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Abstract

Bad training data would challenge the learning model from understanding the
underlying data-generating scheme, which then increases the difficulty in achieving
satisfactory performance on unseen test data. We suppose the real data distribution
lies in a distribution set supported by the empirical distribution of bad data. A
worst-case formulation can be developed over this distribution set, and then be
interpreted as a generation task in an adversarial manner. The connections and
differences between GANs and our framework have been thoroughly discussed. We
further theoretically show the influence of this generation task on learning from bad
data and reveal its connection with a data-dependent regularization. Given different
distance measures (e.g., Wasserstein distance or JS divergence) of distributions, we
can derive different objective functions for the problem. Experimental results on
different kinds of bad training data demonstrate the necessity and effectiveness of
the proposed method.

1 Introduction

Machine learning techniques are applied to fit the data distribution induced by the training set and
then make predictions for new examples in various applications, such as image classification [18, 37,
39, 20], image generation [22, 40, 35, 14], and semantic segmentation [12, 36, 31, 17]. An important
assumption underlying the success of these methods is that the training set and the test set are subject
to the same distribution. It is therefore expected that the models well trained on the training set can
also achieve similar performance on the test data that have never been seen before in the training set.

The true underlying distribution of the data is unknown and many methods can be applied to
approximate it. For example, cross-entropy loss is often taken as the objective function of deep
neural networks in classification tasks, which is equivalent to a maximum likelihood estimation of
the unknown data distribution based on the training data [13]. However, many factors, such as the
size of training set [13], the way data is collected [11], and the balance between different categories
in the training [30], will affect the results of maximum likelihood estimation. If the data distribution
approximated by the well trained model on the training sample is far from true data distribution,
performance on the test set would then hardly be comparable with that on the training set.

In real-world applications, there usually exist "bad" data that are instantiated from the imbalanced,
noisy or reduced training set, resulting in settings where the observed training samples do not well
∗Corresponding authors.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



represent the true underlying distribution of the data. In this paper, we study the problem of learning
from bad data and propose an adversarial learning strategy based on our theoretical analysis. Instead
of optimizing risk under the uniform empirical distribution over the observed bad data as classical
methods, we turn to an expected loss against a family of distributions that could contain the true
data-generating scheme with high confidence. Specifically, a deep neural network is introduced to
approximate the latent data distribution characterized by the observed bad data and the properties
of true data distribution. Given Wasserstein distance as the measurement between distributions, we
establish a three-player game to solve a worst-case problem. We provide theoretical analysis to show
that the optimal generator captures the observed empirical distribution and fits a worse distribution for
the classifier. The proposed method roughly corresponds to a data-dependent gradient regularization
over the empirical distribution, and we provide a performance guarantee for optimization on the
learned distribution. Experiments on multiple natural image datasets confirm that the proposed
method provides a robust approach to complement bad training data in different scenarios.

2 Proposed Method

Consider a training set X = {(x1, y1), · · · , (xm, ym)} containing m examples, which are indepen-
dently sampled from an unknown data distribution. Ideally, the empirical distribution P̂N is a good
estimation of the true distribution PN , which means that parameters learned on the empirical distri-
bution will eventually converge to values learned on the true distribution. However, there is a certain
distance between the empirical distribution P̂N and the real distribution PN in practice. This results
in unsatisfactory performance of the test samples obtained by the model learned from the empirical
distribution. The discrepancy between empirical distribution and real distribution could be caused by
many reasons, e.g., samples are polluted by noise or samples of some categories are hard to obtain
which reduces the number of samples in particular categories. To restore the performance of models
on bad data, we need to reflect the conventional empirical risk minimization over the training data.

Suppose that the real data distribution is in an ambiguity set supported by the empirical distribution
P̂N . We thus propose to optimize an upper bound of the loss function over all probability distributions
in this ambiguity set,

inf
θ∈Θ

sup
Q∈Bε(P̂N )

EQ[`θ(x, y)], (1)

where the distribution set Bε(·) contains all the distributions Q whose distance from the empirical
distribution P̂N does not exceed ε. The distribution set Bε(·) is defined as follows

Bε(P̂N ) , {Q ∈M(Z) : d(Q, P̂N ) ≤ ε}, (2)
where d(·, ·) stands for some pre-defined distance metric, M(Z) denotes the set of probability
measures supported on Z , and Z is the set of possible values of (x, y). According to this definition,
we will investigate all possible distributions within a ball centred at P̂N with radius ε. We aim to
discover a distribution Q from Bε(P̂N ) that corresponds to the worst case, and thus the optimization
over this worst case distribution would imply an optimization over the entire distribution set Bε(P̂N ),
which also assum to includes real data distribution PN .

Eq. (1) is intractable, as the worst-case distribution Q is unknown. As a result, in the following we
focus on the inner part of Eq. (1) to find the worst-case distribution Q. Firstly, we re-express the inner
part of our objective function defined in Eq. (1) as follows,

sup
Q∈Bε(P̂N )

EQ[`θ(x, y)] =


sup
Π,Q

∫
Z
`θ(x, y)Q (d(x, y))

s.t. d(Q, P̂N ) ≤ ε.
, (3)

Π refers to a joint distribution of (x, y) and (x′, y′) with marginals Q and P̂N respectively. With the
help of standard duality augment, we have

sup
Q∈Bε(P̂N )

EQ[`θ(x, y)] = sup
Q∈M(Z)

inf
λ≥0

∫
Z
`θ(x)Q (d(x, y)) + λ ·

(
ε− d(Q, P̂N )

)
≤ inf
λ≥0

sup
Qi∈M(Z)

{
λε+

∫
Z
`θ(x, y)Q (d(x, y))− λ · d(Q, P̂N )

}
= inf
λ≥0

{
λε+ sup

Q

∫
Z
`θ(x, y)Q (d(x, y))− λ · d(Q, P̂N )

}
,

(4)
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where λ is Lagrangian multiplier. The first term in Eq. (4) is independent from the distribution Q
and the loss function, so we get the constraint that the distribution Q should satisfy as following,

sup
Q

[EQ[`θ(x, y)]− λ · d(Q,P)]. (5)

It can be seen that the distribution Q should make the loss function as large as possible while trying
to reduce the distance from the empirical distribution P̂N . It is instructive to note that the distance
matric d(·, ·) plays an important role to determine the solution of distribution Q.

2.1 Learning via Generation

We introduce the Wasserstein distance dW (·, ·) to describe the distance between distributions P̂N and
Q. Wasserstein distance measures the distance between two distributions as the minimum variation
required to transition from one distribution to another. We define the Wasserstein distance as follows,

dW (Q1,Q2) , min
Π∈M(Π)

{∫
Z×Z

s((x1, y1), (x2, y2))Π (d(x1, y1), d(x2, y2))
}
, (6)

where Π is defined as the joint distribution of (x1, y1) and (x2, y2) with marginals Q1 and Q2
respectively,M(Π) represents the space of all probability of Π, and s is a metric measuring the cost
of moving (x1, y1) to (x2, y2). The calculation of the Wasserstein distance is not so straightforward
because of the need to find an optimal joint distribution Π that minimizes the integral value. According
to [29], the Wasserstein distance can be further calculated as follows:

dW (Q1,Q2) = sup
f∈F

{∫
Z
f(x, y)Q1(d(x, y))−

∫
Z
f(x, y)Q2(d(x, y))

}
, (7)

where F donates the space of all Lipschitz function with |f(t) − f(t′)| ≤ ‖t − t′‖ for all t and
t′ ∈ T . Eq. (7) replaces the optimal joint distribution Π involved in the Eq. (6) by finding a specific
function f in a function set F . We can get Eq. (7) as the distance matric into the Eq. (5).

sup
Q

∫
X
`θ(x, y)Q (d(x, y))− λ · sup

f∈F

{∫
X
f(x, y)P̂N (d(x, y))−

∫
X
f(x, y)Q(d(x, y))

}
= sup

Qi

1

N

N∑
i=1

∫
X
`θ(x, y)Qi (d(x, y))− λ · sup

f∈F

{ 1

N

N∑
i=1

[
f(xi, yi)−

∫
X
f(x, y)Qi(d(x, y))

]}
=

1

N

N∑
i=1

sup
(x,y)∼Q

{
`θ(x, y)− λ · [f̂(xi, yi)− f̂(x, y)]

}
,

(8)

where f̂ = argmaxf∈F
1
N

∑N
i=1 f(xi, yi)− 1

N

∑N
i=1

∫
X f(x, y)Qi(d(x, y)) is the optimized func-

tion to describe the Wasserstein distance between the desirable distribution Q and the empirical
distribution P̂N , Qi is the conditional distribution of (x, y) given (xi, yi), The joint distribution
Π of (xi, yi) and (x, y) with marginals P̂N and Q respectively (see Eq. (3)), can be written as
Π = 1

N

∑N
i=1 δ(xi,yi) ⊗Qi. According to the law of total probability, we can factorize Q as the first

line of Eq. (8). Eq. (8) bridges the training sample and the distribution Q, and Q is thus defined by:

Q = argmax
Q

1

N

N∑
i=1

{
`θ(x, y)− λ · [f̂(xi, yi)− f̂(x, y)]

}
= argmax

Q
EQ[`θ(x, y) + λ · f̂(x, y)]− λ · EP̂N [f̂(x, y)]

= argmax
Q

EQ[`θ(x, y) + λ · f̂(x, y)].

(9)

A neural network G(z) can be employed to approximate the distribution Q, and thus Eq. (9) can be
rewritten as the maximization of EZ [`θ(G(z)) + λ · f̂(G(z))]. According to Eq. (8), we need to
solve an optimal f̂ to calculate the Wasserstein distance. We also adopt a neural network D for help,
and propose to maximize 1

N

∑N
i=1D(xi, yi)− 1

N

∑N
i=1

∫
X D(x, y))Qi(d(x, y)). Finally, we can

learn the classifier over the bad data by considering the worst distribution case through the following
objective function

min
G

max
D,C

U(C,G,D) = λ
(
EP̂N [D(x, y)]− EQ[D(x, y)]

)
− EQ[`(C(x), y)]. (10)
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Recall that λ is a Lagrangian multiplier in Eq. (4). According to the analysis in the Lagrange
multiplier method, the larger λ corresponds to a smaller epsilon, which implies that the Q distribution
is closer to the P̂N distribution. Conversely, a smaller λ will allow a larger distribution distance ε,
which allows the Q distribution to be explored over a sufficiently large range. Following we provide
intuitive explanation why the worst-case optimization works. Minimizing the loss of the worst-case
distribution Q implies an optimization over all distributions within the ball of an appropriate radius ε
(see Eq. (1)), which could also include the unknown real distribution PN . Though the worst-case Q
may not be exactly the real PN , the classifier (i.e. θ) must have fitted PN better than (or equivalently
with) Q, as the classification error over Q is the worst. In iterations, the worst-case Q will be
dynamically determined by the classifier, and the classifier will fit the real PN increasingly better in
an implicit way.

Difference from GANs. Though we also introduce a generator and investigate an adversarial game,
our model has several differences from existing GAN models. Compared with WGAN [3], besides the
critical networkD, our generative networkG further plays against the classification networkC. There
are some three-way GAN models, such as Triple GAN [27], Triangle GAN [10] (actually 4 players),
and ALI [9]. These models have two opposite generation models, C : x → y and G : y → x. At
first, we have a different motivation to establish the adversarial games, compared with these existing
methods. Triple GAN and Triangle GAN are dedicated to a semi-supervised learning, while ALI
are dedicated to improving the training of D network by learning a set of opposite mappings from y
to x. In contrast, we aim to learn a classifier that can deal with bad data, and our adversarial model
is to provide an appropriate measure between the worst case distribution and the empirical data
distribution. In addition, existing methods for implementing the two sets of opposite mappings shares
the same goal, that is to deceive D network, and there is no explicit relationship between the two
generators (i.e. G and C). However, our generator deceives not only the discriminator, but also the
classifier. That is to say, our two opposite mappings are directly competitive with each other.

3 Theoretical Analysis

In the proposed method, the classifier is optimized on a learned distribution Q. Q represents the
worst-case distribution within a certain range, which is a key point of the entire algorithm. In this
section, we provide a formal technical analysis of the convergence of the three networks to better
understand the relationship between the three networks. Next, by analyzing the difference between
the experimental distribution P̂N and the learned distribution Q, we prove that our algorithm can be
regarded as a data-dependent gradient regularization, which provides a reason for improvement of the
generalization ability provided by the proposed algorithm. See the supplementary material for proofs.

Influence of optimalD andG. In the framework defined by Eq. (10), the critical networkD attempts
to fit the desirable function f̂ = argmaxf∈F

1
N

∑N
i=1 f(xi, yi)− 1

N

∑N
i=1

∫
X f(x, y)Qi(d(x, y))

which represents the Wasserstein distance between two distribution. As a result, the optimal critical
network is expected to describe the Wasserstein distance perfectly, which is EP̂N [D∗(x, y)] −
EQ[D∗(x, y)] = dW (P̂N ,Q).

Next we analyze the target distribution of the generator G. As described in Eq. (10), the generator
aims to maximize loss λEQ[D(x, y)]+EQ[`(C(x), y)]. In Theorem 1 we summarize the equilibrium
distribution obtained by G which is also determined by λ.

Theorem 1. With the optimal critical network D and the classifier C fixed, the optimization of
generator G is equivalent to minimize λ · dW (P̂N ,Q)−DKL(Q||Pc).

Theorem 1 suggests that the distribution Q will be optimized to be as far as possible away from the
distribution Pc while towards the distribution P̂N . Distribution Q will fit a worse distribution for C
iterative and enforce C to be optimized over the whole distribution set Bε.
Data-dependent regularization. Traditional methods used to optimize the classification network C
over the empirical distribution P̂N . From the perspective of network complexity, some regularization
are often introduced to improve the generalization capabilities of the network, such as weight decay
and dropout. We theoretically show that by setting the distance metric as Wasserstein distance, we
will derive a data-dependent gradient regularization.
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Theorem 2. Consider x as the input samples of classifier C, and the distribution Q ∈ Bε(P̂N ) lays
in a Wasserstein ball centered at P̂N with radius ε. Then for any ε ≥ 0 and α ≥ 1 + β, we have

ε‖∇z`(z)‖α∗
P̂N
− εβ+1‖h(z)‖

α
α−β−1

P̂N
≤ EQ(`(z))− EP̂N (`(z)) ≤ ε‖∇z`(z)‖α∗

P̂N
+ εβ+1‖h(z)‖α∗

P̂N
, (11)

where ‖f(z)‖αP̂N , ( 1
N

∑N
i=1,z∼P̂N (‖f(zi)‖α))1/α, α∗ = α

α−1 , and h(z) is a function and β ∈
(0, 1] a constant which satisfy ‖∇z`(z1)−∇z`(z2)‖ ≤ h(z2) · ‖z1− z2‖β for any z = (x, y) ∈ Z .

It shows that optimization over the worst-case distribution Q can be roughly interpreted as a data-
driven gradient regularization. By minimizing the loss function `(z) over Q, the gradient of the loss
function with respect to the empirical samples∇x`(C(xi, θ), y) will also be optimized. Furthermore,
gradient penalties applied over the empirical sample also lead the classifier C to react more gently to
changes in the sample, which provides another perspective on the effectiveness of our algorithm.

Performance guarantees. In this part, we analyze the generalization capabilities of the classifiers
obtained by the proposed method. The generalization ability of the classifier is often described as
the bias in the performance of the network between training samples x ∈ Q and the new sample x̃,
and the smaller the bias corresponds to better generalization. In the following theorem, we propose a
bound for the predictive performance of the classifier on the new sample.
Theorem 3. For any 0 < δ < 1, with probability at least 1− δ with respect to the sampling,

E(`(C(x,θ), y)) ≤ EQ(`(C(x,θ), y)) +
12
√
R

n
(log

n

3
√
R

+ 1) +

√
8 log(2/δ)

N
, (12)

and for any ζ > 12
√
R

n (log n
3
√
R

+ 1) +
√

8 log(2/δ)
N , we have

P (`(C(x,θ), y) ≥ EQ(`(C(x,θ), y)) + ζ) ≤
EQ(`(C(x,θ), y)) + 12

√
R

n
(log n

3
√
R

+ 1) +
√

8 log(2/δ)
N

EQ(`(C(x,θ), y)) + ζ
.

(13)

where R is only related to the architecture of the neural network.

We leave the detailed definition of R in the appendix. Theorem 3 provides a bound over the error of
the classifier on new samples, which contains two probability measures. Wherein, Eq. (12) indicates
that the error of the classifier on new samples does not exceed 12

√
R

n (log n
3
√
R

+ 1) at a probability of
at least 1− δ, where N is the number of training samples. Eq. (13) provides an upper bound for the
probability that the classifier’s error on the new sample exceeds 12

√
R

n (log n
3
√
R

+ 1). From Eq. (12),
we find that the bound of the classifier error is related to the number of training samples N , and the
larger the number of samples, the smaller the error. In our training framework, the generator G is
responsible for producing training samples, and G is also updated along with the classifier C. Since
that, the training samples far exceed that of the traditional algorithms, which will reduce the error of
the classifier on the new data, and the generalization ability of the classifier will be improved.

4 Extension to Other Distance Measure

The proposed model can be extended to a standard GAN based game by investigating Jensen-Shannon
(JS) divergence between distributions. The critical network D is designed to fit the desirable function
f̂(·) and calculate Wasserstein distance between distribution Q and the empirical distribution P̂N .
In standard GAN, the discriminator acts as a classifier and attempts to distinguish fake samples
generated by G from real samples. The objective function of the discriminator can be written as
EP̂N [log(D(x, y))] + EQ[1 − log(D(x, y))]. By simply replacing the objective function of the
network D, we can formulate the three-players game based on a standard GAN as follows,

min
C,D

max
G

U(C,G,D) = λ(EP̂N [log(D(x, y))] + EQ[1− log(D(x, y))]) + EQ[`(C(x,θ), y)] (14)

As described in Eq. (14), the generator G whose responsibility is to fit the objective distribution Q and
tries to fool both the discriminator D and the classifier C. The confrontation with the discriminator
D leads the generator G to produce samples that are as close as possible to the true distribution. At
the same time, these samples also make the performance of the classifier C worse.
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Now we consider the standard GAN based framework and analyze the optimal discriminator and
generator. The discriminator D is optimized by EP̂N [log(D(x, y))] + EQ[1− log(D(x, y))], which
can be considered as distinguishing generated samples (x, y) ∼ Q from the true sample (x, y) ∼ P̂N .
Following the analysis proposed in GAN [14], the optimal distribution D will balance between the
true distribution P̂N and the learned distribution Q.
Theorem 4. For the generator G and classifier C fixed, the optimal discriminator D is

D∗G,C(x, y) =
pdata(x, y)

pdata(x, y) + pg(x, y)
, (15)

where pg(x) is the distribution generated by G.

With the optimal discriminator D fixed, we can reformulate the objective function by replacing
D(x, y) in Eq. (14) according to Theorem 4. By doing so, we show that the optimal generator G will
also balance between the empirical distribution P̂N and the distribution Q which is represented by
classifier C, as summarized in the following theorem.
Theorem 5. With the optimal discriminatorD and the classifierC fixed, the optimization of generator
G is equivalent to − log 4 + 2JSD(P̂N ||Q)− 1/λ ·DKL(Q||Pc).

Justification of the standard GAN based framework. The distribution Q obtained by Eq. (10) is a
straightforward result of Eq. (3) and satisfies two conditions. The first one is the distance between
distributions P̂N and Q is less than a constant ε, and the second one is to make the classification loss as
bad as possible. As Eq. (14) is obtained by simply replacing the critical loss with a discriminator loss
EP̂N [log(D(x, y))] + EQ[1− log(D(x, y))], whether or not the distribution Q obtained in Eq. (14)
satisfies such conditions of Eq. (3) cannot be easily justified. The distribution Q obtained by Eq. (14)
is optimized according to the minimization of − log 4 + 2JSD(P̂N ||Q) − λ · DKL(Q||Pc). By
comparing Theorem 5 and Theorem 1, with an ignorance of the constant term − log 4, we can find
that the major difference between the equilibrium distributions of Eq. (10) and Eq. (14) is the choice
of distance metric , i.e., the Wasserstein distance dW (P̂N ||Q) for Eq. (10) and the JS divergence
JSD(P̂N ||Q) for Eq. (14). We now build a relationship between the initial objective and Eq. (14)
and draw a conclusion that the loss function defined by Eq. (14) can be viewed as the JS divergence
version of Eq. (3). The JS divergence based objective function shares the same training procedure with
the Wasserstein distance one. Our proposed algorithm is summarized in Algorithm 1 in Appendix.

5 Experiments

In this section, we evaluate our methods on three kinds of bad data environments: (i) long-tailed
training set classification on the MNIST [25], FMNIST [42], and CIFAR-10 [23] datasets; (ii)
classification of distorted test set on the CIFAR-10 and SVHN [33] datasets; and (iii) reduced
training set generation task on the FMNIST and CIFAR-10 datasets. We resize images in the MNIST
and FMNIST datasets to 32× 32 for convenience. Moreover, we use a conditional version of WGAN-
GP [15] on all datasets except the CIFAR-10 datasets on which we use the 32 resolution version
of BigGAN [4] instead. The classifier implemented on the MNIST and FMNIST has comparable
architecture to Triple GAN [27], and we use VGG-16 [38] and ResNet-101 [18] on the CIFAR-10 and
SVHN datasets. We implement our experiments based on PyTorch. For generator and discriminator
we use a learning rate of 0.0002, while 0.02 is for the classifier, the learning rate decay is deployed,
and the optimizer is Adam. Experiments are conducted on 4 NVIDIA 1080Ti GPUs.

5.1 Classification results

For the long tail experiment, we transform the original balanced training set according to an expo-
nential function n = ni × µi, where constant µ ∈ (0, 1), and ni is the original number of sample
of category i. Under this setting, we follow definition in [5] and define the imbalance factor as
the number of training samples in the largest class divided by the smallest one. We compare the
proposed method with two the state-of-the-art algorithms which are Class-Balanced [5] and DOS [1]
respectively. In experiments on noisy test sets, we introduce a certain intensity of Gaussian noise
or salt-and-pepper noise into 70% of the test samples to produce noisy test sets. Moreover, in
experiment of noisy test sets, GAN-based methods use ResNet-101 as classifier and MixQualNet [6]
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Table 1: Accuracy (%) on long-tailed datasets with various imbalance factors.
Method MNIST FMNIST CIFAR

Imbalanced 100 20 1 100 20 1 20 10 1

Classifier 89.77 94.62 99.35 79.89 87.33 93.46 81.51 85.57 93.04
DAGAN [2] 89.92 95.71 99.23 77.63 86.30 92.87 70.34 77.82 91.66

Triple GAN [27] 90.07 95.19 99.31 78.92 87.83 92.55 80.40 83.06 92.81
∆-GAN [10] 90.25 95.60 99.28 78.85 87.62 93.06 79.99 85.47 92.87

Ours 92.67 96.23 99.42 83.06 89.03 93.24 81.94 86.86 93.01

C-B Loss [5] 92.90 96.74 99.38 83.77 89.97 93.43 84.36 87.49 93.64
DOS [1] 90.82 97.20 99.07 82.74 89.34 93.18 81.72 86.55 92.83

Table 2: Accuracy (%) on the clean train sets and distorted test sets of CIFAR-10 and SVHN.

Method CIFAR-10 SVHN

G(0.2) G(0.3) S(0.02) Normal G(0.5) G(0.7) S(0.1) Normal

VGG16 [38] 82.98 63.09 63.87 91.86 94.84 94.09 93.70 97.63
ResNet [18] 84.41 64.15 64.53 93.04 95.25 94.52 94.23 98.17
DAGAN [2] 80.67 61.19 61.38 91.66 94.64 94.45 93.91 97.82

Triple GAN [27] 84.57 63.76 64.51 92.81 95.21 94.60 94.09 97.85
∆-GAN [10] 84.46 64.28 64.59 92.87 95.42 94.37 94.14 97.76
Ours-VGG 85.02 64.43 65.26 92.32 95.08 94.55 94.04 97.69

Ours-ResNet 85.87 65.43 66.80 93.01 95.58 95.02 94.67 98.33

MixQualNet [6] 86.56 65.70 66.71 89.62 95.48 95.27 94.21 96.80
DCTNet [34] 85.42 65.68 69.13 90.93 95.55 95.10 94.88 97.41

and DCTNet [34] get their results based on VGG16. We also investigated the performance of our
approach when using VGG and ResNet-101 as classifier respectively and reported results in Table 2.

Table 1 and Table 2 report results obtained on long-tailed and noisy datasets respectively. Note that
imbalance factor (IF) of 1 means that the class is balance. In Table 2, G and S represent Gaussian
noise and salt-and-pepper noise respectively, and the number represents standard deviation in G
and noise rate in P . It is obviously that the performance of the classifier drops significantly as the
imbalance factor increases. We implement DAGAN to achieve data augmentation and train classifier
with these data. However, the improvement is slight on the MNIST dataset, and the performance
even drops on more complicated datasets such as FMNIST and CIFAR-10. It indicates that samples
generated by GAN help less for classifier. Triple GAN and Triangle GAN (∆-GAN) show more
improvement than that of DAGAN but are not stable enough. This phenomenon can be interpreted
by their architectures, where the generator pleases the classifier rather than playing against it. The
proposed method outperforms the other GAN-based methods and achieves the best results on most
conditions. We conclude the reason in following two points. First, generators in existing methods
tend to fit the empirical distribution. Given a bad training set, their generated data could be worse.
Second, these generators often produce “easy” samples by cooperating with the classifier, and a
nearly duplicate copy of the given bad training data could be sufficient but will be useless to estimate
the real data distribution. In contrast, our generator plays against the classifier and the capability of
the classifier can be largely enhanced over a distribution ball. Moreover, most GAN-based methods
failed to provide performance improvement on the normal datasets (IF of 1 or ‘Normal’), but our
method even outperforms classifier on the MNIST and SVHN datasets. Those results may because
that though training data are clean, there still probably exists a subtle gap between distributions of
training and test data. Moreover, the generator could conduct ‘data augmentation’ for the classifier.
We also compared our method with state-of-the-art algorithms. Noting that these algorithms are
designed for a specific type of data defect, the proposed method also achieves comparable results
with these algorithms in each situation.

Table 3: Accuracy (%) on CIFAR-10.
Method IF = 10 G(0.2) Reduced

Combination 85.63 85.25 83.59
Mixup [44] 86.04 85.66 83.91

Ours 86.86 85.87 84.60

Comparison with data augmentation methods.
Considering the generator trained by the proposed
algorithm as a learned data augmenter, the proposed
method can be viewed as a data augmentation method.
In this part we evaluate two common data augmenta-
tion methods with the proposed method on the CIFAR-
10 dataset. The first method is a combination of reg-
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Figure 1: Generated images obtained by GAN and our method on imbalanced and reduced dataset.

ular data augmentation methods, which are randomly
clip, horizon flip, and rotation, and we show its results in the first line of Table 3. The second
data augmentation method is Mixup [44]. Table 3 shows that our method outperforms both two
comparison methods. Mixup also provides reasonable improvement but is not as outstanding as it on
regular datasets.

5.2 Analysis

Generation results We compare the quality of images generated by our generator with GAN and
Triple GAN on the MNIST and CIFAR-10 datasets with imbalance or reduced training set. The
imbalance factor used here is 10, and we obtain reduced training set by randomly selecting 30% of
samples from the training set. We compared the quality of images generated by our method with
standard GAN in Figure 1, and FID scores are reported in Table 4. We obtain the feature used for
calculating FID from the specific layer of the pre-trained inception model. FIDs are calculated with
10,000 samples randomly chosen from training dataset and 10,000 generated samples. On imbalanced
training sets, standard GAN is failed to generate high-quality images for classes with fewer images
especially in the CIFAR-10 dataset, while our method generates images with satisfied quality. In
the MNIST dataset, the proposed method achieves a higher FID score than Triple GAN, but our
classifier obtains a higher accuracy as showed in Table 1. It indicates that the generator in our method
does not generate images with the best quality but do generate more helpful images for the classifier.
On the reduced training set, our method outperforms other algorithms. As the true images used to
calculate FID scores are sampled from the whole training set instead of the reduced one, the FID
represents how close the generated distribution is to the true distribution, instead of the empirical one.
Minimizing the worst-case expected loss implies an optimization over all distributions in the ε-ball
where the real data distribution is also expected to be included.

Table 4: FIDs with different distributions.

Method MNIST CIFAR-10

IF=10 Reduced IF=10 Reduced

GAN 33.49 31.06 None 37.96
Triple 27.24 26.30 26.22 22.57
Ours 27.60 26.02 26.10 22.63

Table 5: Ablation study results.

Method CNN DAGAN Ours

BN+WD 83.19 83.08 84.60
No BN 75.14 71.92 78.01
No WD 77.01 75.38 78.71
Neither 71.85 71.63 75.42

Ablation study Weight decay (WD) [24] and Batch Normalization (BN) [21] are considered as
common methods to increase the robustness of the network. To illustrate the effectiveness of our
method, we implement experiments on four classifier architectures: (i) classifier with BN and WD,
(ii) classifier with BN (without WD), (iii) classifier with WD (without BN), and (iv) classifier only
(without BN nor WD). Results in Table 5 are obtained on reduced CIFAR-10 dataset which contains
20% samples of original training set, and the classifier is set as ResNet-101. Table 5 shows that the
proposed method not only outperforms classifier and DAGAN but enjoys a smaller accuracy rate
drop when the network structure changes. It proves that our method can provide more challenging
images for classifier and play the same role as these generalization algorithms.

Hyper-parameter analysis As shown in Eq. (2), a large ε leads to a set Bε of huge capacity, which
could be flooded with distributions that are far away from both the empirical distribution P̂N and
the real data distribution PN . It is therefore reasonable to set ε within an appropriate range, as what
we usually do with hyper-parameters in machine learning. For a better understanding of the role
of ε, λ proposed in Eq. (2) and Eq. (9) respectively, we use the long-tailed CIFAR-10 dataset with
imbalance factor of 10 to show the accuracy of the proposed method in Figure 2 (d). The search for
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hyper-parameter is ε = 1
λ ∈ {0.01, 0.1, 0.3, 0.5, 1.0, 2.0}. We have the following observations that

smaller value of ε will make the accuracy of the classifier closer to the general classifier, too large
value of ε will drop the accuracy of classifier dramatically, and the best ε is 0.3 on this dataset. These
results can be explained by the theoretical analysis section. According to Theorem 1 and 5, a large λ
will make the distribution Q close to the empirical distribution P̂N which makes the performance of
classifier to be similar to the general classifier, and a small λ will lead the distribution Q only to cheat
the classifier while ignoring the quality of the generated image.

67.5

77.5
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Figure 2: (a-c) Feature visualization for different samples. (d) Hyper-parameter analysis.

Visualization In Figure 2 we visualize the second last layer features of images sampled from
empirical distribution (x ∼ P̂N ), generated by GAN, and generated by the proposed method (x ∼ Q)
on the reduced MNIST dataset (30% of traning set). We obtain features by forwarding images to a
classifier pre-trained on the reduced training set, and features with a specific category in each figure
are represented in the same color. Figure 2 demonstrates that features from GAN shows less diversity
and can be easily distinguished (shown in (c)), features from Ptest tend to confuse the classifier
(shown in (b)), and features from our generator are more challenging for the classifier (shown in (a)).
This shows the effectiveness of the proposed method in learning the worst-case distribution.

6 Related Work
To obtain robustness, a straightforward way is to train deep networks with the expected perturba-
tions [41]. A mixture of the expert classifiers that is trained by various types of image perturbation is
proposed [6] and shows more robustness than previous single model methods [45]. To resolve the
heavy parameters brought by the ensemble of many networks, additional layers [43] was introduced to
the network. They act as undistorted layers and improve the robustness of the network by reconstruct-
ing input images. For long-tailed imbalanced training data, re-sampling and cost-sensitive methods
are two major strategies. Re-Sampling includes over-sampling which duplicates samples in rare
classes and under-sampling, which deletes samples from common classes. Over-sampling [16, 28] is
limited by the repeated samples, which leads the network to overfit, while under-sampling [8] suffers
from the information loss caused by samples deleting. Cost-sensitive methods consider samples with
different weight when calculating the loss function. There are methods assigning weights according
to the class frequency [19, 32] and assigning weights to the samples based on how difficult it is to
be resolved by the network [29, 7], which is somewhat similar to the proposed method. Reduced
training data is also a challenging task in classification. Some data augmentation algorithms are
proposed to relieve the shortage of training data, such as DAGAN [2] and Smart Augmentation [26].
DAGAN also introduces GAN [14] to generate samples and trains classifier. But we are different
from them in that they did not consider the classifier in the process of generating samples like what
we do. In addition, adversarial data augmentation usually aims to create adversarial copies of training
data by adding perturbations. In contrast, we generate new sample from a distribution. Moreover, the
amount of perturbation (pixels for image) is often constrained in classical methods, while we focus
on a distribution ball with a radius bound.

7 Conclusion

We propose a new adversarial classification algorithm that improves the performance of the classifier
when a gap exists between the unknown true distribution and known empirical distribution. By
dynamically interacting with classifiers and known data distributions, a worst case distribution is
learned to help the training progress of classifier, which is in contrast to existing robust algorithms for
one specific data defect. Both theoretical analysis and experimental results show that the proposed
method can effectively improve the generalization ability of classifiers on bad data sets.
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