Eq. (2), we separately use a two-layer network to define f and h. Their parameters
are all set to 1× 1024× 512 and 1× 512× 512. Next, we use a one-layer GCN to capture relations
between centers. And the parameter settings of the GCN are the same as those of Eq. (1). For
contextualized connectivity, we separately use a one-layer GCN to process query and response. Their
parameter settings are the same as those of Eq. (1). For Eq. (5), a one-layer GCN is used for
reasoning. Besides, the parameters of the network φ are set to 1× 1024× 512. During training, we
use Adam optimizer with a learning rate of 2× 10−3.

4.1 The Performance of Our Method

We evaluate our method on the three modes of VCR task. The results are shown in Table 1. We
can see that some of state-of-the-art VQA methods, e.g., MUTAN [6] and BottomUpTopDown [1],
do not perform well on this task. This shows that these VQA methods lack the inference ability,
which results in unsatisfied performance on the task requiring high-level commonsense reasoning.
Meanwhile, compared with the baseline method, on the three modes of VCR task, our method is
3.4%, 3.2%, and 4.4% higher than R2C, respectively. This shows that our method is effective.
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Figure 4: Qualitative examples from CCN. Correct choices are highlighted in blue. Incorrect
inferences are in red. The number after each option indicates the score given by our model. The first
row is a successful case. The second and last row correspond to two fail cases.

In Fig. 4, we show some qualitative examples. As is shown in these examples, compared with
classical VQA dataset [3, 14], both questions and answers of VCR dataset are much more complex.
Directly leveraging the recognition of visual content is difficult to choose the right answers and
rationales. Besides, the first row of Fig. 4 is a successful case. Our model deduces the correct answer
and its corresponding correct rationale with a high score. The second row shows a fail case, where the
model chooses the right answer and the wrong rationale. However, the rationale chosen by our model
is an explanation for the answer based on the understanding of the entire scene. Though from this
view, the rationale is reasonable, compared with the ground truth, our rationale is slightly indirect and
unclear. This shows when the visual reasoning involves more commonsense, the task of interpreting
the answer is more difficult. Besides, though the model fails, the wrong rationale indeed matches
the visual content, which shows the GraphVLAD module is helpful for obtaining an effective visual
representation. The third row is also a fail case, where our model chooses the wrong answer and
rationale. From these two fail cases, we can see that when the question, answer, and rationale involve
much commonsense, the model is easy to make an error selection and indeed requires a strong ability
of inference to choose the right answer and rationale. More examples can be found in Appendix.

Table 1: The performance of our CCN model on the VCR dataset.
Q → A QA → R Q → AR

Model Val Test Val Test Val Test
Revisited VQA [18] 39.4 40.5 34.0 33.7 13.5 13.8

BottomUpTopDown [1] 42.8 44.1 25.1 25.1 10.7 11.0
MLB [20] 45.5 46.2 36.1 36.8 17.0 17.2

MUTAN [6] 44.4 45.5 32.0 32.2 14.6 14.6
R2C (baseline) [42] 63.8 65.1 67.2 67.3 43.1 44.0

CCN 67.4 68.5 70.6 70.5 47.7 48.4

4.2 Ablation Analysis

In this section, based on the validation set, we make ablation analysis for our proposed conditional
GraphVLAD, contextualized connectivity for extracting of the sentence semantic, and directional
connectivity for reasoning, respectively.
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(a)

(b)

Figure 5: t-SNE plot of conditional centers. Here, the red pentagrams, blue circles, and green
rhombuses indicate the initial centers and two different conditional centers, respectively. (a) and (b)
are used to compute blue and green centers, respectively.

GraphVLAD. The number of centers is an important hyper-parameter for GraphVLAD. If few
centers are used, it will weaken the representation ability of GraphVLAD. Conversely, if many
centers are used, it will increase the number of parameters and computational costs. In Q → A,
QA→ R, and Q→ AR modes, the performance of 16 centers and 48 centers separately is 66.4%,
69.2%, 46.4% and 67.1%, 69.8%, 46.9%. For our method, the performance of 32 centers is the best.

In Table 2, we analyze the effect of conditional centers and GCN for GraphVLAD. Here, ‘No-C +
No-G’ indicates we use neither conditional centers nor GCN in the computation of GraphVLAD.
And other components of our model are kept unchanged. We can see that employing conditional
centers and GCN could improve performance significantly. Particularly, compared with NetVLAD
corresponding to the case of ‘No-C + No-G’, our Conditional GraphVLAD outperforms NetVLAD
significantly. This shows our method is effective. Besides, in Fig. 5, we show two t-SNE [25]
examples of conditional centers. And the queries of Fig. 5(a) and (b) are “Who does the dog belong
to?" and “What will happen after the person pushes the lifeboat over the edge of the ship?". We can
see that the positions of centers vary depending on the visual content and its corresponding queries.
When an image contains rich content and its corresponding query is complex, e.g., Fig. 5(b), in
order to capture rich visual information to answer the query, these centers will learn to spread further
apart from each other. Meanwhile, when the image content and its corresponding query contain
relatively less information, e.g., Fig. 5(a), in order to focus on visual information which is related to
the query, these centers will adaptively adjust to being more concentrated. In this way, we can obtain
an effective visual representation, which is helpful for the following contextualization and reasoning.

Contextualized Connectivity. In this paper, we separately employ a GCN to capture the semantic of
queries and responses. To prove this operation is effective, we compare it with a common operation,
i.e., using a GCN to process the concatenation of vision, query, and response. In Q→ A, QA→ R,
and Q→ AR mode, the performance of the common operation is 66.5%, 68.1%, and 45.7%, which
is obviously weaker than our method.

Table 2: Ablation analysis of GraphVLAD.
Method Q → A QA → R Q → AR

No-C + No-G 65.8 68.3 45.6
No-C 66.5 69.6 46.6
No-G 66.9 69.4 46.5
C + G 67.4 70.6 47.7

Table 3: Ablation of Directional Reasoning.
Method Q → A QA → R Q → AR
No-R 65.9 67.9 45.3

LSTM-R 64.8 67.1 43.9
GCN 66.5 69.4 46.4

D-GCN 67.4 70.6 47.7

Directional Connectivity for Reasoning. In this paper, we propose a directional reasoning method.
We compare our method with other reasoning methods. The results are shown in Table 3. Here,
‘No-R’ indicates we do not use reasoning. ‘LSTM-R’, ‘GCN’, and ‘D-GCN’ indicate reasoning based
on LSTM, undirected GCN, and directed GCN, respectively. And other components of our model are
kept the same. We can see that for the method without reasoning, the performance is obviously weak.
This shows reasoning is a necessary step for our method. Besides, the performance of the reasoning
based on LSTM is also weak. This shows that LSTM could not capture complex relations effectively.
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Finally, compared with undirected GCN reasoning, our directional GCN outperforms it significantly.
This shows using directional information in reasoning could improve the accuracy of inference.

5 Conclution

We propose a cognition connectivity network for directional visual commonsense reasoning. This
model mainly includes visual neuron connectivity, contextualized connectivity, and directional
connectivity for reasoning. Particularly, for visual neuron connectivity, we propose a conditional
GraphVLAD module to represent an image. Meanwhile, we propose a directional GCN for reasoning.
The experimental results demonstrate the effectiveness of our method. Particularly, in the Q→ AR
mode, our method is 4.4% higher than R2C.
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