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In the following proofs, the dual formulation of the 1-Wasserstein distance is used several times. We
include the definition here for reference purpose.

Definition 1. Dual formulation of the 1-Wasserstein distance. Let (X, dX) be a Polish metric
space and µ, ν any two probability measures on X . The dual formulation of the 1-Wasserstein
distance between µ and ν is defined by

W1(µ, ν) = sup
f∈Lip1

∫
X

f(x)d(µ− ν)(x) (1)

where Lip1 denotes the set of the continuous mappings X → R with a minimal Lipschitz constant
bounded by 1.

1 Proof of Property 1

Consider an (Lp, Lr)-LC-NSMDP. Let s, t, a, t̂ ∈ S × T ×A×T be. By definition of the expected
reward function, the following holds:

Rt(s, a)−Rt̂(s, a) =

∫
S

(
pt(s

′ | s, a)rt(s, a, s
′)− pt̂(s

′ | s, a)rt̂(s, a, s
′)
)
ds′

=

∫
S

(
rt(s, a, s

′)
[
pt(s

′ | s, a)− pt̂(s
′ | s, a)

]
+ pt̂(s

′ | s, a)
[
rt(s, a, s

′)− rt̂(s, a, s
′)
])
ds′

=

∫
S
rt(s, a, s

′)
[
pt(s

′ | s, a)− pt̂(s
′ | s, a)

]
ds′

+

∫
S
pt̂(s

′ | s, a)
[
rt(s, a, s

′)− rt̂(s, a, s
′)
]
ds′

≤ sup
‖f‖L≤1

∫
S
f(s′, t′)

[
pt(s

′ | s, a)− pt̂(s
′ | s, a)

]
ds′

+

∫
S
pt̂(s

′ | s, a)Lr|t− t̂|ds′

≤W1(p(· | s, t, a), p(· | s, t̂, a)) + Lr|t− t̂|
≤(Lp + Lr)|t− t̂|
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Where we used the triangle inequality, the fact that r is a bounded function and the dual formulation
of the 1-Wasserstein distance (see Definition 1). The same inequality can be derived with the opposite
terms which concludes the proof by taking the absolute value.

2 Proof of Property 2

Proof. The proof is straightforward using the Lipschitz property of Definition 4 and Property 1.

3 Proof of Property 4

Let us first calculate the cost of constructing a tree with the minimax procedure. Following Algo-
rithm 1, a tree is composed of at most nl leaf nodes, nd non-leaf decision nodes and nc chance nodes,
with the following values for the integers nl, nd and nc:

nl = (|S||A|)dmax , nd =

dmax−1∑
i=0

(|S||A|)i , and nc = |A|B.

As a result, we have that nl is O((|S||A|)dmax), nd is O((|S||A|)dmax−1
) and nc is

O(|A| (|S||A|)dmax−1
). We note respectively cl, cd and cc the number of operations required to

compute the values of a leaf node, a non-leaf decision node and a chance node. To compute the
whole tree we need to build and evaluate all the nodes, resulting in at most the following number of
operations:

nlcl × ndcd × nccc. (2)

We will assume that cl is O(1) without further details on the nature of the heuristic function. As
the value of a non-leaf decision node is computed by finding the maximum value among the |A|
children, we have that cd isO(|A|). From Theorem 3, the evaluation of a chance node is equivalent to
computing a 1-Wasserstein distance, which is a linear program. Following Vaidya’s algorithm [Vaidya,
1989], the cost in the worst-case is O(|S|2.5) where |S| is the dimension of the problem in our case.
As a result, cc is O(|S|2.5). Replacing all the values in Equation 2, we deduce that the total number
of operation of computing a tree is

O
(
|S|1.5 (|S||A|)dmax

)
.

After computing a tree, the action maximizing the value should be selected which has complexity
O(|A|). The operation being repeated for every time steps, one should multiply everything by B,
the total number of time steps for which the algorithm is run. As a result, the total computational
complexity of RATS is

O
(
B|S|1.5|A| (|S||A|)dmax

)
.

4 Proof of Property 3

We are looking for a closed-form expression of the value of a chance node νs,t,a as defined in
Equation 6 recalled below.

(p̄, R̄) = arg min
(p,R)∈∆t0,t

R(s, a) + γEs′∼p(·|s,a)V (νs
′,t+1)

Obviously, we have that R̄ = Rt0(s, a)− LR|t− t0| and p̄ is given by:

p̄ = arg min
p∈BW1

(pt0 (·|s,a),Lp|t−t0|)

∑
s′

p(s′ | s, a)V (νs
′,t+1)

where Bd(c, r) denotes the ball of center c, defined with metric d and radius r. Since we are in the
discrete case, we enumerate through the elements of S and write the vectors p ≡ (p(s′ | s, a))s′ ,
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p0 ≡ (pt0(s′ | s, a))s′ and v ≡ (V (νs
′,t+1))s′ . The problem can then be re-written as follows:

p̄ = arg min
p

p>v (3)

s.t. p>1 = 1 (4)
p ≥ 0 (5)
W1(p, p0) ≤ C (6)

Where we have 1 ∈ R|S| a vector of ones, C = Lp|t− t0| and the 1-Wasserstein metric between two
discrete distributions written in dual form following Lemma 1 as:

W1(u, v) = max
f

f>(u− v) (7)

s.t. Af ≤ b
Where the matrix A and vector b are defined such that for any indexes i, j we have |fi − fj | ≤ di,j
with di,j the metric defined over the measured space, in our case the state space S . Hence we propose
to solve the program 3 under constraints 4 to 6. Let us first show that this problem is convex. Clearly,
the objective function in Equation 3 is linear, hence convex, and the constraints 4 and 5 define a
convex set. We prove that the 1-Wasserstein distance is convex in Lemma 1.
Lemma 1. Convexity of the 1-Wasserstein distance. The 1-Wasserstein distance is convex i.e. for
λ ∈ [0, 1], (X, dX) a Polish space and any three probability measuresw0, w1, w2 onX , the following
holds:

W1(w0, λw1 + (1− λ)w2) ≤ λW1(w0, w1) + (1− λ)W1(w0, w2)

Proof. We use the dual representation of the 1-Wasserstein distance of Definition 1.

W1(w0,λw1 + (1− λ)w2)

= sup
f∈Lip1

∫
X

f(x)(w0(x)− λw1(x)− (1− λ)w2(x))dx

= sup
f∈Lip1

∫
X

(λf(x)(w0(x)− w1(x)) + (1− λ)f(x)(w0(x)− w2(x))) dx

≤ λ sup
f∈Lip1

∫
X

f(x)(w0(x)− w1(x))dx+ (1− λ) sup
f∈Lip1

∫
X

f(x)(w0(x)− w2(x))dx

≤ λW1(w0, w1) + (1− λ)W1(w0, w2)

Where we used the linearity of the integral and the triangle inequality on the sup operator.

The program 3 is thus convex. One can also observe that the gradient of the objective function is
constant, equal to +v. Furthermore, p0 is an admissible initial point that we could use for a gradient
descent method. However, given p0, following the descent direction −v may break the constraints 4
and 5. One would have to project this gradient onto a certain, unknown, set of hyperplanes in order
to apply the gradient method descent. Let us note proj(v) the resulting projected gradient, that is
unknown.

We remark that the vector psat = (0, · · · , 0, 1, 0, · · · , 0) with 1 at the index arg mini vi where vi
denotes the ith coefficient of v, is the optimal solution of the program 3 when we remove the
Wasserstein constraint 6. One can observe that the optimal solution with the constraint 6 would as
well be psat if the constant C is big enough. As a result, the descent direction∇ = psat− p0 is the one
to be followed in this setting when applying the gradient descent method to this case. Furthermore,
following∇ from p0 until psat never breaks the constraints 4 and 5. Since the gradient of the objective
function is constant, there can exist only one proj(v). ∇ fulfils the requirements, hence we have
proj(v) = ∇.

We can now apply the gradient method descent with the following 1-shot rule since the gradient is
constant:

p̄ := p0 + λ∇ with,
{
λ = 1 if W1(psat, p0) ≤ C
λ = C/W1(psat, p0)
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Indeed, in the first case, we can follow ∇ until the extreme distribution psat without breaking the
constraint 6. Going further is trivially infeasible.

In the second case, we have to stop in between so that the constraint 6 is saturated. In such a case, we
cannot go further without breaking this constraint and we recall that no projected gradient could be
found by uniqueness of this gradient in our setting. Hence we have the following equality:

W1(p0 + λ∇, p0) = C

max
Af≤b

f>(p0 + λ∇− p0) = C

λ max
Af≤b

f>∇ = C

λ = C/W1(psat, p0)

Where we used the fact that∇ = psat − p0. The latter result concludes the proof.

5 Proof of Property 5

Let us consider a tree developed with Algorithm 1 with a heuristic function H : s 7→ H(s) used
to estimate the value of a leaf node. The set of the leaves nodes is denoted by L and we have the
following uniform upper bound δ > 0 on the heuristic error:

∀νs,t ∈ L, |H(s)− V ∗t0,t(s)| < δ (8)

We want to prove the following result for a decision and chance nodes νs,t and νs,t,a at any depth
d ∈ [0, dmax]:

|V (νs,t)− V ∗t0,t(s)| ≤ γ
(dmax−d)δ (9)

|V (νs,t,a)−Q∗t0,t(s, a)| ≤ γ(dmax−d)δ (10)

The proof is made by induction, starting at depth dmax and reversely ending at depth 0. At dmax, the
nodes are leaf nodes, their values is estimated with the heuristic function i.e. V (νs,t) = H(s). Hence
the result is directly proven by hypothesis in Equation 8. We will now start by proving the result for
the chance nodes which come as the first parents of the decision node for which we initialized the
induction proof. Then we extend it to the parents decision nodes which completes the proof.

Chance nodes case. Consider any chance node νs,t,a at depth d ∈ [0, dmax]. We suppose that the
property is true for depth d+ 1, thus we have for any decision node at d+ 1 denoted by νs

′,t′ :

|V (νs
′,t′)− V ∗t0,t′(s

′)| ≤ γ(dmax−(d+1))δ

Following Equation 6 of the paper, we have by construction:

V (νs,t,a) = Rt(s, a) + γ
∑
s′

pt(s
′ | s, a)V (νs

′,t′)

By definition, the true Q-value function defined by the Bellman Equation 2 gives the true target value:

Q
∗
t0,t(s, a) = Rt(s, a) + γ

∑
s′

pt(s
′ | s, a)V

∗
t0,t′(s

′)

Hence, using the induction hypothesis, we have the following inequalities proving the result of
Equation 10:

|V (νs,t,a)−Q∗t0,t(s, a)| = γ

∣∣∣∣∣∑
s′

pt(s
′ | s, a)V (νs

′,t′)−
∑
s′

pt(s
′ | s, a)V

∗
t0,t′(s

′)

∣∣∣∣∣
≤ γ

∑
s′

pt(s
′ | s, a)

∣∣∣V (νs
′
)− V ∗t0,t′(s

′)
∣∣∣

≤ γ
∑
s′

pt(s
′ | s, a)γ(dmax−(d+1))δ

≤ γ(dmax−d)δ
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Decision nodes case. Consider now any decision node νs,t at the same depth d ∈ [0, dmax). The
value of such a node is given by Equation 5 of the paper and the following holds.

V (νs,t) = V (νs,t,ā), with, ā = arg max
a∈A

V (νs,t,a)

Similarly, we define a∗ ∈ A as follows:

V
∗
t0,t(s) = Q

∗
t0,t(s, a

∗), with, a∗ = arg max
a∈A

Q
∗
t0,t(s, a)

We distinguish two cases: 1) if ā = a∗ and 2) if ā 6= a∗. In case 1), the result is trivial by writing the
value of the decision node as the value of the chance node with the action a∗ and using the – already
proven for depth d – result of Equation 10.

|V (νs,t)− V ∗t0,t(s)| = |V (νs,t,a
∗
)−Q∗t0,t(s, a

∗)|

≤ γ(dmax−d)δ

In case 2), the maximizing actions are different. Still following Equation 10, we have that
V (νs,t,a

∗
) ≥ Q

∗
t0,t(s, a

∗) − γ(dmax−d)δ. Yet, since ā is the maximizing action in the tree, we
have that V (νs,t,ā) ≥ V (νs,t,a

∗
). By transitivity, we can thus write the following:

V (νs,t,ā) ≥ Q∗t0,t(s, a
∗)− γ(dmax−d)δ

⇒ Q
∗
t0,t(s, a

∗)− V (νs,t,ā) ≤ γ(dmax−d)δ (11)

Furthermore, still following Equation 10, we have that Q
∗
t0,t(s, ā) ≥ V (νs,t,ā)− γ(dmax−d)δ. Yet,

since a∗ is the maximizing action in M̂DP, we have that Q
∗
t0,t(s, a

∗) ≥ Q∗t0,t(s, ā). By transitivity,
we can thus write the following:

Q
∗
t0,t(s, a

∗) ≥ V (νs,t,ā)− γ(dmax−d)δ

⇒ V (νs,t,ā)−Q∗t0,t(s, a
∗) ≤ γ(dmax−d)δ (12)

By assembling equations 11 and 12, we prove equation 9 and the proof by induction is complete.

6 Proof of Property 6

Let s, t0, t ∈ S × T × T be. We consider the two snapshots MDPt0 and MDPt and are interested
in the values of s within those two snapshots using the random policy π. We note V πMDPt0

(s) and
V πMDPt

(s) those values. Let n ∈ N be. We note V π,nMDPt0
(s) and V π,nMDPt

(s) the finite horizon values
defined as follows:

V π,nMDPt0
(s) = E


n∑
i=0

γirt0(si, ai, si+i)

∣∣∣∣∣∣
s0 = s,

si+1 ∼ pt0(· | si, ai), i ≥ 0

ai ∼ π(·), i ≥ 0


where we replace t0 by t for the definition of V π,nMDPt

(s). We first prove a result on the finite horizon
values in Lemma 2.
Lemma 2. We consider an (Lp, LR)-LC-NSMDP. For s, t, t0 ∈ S × T × T and n ∈ N, the finite
horizon of the values of s within the snapshots MDPt and MDPt0 verify:

|V π,nMDPt0
(s)− V π,nMDPt

(s)| ≤ LVn |t− t0|

with, LVn
=

n∑
i=0

γiLR

Proof. The proof is made by induction. Let us start with n = 0. By definition, we have:∣∣∣V π,0MDPt0
(s)− V π,0MDPt

(s)
∣∣∣ =

∣∣∣∣∫
A
π(a | s) (Rt0(s, a)−Rt(s, a)) da

∣∣∣∣
≤
∫
A
π(a | s)LR|t0 − t|da

≤LR|t0 − t|
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Which verifies the property for n = 0 with LV0 = LR. Let us now consider n ∈ N and suppose the
property true for rank n− 1. By writing the Bellman equation for the two value functions, we obtain
the following calculation:

V π,nMDPt0
(s)− V π,nMDPt

(s) =

∫
S×A

π(a|s)
[
pt0(s′ | s, a)(rt0(s, a, s′) + γV π,n−1

MDPt0
(s′)) −

pt(s
′ | s, a)(rt(s, a, s

′) + γV π,n−1
MDPt

(s′))
]
ds′da

i.e. V π,nMDPt0
(s)− V π,nMDPt

(s) =

∫
A
π(a|s)

[
A(s, a) +B(s, a)

]
da (13)

With the following values for A(s, a) and B(s, a):

A(s, a) =

∫
S

(rt0(s, a, s′) + γV π,n−1
MDPt0

(s′))
[
pt0(s′ | s, a)− pt(s′ | s, a)

]
ds′

B(s, a) =

∫
S
pt(s

′ | s, a)
[
rt0(s, a, s′)− rt(s, a, s′) + γ(V π,n−1

MDPt0
(s′)− V π,n−1

MDPt
(s′))

]
ds′

Let us first bound A(s, a) by noticing that s′ 7→ rt0(s, a, s′) + γV π,n−1
MDPt0

(s′) is bounded by 1
1−γ .

Since the function s′ 7→ 1
1−γ belongs to Lip1, we can write the following:

A(s, a) ≤ sup
f∈Lip1

∫
S
f(s′)

[
pt0(s′ | s, a)− pt(s′ | s, a)

]
ds′

≤W1(pt0 , pt)

≤Lp|t− t0|

B is straightforwardly bounded using the induction hypothesis:

B(s, a) ≤
∫
S
pt(s

′ | s, a)
[
Lr|t− t0|+ γ

n−1∑
i=0

γiLR|t− t0|
]
ds′

≤Lr|t− t0|+
n∑
i=1

γiLR|t− t0|

We inject the result in Equation 13:

V π,nMDPt0
(s)− V π,nMDPt

(s) ≤
∫
A
π(a|s)

[
Lp|t− t0|+ Lr|t− t0|+

n∑
i=1

γiLR|t− t0|
]
da

≤(Lp + Lr)|t− t0|+
n∑
i=1

γiLR|t− t0|

≤LR|t− t0|+
n∑
i=1

γiLR|t− t0|

≤
n∑
i=0

γiLR|t− t0|

The same result can be derived with the opposite expression. Hence, taking the absolute value, we
prove the property at rank n, i.e.

|V π,nMDPt0
(s)− V π,nMDPt

(s)| ≤
n∑
i=0

γiLR|t− t0| (14)

which concludes the proof by induction.

The proof of Property 6 follows easily by remarking that the sequence LVn
of Lemma 2 is geometric

and converges towards LR

1−γ when n goes to infinity.
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Figure 1: The Non-Stationary bridge environment

7 Non-Stationary bridge environment

8 Informations about the Machine Learning reproducibility checklist

For the experiments run in Section 6, the computing infrastructure used was a laptop using four 64-bit
CPU (model: Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz). The collected samples sizes and
number of evaluation runs for each experiment are summarized in Table 1.

Experiment
Number of
experiment
repetitions

Number of
episodes

Maximum
length

of episodes

Upper bound on
the number of

computed transition
samples (s, a, r, s′)

Non-Stationary
Bridge

Figure 1

3
(one per agent) 96 10 89,579,520

Table 1: Summary of the number of experiment repetition, number of sampled tasks, number of
episodes, maximum length of episodes and upper bounds on the number of collected samples.

The displayed confidence intervals in Figure 2a is 50% of the estimated confidence interval σ̄
computed w.r.t. the following formula:

σ̄ =

√√√√ 1

1−N

N∑
i=1

(xi − x̄)2 where, x̄ =
1

N

N∑
i=1

xi,

with D = {xi}Ni=1 the set of the collected data (discounted return in this case). No data were
excluded neither pre-computed. Hyper-parameters were determined to our appreciation, they may be
sub-optimal but we found the results convincing enough to display interesting behaviours.
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