
A Different Priors

In this section, we provide the probabilistic interpretation as a prior of several regularizers commonly
used in the literature.

• L2-regularizer: Perhaps the most commonly used regularizer in MHPs is the L2-regularizer
w2

ij/(2↵). L2-regularizer can be interpreted as a zero-mean Gaussian distribution over the weights,
i.e.,

p↵(wij) =
1p
2⇡↵

exp(�
w2

ij

2↵
),

where ↵ is the variance.

• L1-regularizer: This regularizer (also known as lasso regularizer) is considered as a convex
surrogate for the L0 (pseudo) norm. Hence, it promotes the sparsity of the parameters. It can be
interpreted as a Laplace distribution over the weights, i.e.,

p↵(wij) =
1

2↵
exp(� |wij |

↵
).

• Low-rank regularizer: To achieve a low-rank excitation matrix W , a nuclear norm penalty on
W is often used as a regularizer [31], thus enabling clustering structures in W . For an excitation
matrix W 2 RD⇥D, let w·,j = [w1,j . . . , wD,j], then the different {w·,j}j are independent for
different j and the prior over w·,j is

p↵(w·,j) = c · 1

↵D
exp(�kw·,jk2

↵
),

where c > 0 is a constant.

• Group-lasso regularizer: This regularizer is used in [28] in the non-parametric setting defined
in Section 3 where the excitation function is approximated by a linear combination of M basis
functions, parameterized by wij = [w1

ij , . . . , w
M
ij]. In this case, the L2-norm of wij is assumed to

have a Laplace distribution, i.e.,

p↵(wij) = c · 1

↵M
exp(�kwijk2

↵
),

where c > 0 is a constant.

B Hyper-parameter Update

Below, we give a closed-form solution to update ↵ in (13) for two priors used in the experiments of
Section 5. The update rules for the other priors are similar. We start by rewriting the joint distribution
log p↵(g�("`),S) as

log p↵(g�("`),S) = log p(S|g�("`)) + log p↵(g�("`)), (15)

where the first term (the likelihood) is not a function of ↵ and only the second term (the prior)
is a function of ↵. Hence minimizing

Pn
`=1 log p↵(g�("`),S) over ↵ amounts to minimizingPn

`=1 log p↵(g�("`)).

L2-regularizer: For the L2-regularizer we have

log p↵(g�("`)) = �g�("`)2

2↵
� 1

2
log↵� 1

2
log 2⇡,

and the closed form update hence becomes

argmin
↵̃

1

n

nX

`=1

log p↵̃(g�("`),S) =
1

n

nX

`=1

g�("`)
2. (16)

12

L1-regularizer: For the L1-regularizer we have

log p↵(g�("`)) = �g�("`)

↵
� log↵� log 2,

and the closed form update hence becomes

argmin
↵̃

1

n

nX

`=1

log p↵̃(g�("`),S) =
1

n

nX

`=1

g�("`). (17)

C Simple Optimization of ↵

In this section, we show that we cannot simply find ↵ by optimizing the negative log-likelihood in
(4) or the MAP objective in (8) over ↵.

Fist note that, minimizing regularized negative log-likelihood in (4) over ↵, simply sets ↵ to infinity.

Second, we show that maximizing the MAP objective in (8) over ↵ also fails because it is unbounded
from above. We show this for the case of the Gaussian prior defined by

p↵(µ,W) = p↵µ(µ)p↵W (W) =
1p

2⇡↵µ
exp

✓
�kµk2

2↵µ

◆
· 1p

2⇡↵W
exp

✓
�kW k2

2↵W

◆
. (18)

but the same result holds for other priors. The log of the Gaussian prior (18) is

log p↵(µ,W) = log p↵µ(µ) + log p↵W (W)

= �kµk2

2↵µ
� kW k2

2↵W
� 1

2
log↵µ � 1

2
log↵W + c, (19)

where c is a constant independent of ↵. In the MAP objective (8), if we set µ = 1 and W = 0,
i.e., all processes are simple Poisson process with rate 1 and no interaction between them, then
the conditional intensity �i(t) = 1 for all i 2 [d] and t � 0. The log-likelihood in (5) becomes
log p(S|µ,W) = �DT , which is bounded from below. Set ↵µ = 1, then for ↵W ! 0+, we get
log p↵(µ,W) ! 1. Hence, the MAP estimator for ↵ is unbounded from above and maximizing
the MAP objective simultaneously over both the hyper-parameters ↵ and the model parameters µ
and W would fail.

D Additional Experimental Results

We first carry out an additional set of experiments to show the effect of the zeroing-out small weights
using a threshold ⌘. To do so, we first need to introduce the following two performance metrics:

• The false positive rate (FPR) to be the fraction of errors in learnt edges

FPR = |{ŵij |ŵij > 0, w?
ij = 0}|/|{ŵij |w?

ij = 0}|,

where | · | denotes the cardinality of a set.
• Similarly, the false negative rate (FNR) to be the fraction of errors in learnt non-edges

FNR = |{ŵij |ŵij = 0, w?
ij > 0}| |{ŵij |w?

ij > 0}|.

Figure 4 shows the effect of number of samples on F1-score for several choice of threshold ⌘. We see
that our proposed algorithm VI-EXP (resp. VI-SG) outperform its MLE counterpart MLE-ADM4
(resp. MLE-SGLP) for all values of ⌘. With increasing ⌘, we see that the F1-score of MLE-based
approaches improve. This is due to the FPR decreasing faster than the FNR increases due to the
sparsity of the graph. However note that, since we do not know the expected value of true edges w⇤

ij
beforehand, it is not clear a-priori what value we should set for the threshold ⌘. Ideally, we choose
the threshold ⌘ to be as small as possible, which is the regime in which our variational inference
algorithm outperforms MLE-based methods the most.

In Figure 5, we plot Precision@k for different values of K. The number of edges in the generated
synthetic graphs is 195, so in Figure 5 we vary K up to 195. We see that VI-EXP always has better

13

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U�V

ɱӰɘɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ
6R

@a
+Q

`2
Uᇅ�Јӳ

ЈϵV

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U#V

ɱӰɘɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

6R
@a

+Q
`2

Uᇅ�Јӳ
ЈϯV

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U+V

ɱӰɘɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

6R
@a

+Q
`2

Uᇅ�Јӳ
ЈΚV

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

Figure 4: Performance measured by F1-Score with respect to the number of training samples. The
proposed variational inference approaches are shown in solid lines. The non-parametric methods are
highlighted with square markers.

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U�V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

S
`2

+B
bB

QM
!

8

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U#V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

S
`2

+B
bB

QM
!

Ry

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U+V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

S
`2

+B
bB

QM
!

ky

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U/V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

S
`2

+B
bB

QM
!

8y

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U2V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ

S
`2

+B
bB

QM
!

Ry
y

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

ȯɱɘ ȯɱȃ
LmK#2` Q7 i`�BMBM; 2p2Mib

U7V

ɱӰȃɱӰȁɱӰɒɱӰɑɱӰǮɱӰȦȯӰɱ
S

`2
+B

bB
QM

!
RN

8

JG1@�.J9
JG1@a:GS
oA@1sS
oA@a:

Figure 5: Performance measured by Precision@k with respect to the number of training samples.
The proposed variational inference approaches are shown in solid lines. The non-parametric methods
are highlighted with square markers.

Precision@k than its counterpart MLE-ADM4. VI-SG has the same Precision@k for k = 5, 10, and
20 as MLE-SGLP. For larger k MLE-SGLP has slightly better Precision@k. Note that, Precision@k
focuses only on the accuracy of top k edges learnt by an algorithm and hence does not discriminate
the imbalance between precision and recall for large k in sparse graphs.

Finally, to evaluate the scalability of our approach, we ran additional simulations on increasingly
large-dimensional problems. As shown in Figure 6, the per-iteration running time of our approach
VI-EXP (implemented in python) scales better than the one of MLE-ADM4 (implemented in C++).
In addition, even if our gradient descent algorithm requires more iterations to converge, we show in
Figure 7 that VI-EXP reaches the same F1-score as MLE-ADM4 faster.

14

� ��� ��� ��� ��� ���
LmK#2` Q7 /BK2MbBQMb ԓ���������������������������

_m
MM

BM
;

iBK
2

T2
`B

i2
`�

iBQ
M

UBM
b2

+V

JG1@�.J9
oA@1sS

Figure 6: Comparison of running time per-
iteration.

� ��� ��� ��� ��� ���
LmK#2` Q7 /BK2MbBQMb ԓ��������������������������������

hQ
i�

H`
mM

MB
M;

iBK
2U

BM
b2

+V

JG1@�.J9
oA@1sS

Figure 7: Running time required for our ap-
proach VI-EXP to reach the same F1-Score as
MLE-ADM4.

E Reproducibility

In this section, we provide extensive details on the experimental setup used in Section 5. We first
describe the implementation details of the algorithm described in Algorithm 1. We then provide the
details of the experimental setup for both the synthetic and real data experiments.

E.1 Implementation details of Algorithm 1

We used L = 1 sampled Gaussian noise in line 3 of Algorithm 1. We set the momentum term
� = 0.5 in (13). In our early experiments, we observed that the performance of the algorithm is
not sensitive to the momentum term � for � 2 (0, 1). Therefore, we decided to set it to 0.5 in all
experiments. We used the Adam optimizer with learning rate ⌘ = 0.02. We also multiply the learning
rate by 1� 10�4 at each iteration. Both ⌫µ and ⌫W were initialized by sampling from the normal
distribution N(0.1, 0.01). We initialized ↵ = 0.1 for all hyper-parameters. We observed that the
performance of the algorithm is not sensitive to the initialization. Both �µ and �W were initialized
by sampling from the normal distribution N(0.2, 0.01) then clipping them to be in [0.01, 2]. This
initialization ensures that the initial variance of the algorithm is neither small nor too big.

E.2 Synthetic experiments

To create the synthetic data, we generated random Erdős–Rényi graphs with D = 50 nodes and with
edge probability p = log(D)/D, leading to graphs with 195 edges on average. Then, the sequences
of observations were generated from an MHP with the exponential excitation kernel defined in (2).
The baseline {µi} were sampled uniformly at random in [0, 0.02], and the edge weights {w⇤

ij} were
sampled uniformly at random in [0.1, 0.2]. To generate the results of Figure 1, we varied the length
of observations between N = 700 and N = 25000. The results were averaged over 30 graphs with
10 simulations each.

We used tick8 Python library to run the MLE-based baseline approaches. To tune the hyper-
parameters of the MLE-based approaches, we first manually searched for an initial range of parameters
where the algorithm performed well. Then, we fined-tuned the hyper-parameters using grid-search to
find the ones giving the best results for the Precision@20 and F1-score metrics. For MLE-SGLP, we
used the grid range 1/↵ 2 [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0] and lasso_grouplasso_ratio
2 [0.25, 0.5, 0.75]. We used the default values for the optimizer, which we checked and are
sure of its convergence. We finally chose 1/↵ = 0.1 and lasso_grouplasso_ratio = 0.75.
For MLE-ADM4, we also used the grid range 1/↵ 2 [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0] and
lasso_nuclear_norm 2 [0.25, 0.5, 0.75]. Making overall 21 different configurations. We finally chose
1/↵ = 0.05 and lasso_nuclear_norm = 0.5 that gave the best results for Precision@20 and F1-score.

E.3 Real data experiments

For our approach VI-EXP and its parametric counterpart VI-SG, the exponential decay parameter
must be tuned for each dataset. As expected, both algorithms performed best with the same decay.

8https://github.com/X-DataInitiative/tick

15

For our approach VI-SG and its MLE counterpart MLE-SGLP, there are two parameters to tune,
M and cutoff time Tc. The center of the m-th Gaussian kernel, with m 2 [M], is defined as
tm = Tc · (m � 1)/M and its scale is defined as b = Tc/(⇡ · M) in (3). After manually finding
an initial range of M and T where algorithms performed well, we then fine-tuned them using the
grid-search.

Epidemic dataset. For our VI-SG algorithm, we did a grid-search with M 2 [30, 35, 40, 45, 50, 55]
and Tc 2 [025 ·M, 0.5 ·M, 0.75 ·M]. We did not see a notable difference between the performance
of different grids, as long as M and T are large enough. We chose M = 55 and T = 27.5.
For the baseline MLE-SGLP, we did a grid-search with M 2 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21],
Tc 2 [0.25M, 0.5M, 1M, 2M, 5M, 10M, 20M, 40M] and 1/↵ 2 [1, 10, 50, 100], that makes
overall 352 experiments. We chose M = 19, Tc = 9.5 and 1/↵ = 10. For our algo-
rithm VI-EXP, we tried decay 2 [0.1, 0.5, 1, 2, 5, 10, 20, 40] and we chose decay = 0.1. For
the baseline MLE-ADM4, we did a grid-search with decay 2 [0.1, 0.5, 1, 2, 5, 10, 20, 40] and
1/↵ = [0.01, 0.1, 1, 2, 5, 10, 50, 100, 200, 400, 800]. We chose decay = 0.1 and 1/↵ = 50.

Stock market dataset. In the stock market dataset, our algorithm VI-SG also performed better with
a larger M . As for large M the experiments are slow we decided to set M = 50 and did grid-search
for Tc with Tc 2 [0.15 ·M, 0.25 ·M, 0.5 ·M]. For the baseline MLE-SGLP, we did a grid-search with
M = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21], Tc 2 [0.25 ·M, 0.5 ·M, 0.75 ·M, 1 ·M, 2 ·M, 5 ·M] and
1/↵ 2 [0.01, 0.1, 0.5, 1, 10, 50, 100]. The best values found were M = 17, Tc = 8.5 and C = 0.1.
For our algorithm VI-EXP, we tried decay 2 [0.1, 0.5, 1, 2, 5, 10, 20, 40] and we chose decay = 0,1.
For the baseline MLE-ADM4, we did a grid search with decay 2 [0.1, 0.5, 1, 2, 5, 10, 20, 40] and
1/↵ = [0.01, 0.1, 1, 2, 5, 10, 50, 100, 200, 400, 800]. We chose decay = 0,1 and 1/↵ = 1.

Enron email dataset. The Enron email dataset is a larger dataset and experiments are more com-
putationally intensive, so we chose smaller ranges for hyper-parameter tuning. For our algorithm
VI-SG we did a grid-search with M = 10 and Tc 2 [5, 7.5, 10, 15]. The best value is Tc = 5. For the
baseline MLE-SGLP, we did a grid-search with M = [1, 2, 3, 4, 5], Tc 2 [0.1, 0.25, 0.5, 0.75, 1, 1.25]
and 1/↵ 2 [10, 20, 50, 100, 500]. The best value is M = 1, Tc = 2.5 and 1/↵ = 50.
For our algorithm VI-EXP, we tried decay 2 [5, 10, 20, 40] and we chose decay = 20. For
the baseline MLE-ADM4, we did a grid-search with decay 2 [0.1, 0.5, 1, 2, 5, 10, 20, 40] and
1/↵ = [0.01, 0.1, 1, 2, 5, 10, 50, 100, 200, 400, 800]. We chose decay = 20 and 1/↵ = 0.1.

16

	Introduction
	Related Works
	Preliminary Definitions
	Multivariate Hawkes Processes
	Maximum Likelihood Estimation

	Proposed Learning Approach
	Variational Expectation-Maximization for Multivariate Hawkes Processes

	Experimental Results
	Synthetic Data
	Real Data

	Conclusion
	Different Priors
	Hyper-parameter Update
	Simple Optimization of
	Additional Experimental Results
	Reproducibility
	Implementation details of Algorithm 1
	Synthetic experiments
	Real data experiments

